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ORIGINAL RESEARCH
ADULT BRAIN

Deep Learning–Based Detection of Intracranial Aneurysms in
3D TOF-MRA

X T. Sichtermann, X A. Faron, X R. Sijben, X N. Teichert, X J. Freiherr, and X M. Wiesmann

ABSTRACT

BACKGROUND AND PURPOSE: The rupture of an intracranial aneurysm is a serious incident, causing subarachnoid hemorrhage associ-
ated with high fatality and morbidity rates. Because the demand for radiologic examinations is steadily growing, physician fatigue due to
an increased workload is a real concern and may lead to mistaken diagnoses of potentially relevant findings. Our aim was to develop a
sufficient system for automated detection of intracranial aneurysms.

MATERIALS AND METHODS: In a retrospective study, we established a system for the detection of intracranial aneurysms from 3D
TOF-MRA data. The system is based on an open-source neural network, originally developed for segmentation of anatomic structures in
medical images. Eighty-five datasets of patients with a total of 115 intracranial aneurysms were used to train the system and evaluate its
performance. Manual annotation of aneurysms based on radiologic reports and critical revision of image data served as the reference
standard. Sensitivity, false-positives per case, and positive predictive value were determined for different pipelines with modified pre- and
postprocessing.

RESULTS: The highest overall sensitivity of our system for the detection of intracranial aneurysms was 90% with a sensitivity of 96% for
aneurysms with a diameter of 3–7 mm and 100% for aneurysms of �7 mm. The best location-dependent performance was in the posterior
circulation. Pre- and postprocessing sufficiently reduced the number of false-positives.

CONCLUSIONS: Our system, based on a deep learning convolutional network, can detect intracranial aneurysms with a high sensitivity
from 3D TOF-MRA data.

ABBREVIATIONS: CNN � convolutional neural network; DSC � Dice similarity coefficient; FPs/case � false-positives per case

Unruptured intracranial aneurysms are common among the

general population. It is estimated that approximately 3% of

healthy adults have an intracranial aneurysm.1 These aneurysms

often remain undiagnosed unless they become symptomatic (eg,

by compression of adjacent neural structures or rupture into the

subarachnoid space).2 Rupture of an intracranial aneurysm is a

serious incident with high fatality and morbidity rates.3 Identifi-

cation of factors contributing to the risk of intracranial aneurysm

development, growth, and rupture is an active field of investiga-

tion. Apart from several disorders like polycystic kidney disease or

Marfan syndrome, elements such as genetic factors, family his-

tory, female sex, and age are linked to an increased risk of aneu-

rysm development. Intracranial aneurysm site, size, and shape are

further strongly associated with the risk of rupture.4-6 Detection

of an intracranial aneurysm before it becomes symptomatic al-

lows endovascular or surgical treatment of the aneurysm before it

ruptures and may thus prevent death or morbidity.

DSA is still considered the criterion standard in evaluating

intracranial vessels and detection of intracranial aneurysms7;

however, it is inconvenient for primary diagnoses because it is

invasive and time-consuming. CTA and MRA are noninvasive

methods widely used in clinical routine. Unlike DSA and CTA,

which are based on x-ray imaging, MRA does not cause radiation

exposure. It is therefore the preferred technique for screening

asymptomatic patients for intracranial pathology. The number of

radiology examinations performed for diagnoses is steadily in-
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creasing.8,9 Given the growing workload of radiology depart-

ments, physician fatigue with the inherent risk of missed diagno-

sis of potentially significant findings is a relevant concern. Hence,

a reliable method for automated detection of intracranial aneu-

rysms from routine diagnostic imaging would be of great utility in

clinical routine.

Rapid advances in the field of computing and a growing

amount of data prompted the rise of convolutional neural net-

works (CNNs), a specific type of deep learning network archi-

tecture, for segmentation, classification, and detection tasks

in medical imaging.10-12 The training process of a CNN is

straightforward to implement because the features for discrim-

ination of the desired output classes are not designed but

learned in an automated fashion from the input data.13 Several

approaches for automated detection of intracranial aneurysms

from noninvasive imaging have been proposed in the litera-

ture.14-17 However, a deep learning– based method for sufficient

detection of intracranial aneurysms from 3D TOF data has not yet

been reported, to our knowledge. The aim of this study was to

investigate the potential of a deep learning algorithm for auto-

mated detection of intracranial aneurysms from 3D TOF-MRA

clinical data.

