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ORIGINAL RESEARCH
PEDIATRICS

Cerebellar Growth Impairment Characterizes School-Aged
Children Born Preterm without Perinatal Brain Lesions

X K. Pieterman, X T.J. White, X G.E. van den Bosch, X W.J. Niessen, X I.K.M. Reiss, X D. Tibboel, X F.E. Hoebeek, and X J. Dudink

ABSTRACT

BACKGROUND AND PURPOSE: Infants born preterm are commonly diagnosed with structural brain lesions known to affect long-term
neurodevelopment negatively. Yet, the effects of preterm birth on brain development in the absence of intracranial lesions remain to be
studied in detail. In this study, we aim to quantify long term consequences of preterm birth on brain development in this specific group.

MATERIALS AND METHODS: Neonatal cranial sonography and follow-up T1-weighted MR imaging and DTI were performed to evaluate
whether the anatomic characteristics of the cerebrum and cerebellum in a cohort of school-aged children (6 –12 years of age) were related
to gestational age at birth in children free of brain lesions in the perinatal period.

RESULTS: In the cohort consisting of 36 preterm (28–37 weeks’ gestational age) and 66 term-born infants, T1-weighted MR imaging and DTI at
6–12 years revealed a reduction of cerebellar white matter volume (� � 0.387, P � .001), altered fractional anisotropy of cerebellar white matter
(� � �0.236, P � .02), and a reduction of cerebellar gray and white matter surface area (� � 0.337, P � .001; � � 0.375, P � .001, respectively) in
relation to birth age. Such relations were not observed for the cerebral cortex or white matter volume, surface area, or diffusion quantities.

CONCLUSIONS: The results of our study show that perinatal influences that are not primarily neurologic are still able to disturb long-term
neurodevelopment, particularly of the developing cerebellum. Including the cerebellum in future neuroprotective strategies seems
therefore essential.

ABBREVIATIONS: FA � fractional anisotropy; MD � mean diffusivity

Preterm birth and related complications are considered major

risk factors for long-term functional impairment1-3 and have

been associated with substantially increased health risks from

birth to adulthood.4,5 Survival rates following preterm birth have

substantially increased due to advances in perinatal care. How-

ever, among survivors, neurocognitive and motor impairments

are still frequent,6-8 despite a shift from large macroscopic white

matter lesions toward subtler punctate lesions and microstruc-

tural abnormalities.9,10

Advanced imaging techniques have been widely adopted to

study brain development and microstructure following preterm

birth, with a predominant focus on studying cerebral structures.

A limited number of studies assessing neurodevelopment follow-

ing preterm birth have incorporated the cerebellum in imaging

analysis. More attention toward cerebellar structures seems desir-

able now that recent evidence shows a potential role of the cere-

bellum in various nonmotor functions, including attention,

cognition, and behavior11-14; disturbances of cerebellar develop-

ment have been associated with a variety of nonmotor disorders,

including autism spectrum disorder,15 schizophrenia,16 dys-

lexia,17 and attention deficit disorders.18

Disruptive influences on cerebellar microstructure and structures

are likely to occur during perinatal stages, when growth and develop-
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ment rates are highest and cerebellar microstructure is vulnera-

ble.19,20 Imaging studies conducted thus far have suggested that

cerebellar lesions within this period disturb cerebellar development

and may secondarily impact cerebral development21,22; these find-

ings suggest the existence of trophic interactions between the cerebel-

lum and cerebrum during neurodevelopment and are in line with

animal experiments showing the regulatory effects of the cerebellum

on the development of supratentorial brain structures.23-25 Neonatal

events that can disturb this complex interplay between cerebellar and

cerebral development may be detrimental and may lead to functional

impairment in later life.

To date, few neuroimaging studies have assessed the impact of

preterm birth on the cerebellum and were, in great part, conducted

during early perinatal stages, following major neurologic perinatal

events (eg, hypoxic-ischemic encephalopathy, hemorrhages) and in

infants born extremely preterm (�28 weeks of gestation). Studies

assessing the long-term impact of birth age on cerebellar structures

are sparse, and only a few studies have attempted to quantify the

long-term effects of preterm birth on cerebellar anatomy and micro-

structures. Whether preterm birth in children born after 28 weeks of

gestation without brain injury on perinatal imaging influences cere-

bellar structures long-term remains to be elucidated.

