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ORIGINAL RESEARCH
ADULT BRAIN

Periventricular White Matter Abnormalities on Diffusion
Tensor Imaging of Postural Instability Gait Disorder

Parkinsonism
X S.Y.Z. Tan, X N.C.H. Keong, X R.M.P. Selvan, X H. Li, X L.Q.R. Ooi, X E.K. Tan, and X L.L. Chan

ABSTRACT

BACKGROUND AND PURPOSE: Postural instability gait disorder is a motor subtype of Parkinson disease associated with predominant
gait dysfunction. We investigated the periventricular white matter comprising longitudinal, thalamic, and callosal fibers using diffusion
tensor MR Imaging and examined clinical correlates in a cohort of patients with Parkinson disease and postural instability gait disorder and
healthy controls.

MATERIALS AND METHODS: All subjects underwent the Tinetti Gait and Balance Assessment and brain MR imaging. The DTI indices
(fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity) from ROIs dropped over the superior and inferior longitu-
dinal fasciculi, inferior fronto-occipital fasciculus, anterior thalamic radiation, anterior and posterior limbs of the internal capsule, and the
genu and body of corpus callosum were evaluated.

RESULTS: Our findings showed that the superior longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fascicu-
lus, anterior thalamic radiation, genu of the corpus callosum, and body of the corpus callosum are more affected in postural instability gait
disorder than in those with Parkinson disease or healthy controls, with more group differences among the longitudinal fibers. Only the
callosal fibers differentiated the postural instability gait disorder and Parkinson disease groups. DTI measures in the superior longitudinal
fasciculus, frontostriatal fibers (anterior thalamic radiation, anterior limb of the internal capsule), and genu of the corpus callosum fibers
correlated with clinical gait severity.

CONCLUSIONS: Findings from this case-control cohort lend further evidence to the role of extranigral pathology and, specifically, the
periventricular fibers in the pathophysiology of postural instability gait disorder.

ABBREVIATIONS: AD � axial diffusivity; ALIC � anterior limb of the internal capsule; ATR � anterior thalamic radiation; BCC � body of the corpus callosum; FA �
fractional anisotropy; GCC � genu of the corpus callosum; HC � healthy controls; IFOF � inferior fronto-occipital fasciculus; ILF � inferior longitudinal fasciculus;
MD � mean diffusivity; PIGD � postural instability gait disorder; PD � Parkinson disease; PLIC � posterior limb of the internal capsule; RD � radial diffusivity; SLF �
superior longitudinal fasciculus

The 4 hallmark symptoms of Parkinson disease (PD) are shak-

ing tremor, stiffness, bradykinesia, and difficulty with balance

and coordination.1 Postural instability gait disorder (PIGD) is a

motor subtype of PD associated with predominant gait dys-

function. These patients often progress rapidly and are at

higher risk for nonmotor deficits such as dementia and cogni-

tive impairment.2 Conventional medical interventions for PD

are less effective in patients with PIGD, with gait and balance

deficits more resistant to levodopa therapy on disease progres-

sion,3 thus prompting the need to further explore the patho-

physiology underlying the PIGD subtype to evaluate more tar-

geted therapies.

Diffusion tensor imaging is a noninvasive MR imaging tool

widely used to evaluate microstructural changes in brain white

matter in vivo.4 The principle behind DTI is its ability to differ-

entiate the magnitude and directionality of the diffusion of water

in neural tissue because water diffuses irregularly and is fastest

along the major axis parallel to the neural fibers. An analysis of

the DTI indices, namely fractional anisotropy (FA), mean
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(MD), radial (RD), and axial diffusivity (AD), across patient

groups may provide insight into the histopathologic process5

underlying PIGD.