MATERIALS AND METHODS
Dataset
This retrospective study was approved by the Independent Ethics

Committee at the RWTH Aachen Faculty of Medicine. The re-

quirement for informed consent was waived. From an internal

data base belonging to our department, we incorporated data

from all patients with a 3D TOF-MRA examination of at least 1

previously untreated intracranial aneurysm. Images were ob-

tained for clinical purposes between 2015 and 2017. After we

removed protected patient information and substituted sub-

ject identifiers, examinations were retrieved from the local

PACS. The dataset consisted of 85 examinations. Of those, 72

image sets originated from our department. Sixty of these ex-

aminations were performed on a 3T scanner (Magnetom

Prisma; Siemens; Erlangen, Germany). Twelve examinations

were performed on a 1.5 scanner (Magnetom Aera; Siemens).

The following parameters were used for the 3D TOF-MRA:

Magnetom Prisma (3T)—TR, 21 ms; TE, 3.42 ms; flip angle, 18°;

FOV, 200 mm; section thickness, 0.5 mm; matrix, 348 � 384;

acquisition time, 5 minutes 33 seconds; 20-channel head/neck

coil; Magnetom Area (1.5T)—TR, 28 ms; TE, 7 ms; flip angle, 25°;

FOV, 200 mm; section thickness, 0.5 mm; matrix, 256 � 320;

acquisition time, 5 minutes 52 seconds; 20-channel head/neck

coil.

Thirteen examinations included in this dataset originated

from external departments and were performed on different

scanners.

We included all TOF acquisitions with at least 1 previously

untreated aneurysm, irrespective of etiology, symptomatology,

and configuration (saccular, fusiform, and dissecting). The aneu-

rysms were located in the internal carotid arteries, the anterior

cerebral arteries (including the anterior communicating artery),

the middle cerebral arteries, or the posterior circulation (in-

cluding the vertebral, basilar, posterior, cerebral, and posterior

communicating arteries). One patient had polycystic kidney

disease, while the remainder had incidental findings. Exclusion

criteria were previous treatment (coil embolization or surgical

clipping) or pronounced motion artifacts, preventing accurate

segmentation.

The DeepMedic (Version .6.1; https://biomedia.doc.ic.ac.uk/

software/deepmedic/) CNN was used18 with an application of re-

quired preprocessing on the dataset19: voxel size resampling

(0.5 � 0.5 � 0.5 mm3) and intensity normalization to a zero-

mean, unit-variance space. To evaluate the impact of preprocess-

ing on the performance of the CNN, we modified our dataset

using different BET2 skull-stripping (https://fsl.fmrib.ox.ac.uk/

fsl/fslwiki/BET)20 and performing N4 bias correction.21

The ground truth segmentation was performed by a neurora-

diology resident experienced in cranial diagnostic imaging. On

the basis of radiologic reports, anonymized TOF data were criti-

cally reviewed, and aneurysms were manually annotated in a vox-

elwise manner using the manual segmentation tool of ITK-SNAP

(www.itksnap.org).22 Intrarater reliability was studied using the

Pearson correlation coefficient.

After evaluation of the dataset, we trained DeepMedic and

performed inference to segment aneurysms. Remarkably, 2 aneu-

rysms that had been previously overlooked were detected by the

CNN in this early stage. Consequently, the dataset was validated

by another radiologist who was blinded to the radiology reports.

Complete ground truth was evaluated once again and adjusted

accordingly.

The dataset needed division into training, test, and validation

sets, to run the CNN and assess its performance. The training set

was used for learning, which describes the process of fitting the

parameters of the network to learn features for discriminating the

output classes. The validation set was used during training to re-

duce overfitting to the training data. This is done by comparing

the Dice similarity coefficient (DSC) (a measure indicative of seg-

mentation accuracy) of the training samples with the DSC of the

unknown validation samples and adjusting the learning rate of the

network. The test set is used for evaluation of the trained model.18

Training the model took about 20 hours; inference per case was

about 50 seconds on a Titan XP GPU (Nvidia, Santa Clara,

California).