In this study among preterm and term-born infants 6 –12

years of age at the time of follow-up, we report neuroimaging data

supporting the hypothesis that the cerebellum is particularly sen-

sitive to even subtle perinatal disturbances.

MATERIALS AND METHODS
Subjects
MR imaging scans and neuropsychological assessment scores of

102 children scanned between 6 and 12 years of age were collected

and analyzed. The included cohort was scanned as part of a pro-

spective cohort study among children in Rotterdam and consisted

of 36 preterm-born infants (28 –37 weeks’ gestational age) and 66

term-born controls (On-line Table 1).26 Exclusion criteria were

the following: macroscopic brain injury seen on sonography dur-

ing the hospital or neonatal intensive care stay of the infants born

preterm (intraventricular hemorrhage, intraparenchymal lesions,

stroke) and congenital abnormalities that could affect normal

brain development negatively. Perinatal conditions of the infants

and eventual adverse events are summarized in On-line Table 2.

All preterm infants had routine sonography assessment in the

neonatal intensive care unit, which included scans at days 1, 3, and

7 after birth and once every other week during their neonatal

intensive care unit stay. Ultrasounds were performed by expert

neonatologists who had at least 2 years of experience with neona-

tal sonography. For cerebellar evaluation, the mastoid fontanelle

was used as the acoustic window. Convex 5–10 MHz and linear

15–18 MHz probes (Esaote Diagnostic Imaging Systems, Genova,

Italy) were used to assess the neonatal brain. Research ethics com-

mittee approval and written informed consent of parents and

children were obtained before MR imaging.

MR Imaging and Data Processing
MR imaging at 6 –12 years of age was performed between June

2011 and March 2013, using a 3T MR imaging system and con-

sisted of T1-weighted MR imaging and DWI. T1-weighted imag-

ing was performed using the following settings: TR � 10.3 ms,

TE � 4.2 ms, TI � 350 ms, matrix � 256 � 256 mm, isotropic

resolution � 0.9 � 0.9 � 0.9 mm, scan time � 5 minutes 40

seconds. Diffusion-weighted imaging was performed using an

echo-planar imaging sequence with the following settings: TR �

11,000 ms, TE � 83 ms, flip angle � 90°, matrix � 128 � 128,

FOV � 256 � 256 mm, slice thickness � 2 mm, number of slices �

77, acquisition time � 7 minutes 40 seconds, 35 diffusion-weighted

volumes (b�1000 s/mm2), 3 volumes without diffusion-weighting

(b�0 s/mm2), scan time � 7 minutes 40 seconds.27 All scans were

obtained without sedation of the patient on a 3T MR imaging system

using cushions to minimize head motion.

Preprocessing consisted of visual inspection of raw diffusion-

weighted images and T1-weighted MR imaging in 3 orthogonal

planes. Motion-corrupted images were excluded before analysis

(n � 2). T1-weighted images were brain-extracted and registered

to the diffusion-weighted images while correcting for EPI-in-

duced deformities using the T1-weighted image as a reference.

Diffusion-weighted data were corrected for motion-induced out-

liers, and tensors were calculated robustly using the REKINDLE

(robust extraction of kurtosis indices with linear estimation) ap-

proach.28-31 Artifacts correction included correction for eddy

currents, motion, and EPI-induced distortions. Preprocessing

was performed using ExploreDTI, Version 4.8.5 (http://

exploredti.com/) running in Matlab (R2015; MathWorks, Natick,

Massachusetts).29

Following preprocessing, we performed ROI analysis of cere-

bellar and cerebral regions based on automated white and gray

matter segmentations (see On-line Tables 3 and 4 for more infor-

mation on segmentation procedures and software). For each re-

gion, surface area and volume were calculated. Furthermore,

probabilistic tractography of the following white matter tracts

was performed using FSL (http://www.fmrib.ox.ac.uk/fsl) in con-

junction with the AutoPtx plugin (https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/AutoPtx) for automated probabilistic tractography32,33:

cerebellar peduncles (superior, middle, and inferior), thalamic

radiation (anterior, superior, and posterior), longitudinal fasciculus

(superior and inferior), forceps (major and minor), and corticospi-

nal tract. Fractional anisotropy (FA) and median diffusivity (MD)

values were computed for each tract. For more information on tool-

boxes, ROI placement, and MR imaging atlases that were used, see

On-line Tables 3 and 4. Segmentation of the cerebellum was per-

formed using the spatially unbiased infratentorial and cerebellar

template segmentation toolbox (SUIT; http://www.diedrichsenlab.