Traditionally, studies in PD are focused on pathophysiologic

changes in the nigrostriatal and extrapyramidal pathways. There

is increasing evidence of the role of cortical and subcortical struc-

tures in postural control and the freezing of gait.6-9 Recent age-

related imaging studies also showed that periventricular white

matter lesions play a role in balance impairment, mobility, and

cognitive deficits in otherwise healthy elderly individuals, further

emphasizing the importance of the integrity of afferent and effer-

ent subcortical-cortical projections.10

The aim of this study was to investigate whether periven-

tricular white matter longitudinal, thalamic, and callosal fibers

are differentially affected in patients with PIGD parkinsonism,

compared with patients with typical tremor-dominant PD and

healthy, neurologically intact controls (HC) using an ROI ap-

proach to brain DTI MR imaging analysis. We hypothesized

that microstructural changes in these periventricular white

matter fibers on DTI are correlated with motor dysfunction in

PD, and especially in PIGD.

MATERIALS AND METHODS
Study Subjects
The study was undertaken with the written informed consent

of each subject and the approval of the SingHealth Centralised

Institutional Review Board. All protocols were approved by the

SingHealth ethics committee.11 Twenty-one patients with PD

and 19 with PIGD were recruited at a tertiary referral center,

where they were diagnosed by a movement disorders neurolo-

gist on the basis of established clinical criteria12,13 from the

United Kingdom PD Brain Bank (https://www.parkinsons.org.uk/

research/parkinsons-uk-brain-bank) and Deprenyl and Tocopherol

Antioxidative Therapy Of Parkinsonism Trial (DATATOP, https://

jamanetwork.com/journals/jamaneurology/fullarticle/589418). Ex-

clusion criteria included patients who were wheelchair-bound from

severe disability, showed evidence of cognitive dysfunction (based on

the Mini- Mental State Examination score), had features of Parkin-

son-plus syndrome or normal pressure hydrocephalus, or had a his-

tory of head injury, encephalitis, stroke, exposure to neuroleptic

drugs, and MR imaging contraindications. Patients with evidence of

cognitive dysfunction (based on the Mini-Mental State Examination

score) were also excluded. Twenty HC who were age- and sex-

matched to the patient cohort were also recruited during the same

period. All 60 subjects were evaluated with the Tinetti Gait and Bal-

ance score (https://fallpreventiontaskforce.org/wp-content/uploads/

2014/10/Tinettitool.pdf) as an indicator of his or her mobility and fall

risk.14

MR Imaging
The MR imaging brain scans were acquired on a 3T scanner (Mag-

netom Trio; Siemens, Erlangen, Germany) using a 12-channel

phased array head coil. To minimize head motion during the scan,

we secured the subjects’ heads with securing straps.

The DTI scan was a spin-echo echo-planar imaging sequence

(TR � 8200 ms, TE � 86 ms, diffusion sensitization in 30 non-

collinear directions, in-plane resolution � 1.875 � 1.875 mm,

FOV � 240 � 240 mm, matrix � 128 � 128, 64 contiguous

2-mm-thick slices, b-value � 800 s/mm2, integrated parallel ac-

quisition technique factor � 2, B0 averages � 2). Images from the

structural FLAIR and T1- and T2-weighted scans were screened to

exclude pathology in the ROIs.

Image Analysis
An ROI approach was adopted for DTI MR imaging analysis,

using the commercially available Leonardo workstation, Version

VE50A (Siemens, Erlangen, Germany) for image postprocessing.

Two independent raters blinded to subject status drew 30-mm3

ROIs over various brain regions on the basis of neuroanatomic

knowledge. The DTI indices of FA, MD, AD, and RD were re-

corded and averaged for paired fibers.

Circular ROIs (Figure) were placed within the periventricular

white matter fibers comprising the superior (SLF) and inferior

longitudinal fasciculi (ILF), inferior fronto-occipital fasciculus

(IFOF), anterior thalamic radiation (ATR), anterior (ALIC) and

posterior limbs of internal capsule, and genu (GCC) and body

of the corpus callosum on representative sections at �2 mm

(IFOF), 0 mm (ILF), �4 mm (ATR, ALIC), �6 mm (posterior

limb of the internal capsule), �12 mm (GCC), �26 mm (body of

the corpus callosum), and �28 mm (SLF) from the section con-

taining the anterior and posterior commissures. Precaution was

taken to avoid focal lesions or infarcts and immediate periven-

tricular margins, so as to reduce spurious partial volume averag-

ing artifacts on the DTI measurements by reviewing the structural

images and color FA, diffusion trace, MD map, and B0 images side

by side during ROI placement.