Five-fold cross-validation was performed. For each split, the

whole dataset was randomly divided into the 3 subsets as ex-

plained earlier: training set (58 cases, 68%), validation set (10

cases, 12%), and test set (17 cases, 20%).

DeepMedic and Evaluation
Segmentation of the aneurysms was executed with the DeepMedic

framework, a CNN for voxelwise classification of medical imaging

data after training with 3D patches at multiple scales. DeepMedic

was developed and evaluated for the segmentation of brain

lesions.23

The network consists of 2 pathways with 11 layers. Both pathways

are identical, but the input of the second pathway is a subsampled

version of the first (see the full architecture in Fig 1). Parameters were

set as proposed by Kamnitsas et al18: An initial learning rate of 10�3

was used and gradually reduced. For optimization, a Nesterov Mo-

mentum of 0.6 was set. For better regularization, drop-out and L1 �
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10�6 and L2 � 10�4 regularization was performed. To accelerate the

convergence, we used Rectified Linear Unit activation functions and

batch-normalization as implemented in the DeepMedic frame-

work.23 We used the proposed DeepMedic hybrid sampling scheme.

In this strategy, image segments larger than the neural network’s re-

ceptive field are given as an input to the network. A training batch is

built by extracting segments with 50% probability centered on the

foreground or background voxels, facilitating an automatic method

for balancing the distribution of training samples regarding the size

of the desired class in the segment and therefore preventing class

imbalance by adjusting to the true distribution of background and

aneurysm voxels.18 With a probability of 50%, the training images

were mirrored on the coronal axis to increase the diversity of the

training set.

We used the EvaluateSegmentation Tool (https://github.com/

Visceral-Project/EvaluateSegmentation)24 to analyze the segmen-

tation results by determining Hausdorff distances and the DSC.

For methodologic reasons, each segmented voxel or connected

component of voxels in the output binary segmentation was con-

sidered a positive detection. Each positive detection that corre-

sponded to an aneurysm in ground truth was considered a true-

positive finding, while each positive detection that did not

correspond to an aneurysm in ground truth was considered a

false-positive finding. In preliminary studies, this approach led to

a very high rate of false-positive detections. Because we observed

that compared with true-positive detections, false-positives

tended to be rather small, we further examined whether the inte-

gration of a detection threshold as a postprocessing step, remov-

ing connected components smaller than a given volume, would

improve our results. On the basis of the composition of our data-

set, detection thresholds of 5, 6, and 7 mm3 were studied (Fig 1).

To further reduce the number of false-positives, we fine-tuned the

network using a modified training strategy in which 90% of the

input samples corresponded to background class; and 10%, to

aneurysm class, reflecting a more realistic distribution of aneu-

rysms. The learning rate was lowered to 10�4 and the pretrained

weights of the last 3 layers were changed while the training weights

of the other layers were kept constant. To study the reliability of

true-positive detections and the capability of the system in pre-

dicting aneurysm size, we compared the volume segmented by the

algorithm with the manually examined volume of the ground

truth.

To assess the impact of preprocessing, we evaluated 4 models

(A–D). In model A, only the necessary steps to obtain reasonable

results from DeepMedic, resampling to isotropic voxel size and

intensity normalization, were performed. Additional skull-strip-

ping is advised in the DeepMedic documentation.18 We used the

well-established BET2 skull-stripping method. Skull-stripping in

model B was performed with a fixed fractional intensity threshold

of 0.2. In model C, the parameter was adjusted manually in each

case to receive an optimal brain outline, without nonbrain struc-

tures such as skull or parts of the ocular muscles and nerves. For

model D, we used the skull-stripping masks from model C and

performed an additional N4 bias correction25 to evaluate whether

low-frequency intensity inhomogeneities in the acquisitions

would have an impact on the performance of the algorithm (Fig

1). In this work, each model is depicted as a preprocessing model

identifier (A–D), followed by the detection threshold (0, 5, 6, 7).