org/imaging/propatlas.htm). Segmentation results in a representa-

tive subject are shown in Fig 1.34,35

Statistical Analysis
Statistical analysis was performed with SPSS Statistics for Win-

dows, Version 22.0 (IBM, Armonk, New York). Linear regression

analysis was performed to study the relationship between each

structure that was delineated and gestational age, corrected for

age at follow-up scanning and sex differences. The standardized

regression coefficients and corresponding levels of significance

are reported for each structure studied. Statistical results were

corrected for multiple testing using a false discovery rate control

procedure.36
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RESULTS
Volumetric Analysis
Regression analysis of cerebellar and cerebral structures revealed

significant alterations of cerebellar white and gray matter struc-

tures in relation to birth age, but not of

analogous cerebral components (Tables

1 and 2). While we corrected for age at

MR imaging and sex differences, lower

gestational age at birth was associated

with lower total cerebellar volume (stan-

dardized regression coefficient, � �

0.191, P � .04), whereas this was not

found for the cerebral volume (� �

0.057, P � .54). When we evaluated gray

and white matter separately, this rela-

tion was consistently observed; cerebel-

lar white matter volume (� � 0.336, P �

.001) and surface area (� � 0.346, P �

.001) were significantly reduced in rela-

tion to lower gestational age at birth (Fig

2E, -G), while for cerebral white matter

volume (� � 0.098, P � .27) and surface

area (� � 0.127, P � .17), no significant

relationship was observed (Fig 2A, -C).

When comparing cerebellar and cere-

bral gray matter, we again found a sig-

nificant negative correlation between

the cerebellar gray matter surface area

and gestational age at birth (� � 0.337,

P � .001) (Fig 2H), while cerebral cortex

surface area was not significantly corre-

lated with gestational age at birth (� �

0.073, P � .43) (Fig 2D). Further subdi-

vision of the cerebellar cortex in ana-

tomic lobules according to the Schmah-

mann et al (1999)37 atlas definitions did

not highlight specific parts of the cere-

bellar cortex as being more predomi-

nantly affected in relation to gestational

age than others (On-line Table 5).

After false discovery rate correction,

which was performed to minimize the

risk of false-positive significant findings,

the volume and surface areas of cerebel-

lar white matter (� � 0.336, P � .001) as

well as cerebellar gray matter surface

area (� � 0.337, P � .001) were consis-

tently identified as being significantly as-

sociated with gestational age at birth.

DTI Analysis and Tractography
When we looked at diffusion properties

of cerebral white matter, cerebral white

matter FA and MD were not signifi-

cantly associated with gestational age

(� � �0.016, P � .88 and � � �0.119,

P � .22), while for cerebellar white mat-

ter, a significant association was ob-

served between cerebellar white matter fractional anisotropy and

gestational age at birth (� � �0.266, P � .008). When we looked

at gray matter, neither cerebral nor cerebellar FA and MD were

FIG 1. DTI-based tractography of the cerebellar peduncles (A and B) and T1-weighted image
segmentation of white and gray matter (C) and cerebellar lobules (D) in a representative subject.

Table 1: Coefficients of the regression model for cerebral volumes and surface areas when
accounting for age at scanning and sex differences as covariates

Dependent Variablea

Standardized
Regression

Coefficient (�)

Partial
Correlation

Coefficient (r) T Statistics
Significance

(2-Tailed)
Total cerebral volume (mm3) 0.066 0.072 0.712 .48
Cerebral WM volume (mm3) 0.148 0.130 1.271 .21
Cerebral cortex GM volume (mm3) 0.058 0.054 0.526 .60
Cerebral WM surface area (mm2) 0.148 0.130 1.271 .21
Cerebral cortex surface area (mm2) 0.098 0.089 0.865 .39

a Predictors in the model that were held constant: age at follow-up MRI (years) and sex (M/F).