Statistical Analysis
Statistical analysis was performed by using R 3.4.2 (www.

r-project.org). Interrater and intrarater reliability for the DTI in-

dices of FA, MD, AD, and RD were assessed using the intraclass

correlation coefficient. The Kruskal-Wallis test was used to find

group differences in the DTI indices of the periventricular white

matter fibers, and a univariable logistic regression was performed

to evaluate the ability of the DTI indices of each periventricular

ROI to differentiate between PD and PIGD, PD and HC, and

PIGD and HC, after adjusting for age and sex. Last, a multivari-

able linear regression was performed to evaluate the relationship

between the DTI indices of each ROI and the Tinetti score (Total,

Balance, and Gait) for the patients with PD and PIGD. The

2-sided significance was set at .05.

RESULTS
A total of 60 subjects (19 with PIGD, 21 with PD, 20 HC) were

enrolled in this study, and their clinical data are summarized in

Table 1. The mean Tinetti scores in PIGD and PD were signifi-

cantly lower than those for HC (P � .01), and PIGD had the

lowest score among the 3 subject groups. The interrater and in-

trarater reliability for the DTI indices (On-line Table 1) had a

minimum score of 0.7, with most being �0.8.

On-line Table 2 details the DTI indices of each periventricular

ROI in the 3 subject groups. Results of the Kruskal-Wallis test and

logistic regression are addressed in Tables 2 and On-line Table 3,

respectively. In general, both PD and PIGD groups had lower median
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FIGURE. Axial DTI FA color maps depicting placement of circular ROIs in the inferior fronto-occipital fasciculus (A), ILF (B), anterior thalamic
radiation (paramedian ROIs), and anterior limb of the internal capsule (anterolateral ROIs) (C), posterior limb of the internal capsule (D), genu (E)
and body of the corpus callosum (F), and superior longitudinal fasciculus (G).

Table 1: Clinical features of study subjects

Groups PIGD PD HC

P Values

PIGD vs HC PD vs HC PIGD vs PD
No. 19 21 20
Sex (male/female) 15:4 17:4 16:4 1.00 1.00 1.00
Mean age (yr) 73.7 � 6.7 72.0 � 4.8 71.5 � 4.9 0.24 0.742 0.36
Tinetti score (median) (IQR)

Balance 9 (7.5–11) 12 (11–13) 15 (15–16) �.001 �.001 0.03
Gait 7 (4.5–8.5) 9 (8–10) 12 (11–12) �.001 �.001 0.01
Total 16 (12–19) 22 (20–23) 27 (26–27.3) �.001 �.001 0.02

Note:—IQR indicates interquartile range.

Table 2: Results of Kruskal-Wallis test showing group differences in DTI indices among periventricular white matter ROIsa

Group Comparisons

PIGD vs HC PD vs HC PIGD vs PD

FA MD AD RD FA MD AD RD FA MD AD RD
WM fiber DTI indices

SLF � � �
P value 0.04b 0.03b 0.04b

Longitudinal
ILF � � � �
P value 0.01b 0.001b 0.004b 0.009b

IFOF � � � � � �
P value 0.001b 0.003b 0.008b 0.01b 0.001b 0.04b

Thalamic
ATR �
P value 0.04b

Callosal
BCC � �
P value 0.02b 0.003b

GCC � �
P value 0.01b 0.03

Note:—� indicates higher group value; �, lower group value.
a Empty cells indicate no significant differences.
b Significant.
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FA and higher median diffusivity (MD, AD, RD) values compared

with HC across the periventricular ROIs. The periventricular longi-

tudinal ROIs showed the most DTI differences between disease and

HC groups, with all 3 showing differences in at least 2 DTI indices

between the PIGD and HC groups. Among the thalamic ROIs, only

the ATR differentiated between PIGD and HC groups. Both the

ALIC and PLIC did not show any difference for any DTI index be-

tween groups. Only callosal ROIs differentiated PIGD and PD disease

groups.