FIG 1. Flowchart of the pipeline. A, Preprocessing is performed with 4 different models. The dataset is split into test, training, and validation sets.
B, Inference is performed with the convolutional neural network DeepMedic with a 2-pathway architecture. The number of feature maps and
their size is depicted as number � size. The � depicts the addition of the 2 preceding layers, which adds an additional nonlinearity and reduces
the number of weights.18 The diagram is based on the depiction in the DeepMedic documentation. (Modified from Kamnitsas K, Ledig C,
Newcombe VFJ, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis
2017;36:61–78 under CC-BY4 license).32 C, Thresholding is applied to the resulting segmentation and evaluated with different metrics. LN
indicates layers in the normal resolution pathway, LL indicates layers in the low resolution pathway.
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Full preprocessing per case took about 5 minutes on a Corei7–

8700K CPU (Intel, Santa Clara, California). Individual creation of

a skull-stripping mask was performed by an experienced user and

took about 8 minutes for each sample.

Statistical analysis was performed using SPSS software, Ver-

sion 25.0 (Released 2017; IBM Armonk, New York). We used the

Shapiro-Wilk test to test for normality. Significance values of nor-

mality tests are only reported for cases in which the normality

assumption was violated. A Kruskal-Wallis test was used for the

split-validation of maximum diameters.

Comparisons among the Models
We hypothesized the 4 different levels of preprocessing to each be

improvements over the previous version. Therefore, sensitivity

values of each preprocessing model were compared only with

those of its closest neighbor by testing for differences in the

proportions of hits and misses, using McNemar tests. These

tests were chosen over �2 tests because the values obtained

from each model were not independent of one another. Com-

paring each model with its closest neighbor yielded 3 compar-

isons (A0 versus B0, B0 versus C0, C0 versus D0); thus, signif-

icance levels were corrected for 3 comparisons using a

Bonferroni correction.

False-positives per case (FPs/case) were compared for each

preprocessing model using a Friedman test. Post hoc tests were

run using Wilcoxon signed rank tests for each closest neighbor.

DSCs of each preprocessing model were compared using

Friedman tests. Post hoc tests were run using Wilcoxon signed

rank tests for each closest neighbor. Missing values, caused by the

inability of the evaluation tool to analyze volumes with no seg-

mented voxels, were set to zero.

Hausdorff distances of each preprocessing model were an-

alyzed using a linear mixed model, which included a random

subject factor, and “model” as the sole fixed dependent vari-

able. This linear mixed model was chosen over a repeated-

measures ANOVA because the linear mixed model can analyze

missing values better; unlike DSCs, a Hausdorff distance of

zero would not accurately describe the inability of the tool to

analyze a volume with no segmented voxels.

Comparisons within the Models
We hypothesized that each of the postprocessing models reduces

the number of false-positives sequentially. Thus, sensitivity values

for each detection threshold were compared with those of the

closest neighbor within each model by testing for a difference in

the proportions of hits and misses using McNemar tests. This

yielded 3 comparisons per preprocessing model (0 versus 5, five

versus 6, and 6 versus 7).

FPs/case were compared for each detection threshold using a

Friedman test. Post hoc tests were run using Wilcoxon signed

rank tests comparing each closest neighbor.

Size and Location
Increased aneurysm size embodies an increased rupture risk.4

However, consented classifications of aneurysms based on an-

eurysm size are missing. To study the impact of aneurysm size

on the detection rate, we classified aneurysms on the basis of

maximum diameter as follows: In the literature, aneurysms

with a maximum diameter of �3 mm are generally considered

tiny.26 For simplification, we termed these findings small an-

eurysms. A distinct increased risk of rupture was identified for

aneurysms with a diameter of �7 mm.6 We therefore defined

aneurysms of �3 but �7 mm as medium, and those of �7 mm

as large. Additionally, aneurysms were categorized on the basis

of their location.

Sensitivity values of these categories were compared for both

categorizations using Fisher exact tests rather than �2 tests be-

cause the cases numbered below 5 for certain cells. Spearman rank

correlation coefficients were calculated between ground truth and

predicted volumes because the normality assumption was vio-

lated in all samples.