Table 2: Coefficients of the regression model for cerebellar volumes and surface areas
when accounting for age at scanning and sex differences as covariates

Dependent Variablea

Standardized
Regression

Coefficient (�)

Partial
Correlation

Coefficient (r) T Statistics
Significance

(2-Tailed)
Total cerebellar volume (mm3) 0.224 0.195 1.945 .06
Cerebellar WM volume (mm3) 0.387 0.357 3.703 �.001b

Cerebellar GM volume (mm3) 0.134 0.118 1.150 .25
Cerebellar WM surface area (mm2) 0.387 0.357 3.703 �.001b

Cerebellar cortex surface area (mm2) 0.375 0.350 3.621 �.001b

a Predictors in the model that were held constant: age at follow-up MRI (years) and sex (M/F).
b Significant.
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significantly associated with gestational age at birth (Table 3).

Tractography results of neither cerebellar nor cerebral tracts re-

vealed obvious trends in diffusion characteristics in relation to

gestational age at birth (On-line Table 6).

DISCUSSION
In this study, we have performed a structural assessment to eval-

uate cerebral and cerebellar structures in a cohort of preterm and

term-born infants at school age who were free of intracranial le-

sions in the perinatal period. Our results show profound, long-

term trophic effects on cerebellar structures related to birth age in

infants free of neurologic complications in the perinatal period. In

previous research, perinatal stages were shown to be essential for

cerebellar morphogenesis, growth, and development, in that cer-

ebellar aberrations were commonly described in infants with non-

cerebellar neurologic pathologies (eg, hemorrhages, stroke) or

major perinatal events such as profound hypoxia.20,21 Studies

evaluating the consequences of prematurity on the cerebellum

and cerebrum in the absence of perinatal brain lesions were

mostly conducted during the early postnatal stages and were

therefore unable to differentiate be-

tween delayed maturation and persis-

tent cerebellar changes.1

In our cohort, trophic effects related
to birth age were most pronounced in
cerebellar white matter volume and cer-

ebellar cortex surface area, as well as in

cerebellar white matter microstructures

as measured by DTI. These results sug-

gest that particularly the cerebellum is
sensitive to perinatal disturbances and

that even in the absence of neurovascu-

lar events, long-term brain development

is affected by perinatal circumstances re-

lated to prematurity. Possible mecha-

nisms underlying impaired development are suboptimal oxygen

levels due to lung immaturity, inflammation due to infections,

and impaired regulation of essential nutrients.38-42

The negative impact on cerebellar development that was ob-

served in this study is of particular relevance for child health be-

cause disrupted cerebellar development has been associated with

a variety of debilitating disorders, including autism spectrum dis-

order,15 schizophrenia,16 dyslexia,17 and attention deficit disor-

ders.18 The provided evidence for developmental disturbances of

the cerebellum in the absence of neurovascular events demands

larger cohort studies with sufficient power to characterize under-

lying injury mechanisms. Due to advances in neonatal care, the

most commonly seen brain injuries in current clinical practice are

shifting from large intracranial lesions toward more subtle distur-

bances. Therefore, a better understanding of more subtle injury

mechanisms would allow further improvement in neonatal care

and would help in targeting future neuroprotective strategies to-

ward anatomic regions that are considered most vulnerable. The

apparent sensitivity of the cerebellum to perinatal influences that

was found in this study is consistent with scientific litera-

FIG 2. Linear regression analysis plots of cerebral and cerebellar structures in infancy in relation to birth age. Sex and age at follow-up MR
imaging were included in the partial regression model as covariates. Significant R2 correlation coefficients are highlighted in red. The horizontal
axis indicates age at birth in weeks relative to term-equivalent age (37 weeks).