RESULTS
Dataset
In 85 patients (58 women, 68%; 23–84 years of age; mean, 56 �13

years), 115 untreated aneurysms with a mean volume of 214.6 �

480.9 mm3 (range, 6.4–4518.0 mm3) and a mean maximum diam-

eter of 7.1 � 4.4 mm (range, 2.1–37.0 mm) were identified as the

ground truth. Intrarater reliability for manual aneurysm segmenta-

tion was excellent (r � 0.998; 95% CI, 0.988–0.999; P � .0001). In

the dataset, large-sized aneurysms accounted for 39%; medium-

sized aneurysms, for 50%; and small-sized aneurysms, for 11%.

The locational proportion of aneurysms was as follows: Forty-

two percent of all aneurysms were located in internal carotid ar-

teries; 17%, in the anterior cerebral arteries, including the anterior

communicating artery; 23%, in the middle cerebral arteries; and

19%, in the posterior circulation, including the vertebral, basilar,

posterior, cerebral, and posterior communicating arteries.

For cross-validation, the dataset was split into 5 subgroups in a

randomized fashion. Normality was violated for the diameter dis-

tributions in the splits (P � .001). The mean maximum diameter

values of the splits did not differ significantly (�2 [4] � 6.195, P �

.19). The mean maximum diameters of the 5 splits were 7.6 � 3.7

mm, 7.9 � 6.8 mm, 5.3 � 2.4 mm, 7.6 �4.1 mm, and 7.0 �3.1

mm, respectively.

Sensitivity among Models
Comparing sensitivity values of the nearest neighbors’ prepro-

cessing models (A0, B0, C0, and D0) yielded no significant differ-

ences (P � 1, binomial distribution used for all comparisons).

Even the models showing the largest difference (A0 versus D0) did

not approach significance (P � .29, binomial distribution used,

uncorrected for multiple comparisons).

False-Positives per Case among Models
Analyses of false-positive rates between the preprocessing models

revealed a significant difference among models (�2 [3] � 136.144,

P � .001). Pair-wise comparisons indicated a significant differ-

ence between models A0 and B0 (z � 7.425, P � .001), but not B0

and C0 or C0 and D0 (z � 1.878, P � .18 and z � 0.991, P � .97,

respectively).

For each preprocessing model, the impact of detection thresh-

olds on sensitivity, FPs/case, and positive predictive value was

studied (Fig 2).
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Sensitivity within Models
For model A, no significant changes in sensitivity were found

between detection thresholds 0, 5, 6, and 7 mm3 (P � 1, binomial

distribution used for all comparisons). For model B, a significant

decrease in sensitivity was found between thresholds B0 and B5

(P � .05, binomial distribution used). Sensitivity did not differ

between thresholds B5 and B6, or B6

and B7 (P � 1, binomial distribution

used for both comparisons). For model

C, a significant decrease in sensitivity

was found between thresholds C0 and

C5 (P � .001, binomial distribution

used). Sensitivity did not differ between

thresholds C5 and C6 or C6 and C7 (P �

1, binomial distribution used for both

comparisons). For model D, a signifi-

cant decrease in sensitivity was found

between thresholds D0 and D5 (P �

.001, binomial distribution used). Sensi-

tivity did not differ between thresholds

D5 and D6 or D6 and D7 (P � 1, bino-

mial distribution used for both compar-

isons). A consecutive decrease in sensi-

tivity ranged between 2% (version A)

and 10% (version C).

False-Positives per Case within
Models
Normality was violated for all models

without thresholding applied (P � .008

for A0, P � .001 for all other models).

For model A, significant changes

were found in the number of FPs/case

among detection thresholds A0 and A5

(z � 8.14, P � .001), A5 and A6 (z �

6.16, P � .001), and A6 and A7 (z �

5.12, P � .001). For model B, significant

changes were found in the number of

FPs/case among detection thresholds B0

and B5 (z � 7.89, P � .001), B5 and B6

(z � 4.12, P � .001), and B6 and B7

(z � 3.46, P � .001). For model C, sig-

nificant changes were found in the num-

ber of FPs/case among detection thresh-

olds C0 and C5 (z � 7.62, P � .001), C5

and C6 (z � 3.61, P � .001), and C6 and

C7 (z � 2.83, P � .005). For model D,

significant changes were found in the

number of FPs/case among detection

thresholds D0 and D5 (z � 7.64, P �

.001), D5 and D6 (z � 2.45, P � .01),

and D6 and D7 (z � 2.83, P � .005).

Impact of Aneurysm Size
To evaluate the impact of aneurysm size

on sensitivity, we divided aneurysms

into 3 categories based on maximum di-

ameter, as described above. Detection

sensitivity was found to be dependent on

aneurysm size (test statistics are shown in Table 1).

The Shapiro-Wilk test revealed that in all cases, normality as-

sumption was violated by the ground truth volumes and/or the pre-

dicted volumes of the models. The ground truth volume showed a

negative correlation with the predicted volume of each preprocessing

FIG 2. Impact of detection thresholds on sensitivity, the number of false-positives, and the
positive predictive value (PPV). Versions A, B, C, D without detection thresholds (A0, B0, C0, D0)
and with thresholds of 5 mm3 (A5, B5, C5, D5), 6 mm3 (A6, B6, C6, D6), and 7 mm3 (A7, B7, C7, D7).
Depicted as bars are the FPs/case; depicted as diamonds are the sensitivities. PPV is shown below
the diagrams for each model. The asterisk indicates P � .05; double asterisks, P � .001; triple
asterisks, P � .001.
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model for the group of small aneurysms. The highest correlation was

found in preprocessing model A0 for large aneurysms. The correla-

tion values for all aneurysm sizes combined were, in all models, sim-

ilar to those of large aneurysms (Table 2).

Impact of Aneurysm Location
Sensitivity values among locations did not show a significant dif-

ference (test statistics are shown in Table 3).

Accuracy of Segmentation: DSC and Hausdorff Distance
The distribution of DSCs violated normality for all models and

thresholds (P � .001 for all models). DSCs differed significantly

among preprocessing models A0, B0, C0, and D0 (�2 [3] �

50.228, P � .001). Pair-wise comparisons between nearest neigh-

bors indicated that this difference originated from the difference

between A0 and B0 (z � 5.44, P � .001). DSCs did not differ

among sessions B0, C0, and D0.

Hausdorff distances differed significantly among preprocess-

ing models A0, B0, C0, and D0 (F[3, 255] � 56.44, P � .001).

Pair-wise comparisons between nearest neighbors indicated that

this difference originated from the difference between A0 and B0

(P � .001). B0 and C0 did not differ significantly (P � .07), nor

did C0 and D0 (P � .13).

DSC and Hausdorff distance values of the different prepro-

cessing models are shown in Table 4. After we fine-tuned model

A0, the DSC increased significantly from 0.47 � 0.28 to 0.50 �

0.30 (P � .001), and the Hausdorff distance changed from

90.16 � 22.25 to 85.6 � 22.69 (P � .004) without significant

changes in sensitivity or the number of FPs/case.

Visual Inspection
Two examples of our dataset are shown in Fig 3. The model was able

to detect aneurysms of small-to-large size, location, and regional in-

tensity distribution in the 2 displayed volumes. By means of a post-

processing step, false-positive components were removed.

DISCUSSION
Machine learning applications, in particular deep learning, have

recently gained increased attention in the domain of medical im-

aging. These types of algorithms, specifically CNNs, are top per-

formers in most medical-image analysis competitions. The ease of

implementation of CNNs in processing pipelines13 makes them

accessible to a broad range of researchers. Machine learning is

becoming a tool of growing importance in radiology and will

probably change the way radiologists work.

In this study, we demonstrated the great potential of a CNN for

reliable detection of intracranial aneurysms from 3D TOF-MRA. De-

mand for radiologic imaging is constantly growing; therefore, the

steadily increasing workload must be managed by radiology depart-

ments.27 Computer-aided detection tools may assist in preventing

diagnostic errors that could occur due to a physician’s fatigue or lack

of concentration. In a clinical setting, cranial imaging is performed

for several diagnostic purposes. However, potentially relevant find-

ings are often missed if a conspicuity corresponding to the primary

diagnostic purpose of an examination is found.28 This phenomenon

termed “satisfaction of search” is frequently observed in radiologic

practice and could potentially be reduced by sufficient computer-

aided detection tools. To evaluate a realistic scenario, we included

unspecified and therefore rather heterogeneous images (ie, different

scanners, different field strengths) with varying image quality (signal-

to-noise ratio, motion artifacts).
Solely in terms of overall sensitivity, the best model was A0,