Table 3: Coefficient of the regression model for diffusion MRI measurements of the
cerebellum and cerebrum corrected for age at scanning and sex differences

Dependent Variablea

Standardized
Regression

Coefficient (�)

Partial
Correlation

Coefficient (r) T Statistics
Significance

(2-Tailed)
Cerebellar white matter FA �0.236 �0.238 �2.379 .02b

Cerebellar white matter MD �0.049 �0.049 �0.476 .64
Cerebellar gray matter FA �0.104 �0.102 �0.992 .32
Cerebellar gray matter MD �0.098 �0.095 �0.922 .36
Cerebral white matter FA 0.008 0.008 0.078 .94
Cerebral white matter MD �0.109 �0.104 �1.014 .31
Cerebral cortex FA �0.129 �0.123 �1.205 .23
Cerebral cortex MD �0.059 �0.058 �0.568 .57

a Predictors in the model that were held constant: age at scanning (years) and sex (M/F).
b Significant.

AJNR Am J Neuroradiol 39:956 – 62 May 2018 www.ajnr.org 959



ture15,19,20,43 and indicates that a dedicated focus on the cerebel-

lum is desirable in future research toward new neuroprotective

strategies.

No significant relations were observed between tract profiles

of white matter pathways and age at birth in our cohort. A limited

number of diffusion-encoding directions in the applied imaging

protocol restricted the ability of tracking through crossing-fiber

regions in the brain. Future studies using more advanced tractog-

raphy methods may allow a more detailed characterization of

white matter tracts connecting cerebellar hemispheres to con-

tralateral cerebral cortices. In the literature, it has been hypothe-

sized that during the early stages of development, impairment in

cerebellar structures might affect cerebral development and vice

versa.21,43,44 It is therefore possible that alterations in supratento-

rial brain regions that have been reported in many studies of in-

fants born preterm to some extent relate to impaired cerebellar

development and related impaired trophic interactions.21,45 Ad-

vanced neuroimaging or axonal tracing experiments in human

postmortem tissue may provide more insight about cerebellocer-

ebral connectivity.46-48

For cerebellar white matter, we found a significant increase in

white matter FA in infants born earlier, while tractography results

of cerebellar tracts were not related to gestational age at birth. The

latter finding is remarkable given that our data also showed clear

associations between gestational age at birth and cerebellar white

matter volume and gray matter surface area. It may be that an

increase in FA of total cerebellar white matter in infants born

earlier reflects higher fiber coherence and myelination or that the

increase in FA results from a decreased complexity of fiber orien-

tations. In the latter case, the extent of fanning and/or crossing

fibers is lower in children born earlier, which in turn results in

higher FA when using a diffusion tensor model that is inherently

unable to adequately represent complex fiber configurations.49-51

Future studies using recently developed advanced imaging tech-

niques that can capture more complex fiber orientations are

needed to clarify this issue.46-48

Persistent abnormalities in cerebellar volume and surface area

that were observed in this study are likely a result of irreversible

cellular changes during perinatal stages, when cerebellar prolifer-

ation and differentiation rates are highest. In the period between

24 and 40 weeks of gestation, cerebellar volume and surface area

increase exponentially due to highly active proliferative zones and

rapid migration and differentiation of precursor cells. Preterm

birth occurs within this critical timeframe and is likely able to

disturb these delicate processes, even in the absence of observable

cerebellar lesions. Although infants with intraparenchymal le-

sions on perinatal sonography were excluded from analysis, we

acknowledge that it is unknown whether subtler cerebellar lesions

and punctate cerebellar hemorrhages (�4 mm diameter) that are

quickly resolved are overlooked in current neuroimaging ap-

proaches due to limited spatial resolution of both MR imaging

and sonography.52-55

Future studies using more advanced imaging approaches that

would allow a more detailed assessment of cerebellocerebral con-

nectivity and interaction are needed to elucidate whether changes

in cerebellar microstructures and structures result in impaired

cerebellocerebral connectivity.

CONCLUSIONS
We have demonstrated the long-term effects of neurologically

uncomplicated preterm birth at �28 weeks’ gestational age on

cerebellar structures and microstructure. The results of our study

suggest a particular vulnerability of the cerebellum to adverse ef-

fects of preterm birth, even in the absence of neurologic compli-

cations. A special focus on the cerebellum seems therefore essen-

tial in fundamental research toward the development of future

neuroprotective strategies and predictive models of outcome.
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