without application of skull-stripping or bias correction, with a
sensitivity of 90%. However, this model also had a FPs/case value

of 6.1, which is rather high. The highest positive predictive value

of 0.57 was achieved with model D7, consisting of customized

skull-stripping and N4 bias correction. A sensitivity of 79% was

achieved with a FPs/case rate of 0.8 � 1.3. The amount of prepro-

cessing had a significant impact on the rate of false-positives. In

terms of sensitivity, no significant differences between prepro-

cessing models were detected. Using a thresholding method that

removes segmentation components below a distinct volume, we

were able to further decrease the rate of false-positives.

Aneurysm size had a distinct impact on the performance of the

CNN: For small aneurysms, a lower sensitivity value was mea-

sured. These missed detections resulted in low correlation values

between ground truth volumes and the model-predicted volumes

for small aneurysm sizes. This correlation increased for medium-

sized aneurysms, which were detected with a higher certainty but

in some cases lacked segmentation precision. The correlation for

large aneurysms and the overall correlation were high, the latter

mainly due to a good segmentation capability for medium and

large aneurysms. The DSC could be improved significantly by
skull-stripping from 47% � 28% to 53% � 29%. The Hausdorff
distance likewise improved from a value of 90 � 22 to 70 � 17.

Small aneurysms were underrepresented in the dataset; increas-
ing this number would possibly improve the ability of the model to
segment those aneurysms and predict their size better. A larger data-

set would also decrease a possible overfitting of the model to the
training data. We endeavored to address
this issue using 5-fold cross-validation
and flipping the image as a data aug-

mentation concept.
The ground truth segmentation is sub-

jective and may differ among radiologists.

A similar study showed that intra- and in-

teroperator variability of 20% � 15% and

28% � 12% was reported for the segmen-

Table 1: Sensitivity depending on aneurysm size and
preprocessing model

≤3 mm
(Small)
(n = 13)

>3 and ≤7 mm
(Medium)

(n = 57)

>7 mm
(Large)
(n = 45)

Fisher Exact
Test Statistic

A0 .38 .93 1 29.00, P � .001
B0 .38 .91 .98 25.93, P � .001
C0 .23 .96 .98 38.43, P � .001
D0 .08 .95 .98 49.89, P � .001

Table 2: Correlation between ground truth volume and model volume prediction
depending on aneurysm size and preprocessing model

≤3 mm (Small)
(n = 13)

>3 and ≤7 mm
(Medium) (n = 57)

>7 mm (Large)
(n = 45) Overall

A0 rs � �.28 (P � .36) rs � .46 (P � .001) rs � .91 (P � .001) rs � .90 (P � .001)
B0 rs � �.03 (P � .91) rs � .45 (P � .001) rs � .87 (P � .001) rs � .87 (P � .001)
C0 rs � �.09 (P � .78) rs � .47 (P � .001) rs � .89 (P � .001) rs � .88 (P � .001)
D0 rs � �.31 (P � .31) rs � .43 (P � .001) rs � .89 (P � .001) rs � .88 (P � .001)

Note:—rs indicates the Spearman correlation coefficient.
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tation of brain tumors.29 We attempted to overcome this issue by

evaluating our dataset through another radiologist.

Several approaches for automated detection of intracranial

aneurysms from noninvasive cranial imaging have been reported

previously.14,15,17 However, most were limited by either the use of

conventional computer-aided diagnosis algorithms or being ap-

plicable only on 2D images. For instance, Miki et al14 increased

the number of detections of 2 radiologists using a computer-aided

diagnosis tool for MRA images. Their system is based on different

handcrafted features30 and reached a sensitivity of 82% in source

and reconstructed images of a 3T MR imaging device. Štepán-

Buksakowska et al15 used a computer-aided diagnosis algorithm

that applies global thresholding and region-growing schemes.

They achieved a mean sensitivity of 83.6% by combining radiol-

ogists’ examinations with their tool. Nakao et al17 used a CNN for

detecting aneurysms in 2D MIPs. Their tool detected aneurysms

with a sensitivity of 94.2% with 2.9 FPs/case. However, their work

is limited to 2D projections.

The main limitation of the presented algorithm is poor speci-

ficity. We acknowledge that this issue currently limits clinical util-

ity. However, we demonstrated that an algorithm that was origi-

nally developed for segmentation tasks is able to detect aneurysms

reliably from noninvasive cranial imaging, and this requires only

a very limited number of training samples. We observed that sev-

eral, easily applicable postprocessing steps allow distinct reduc-

tion of the number of false-positives. Because data augmentation

is already included, we assume that for further improvement of

specificity, enlargement of the sample size would be necessary.

Given the low number of untreated aneurysms in MRA, this

would require a multi-institutional approach. Fine-tuning the

network on a larger dataset with a modified training strategy for a

more realistic distribution of classes might improve not only the

DSC and Hausdorff distance but also sensitivity and specificity.

In this study, the performance of DeepMedic was validated in

a clinical dataset, which was based on radiology reports. To fur-

ther investigate whether our approach might contribute to an

improvement of aneurysm detection in a clinical setting, the per-

formance of DeepMedic should be compared with that of human

readers. Another limitation is that the algorithm was trained

solely on cases that had intracranial aneurysms. Because Deep-

Medic works as a voxelwise classifier, this was done for methodo-

logic reasons. The algorithm learns to differentiate between phys-

iologic vessel anatomy and aneurysms by classifying each voxel

within a volume as a positive (aneurysm) or negative (no aneu-

rysm) prediction. Every dataset includes not only aneurysms but

also physiologic vessels. Hence, every aneurysm-free voxel of a

brain vessel could be considered a negative finding in a voxelwise

classifier; therefore, one could argue that the algorithm can also

learn to separate aneurysms from normal vessel anatomy using

only pathologic cases. However, given the relatively low preva-

lence of intracranial aneurysms in the general population, this

approach might lead to overprediction, which explains, to some

extent, the relatively high number of false-positive cases observed

in our study.

To obtain a highly autonomous system, a robust and automated

skull-stripping algorithm for TOF sequences is necessary to obtain a

reliable brain mask comprising all relevant vessels without extracra-

nial or nonbrain tissues. Most skull-strip-

ping methods perform best with T1-

weighted images and need to be adjusted

manually for different acquisition se-

quences.31 Finally, in further research, it

would be advantageous to compare the

performance of DeepMedic in terms of

aneurysm detection with that of other

CNN architectures.

CONCLUSIONS
This study demonstrates that our CNN-

based system can detect intracranial aneu-

rysms with high sensitivity in a 3D TOF-

MRA dataset. The dataset, comprising

acquisitions of different field strengths and

variable image quality, was created to eval-

uate a scenario similar to clinical reality.

Adequate pre- and postprocessing signifi-

cantly reduced the number of false-posi-

FIG 3. Results of the DeepMedic inference and thresholding method. Illustrated are 2 different
subjects (top/bottom). In these volumes, aneurysms of different sizes with heterogenic and
homogeneous intensity distributions are detected. After we remove small components below a
certain volume, false-positives are removed sufficiently.

Table 3: Sensitivity of the different models depending on
aneurysm location and preprocessing model

ICA
(n = 48)

MCA
(n = 26)

A
(n = 19)

P
(n = 22)

Fisher Exact
Test Statistic

A0 .90 .92 .84 .91 .98, P � .86
B0 .88 .88 .79 .95 2.52, P � .48
C0 .85 .92 .84 .95 2.09, P � .59
D0 .83 .92 .79 .91 2.27, P � .53

Note:—A indicates the anterior cerebral arteries (including the anterior communi-
cating artery); P, posterior circulation (including vertebral, basilar, posterior, cerebral
and posterior communicating arteries).

Table 4: Mean DSC and mean Hausdorff distance depending on
the preprocessing model

DSC (SD) Hausdorff Distance (SD)
A0 .47 (.28) 90.16 (22.25)
B0 .53 (.29) 70.20 (16.58)
C0 .53 (.30) 65.40 (18.89)
D0 .53 (.31) 69.67 (19.08)
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tives. The predicted aneurysm volume correlated well with the

ground truth volume for medium- and large-sized aneurysms;

hence, the system could also serve as a tool to predict aneurysm size.
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