Results from the multivariable linear regression are shown in On-

line Table 4. Some DTI indices from the SLF and ALIC ROIs corre-

lated with both Gait and Balance scores, but those from the GCC

fibers correlated only with Gait and Total Tinetti scores. As expected,

the Tinetti scores correlated negatively with the diffusivity indices

and positively with FA, respectively.

DISCUSSION
Using an ROI approach in our case-control DTI study, we showed

that periventricular longitudinal, thalamic, and callosal fibers are dif-

ferentially affected in PIGD, PD, and HC, with generally reduced FA

and increased diffusivity indices, lending further support to their use

as biomarkers4,5 for identification of gait deficits and quantifying

performance. The need for additional biomarkers for gait perfor-

mance for identification of PIGD is shown by Herman et al,15 with

their findings that gait metrics alone seem to be a poor indicator of

the PIGD subtype. Periventricular white matter,10 in particular, has

been shown to play an important role in gait, and additional effort is

needed to understand it.

Longitudinal fibers provide the link between orbital, motor,

and premotor areas and other areas of the brain,16,17 and deficits

could affect visuospatial processing in gait.8,9 Our study has

shown that the IFOF and ILF show statistically significant differ-

ences between PD (regardless of subtype) and HC. However, the

SLF showed differences between PIGD and HCs, but not PD and

HCs. The changes in SLF are more severe in the PIGD subtype,

which are supported by other studies showing SLF involvement in

gait, and in congruence with SLF having connections to the sup-

plementary motor area (part of cerebral cortex that is involved in

the control of movement).8,9

Thalamic fibers have been shown to be implicated in func-

tional studies of the basal ganglia-thalamo-cortical loop, which

affects movement and perception.6,18 The fibers involved in

the loop (ATR) in our study also showed differences between

PIGD and HC in DTI indices and a statistically significant

correlation with Tinetti scores. Although most studies show

disruptions to the basal ganglia functional connectivity,19 few

studies have interrogated the differences in their connecting

fibers within PD and PIGD. Additionally, the ATR showed

good ability to predict Tinetti Balance, but not Tinetti Gait

scores. This suggests that the ATR has a more prominent role

in balance, but not gait.

The corpus callosum was the only structure in this study that

differentiated the PIGD and PD subtypes. It also showed a signif-

icant linear regression to Tinetti Gait and Total scores. This find-

ing concurs with those in other studies showing that damage to

the corpus callosum results in freezing of gait,20 supporting the

worse Gait scores in patients with PIGD.11 However, because a

relationship between ageing and gait in the corpus callosum has

also been reported,21 control for age as a potential confounder is

important when using it as a biomarker.

Our study supports other findings of compromised func-

tionality in the frontostriatal circuitry reported in gait dys-

function.22-24 Most studies have found that the prefrontal cor-

tex functions are impaired in attention, dual task, set-shifting,

and visuospatial activities in freezing of gait,6,9,25,26 suggesting

underlying changes in various white matter fibers. Our results

showed a shift in diffusivity and FA in the periventricular fi-

bers, possibly related to the change in functional performance.

DTI indices of white matter fibers may serve as a more direct

and clinically accessible measure of white matter integrity

rather than functional re-organization. Indeed, our DTI find-

ings of heavier extranigral white matter burden in the PIGD

group may aid in understanding the differential gait respon-

siveness of patients with PIGD to deep brain stimulation com-

pared with patients with PD 27 and may potentially play a role

in patient selection.

In this study, we were interested in periventricular white

matter fibers that could be directly differentiated on the color

FA maps on the basis of our knowledge of neuroanatomy and

orientation of these fibers. Hence, we used a simple, manual

ROI approach with clearly defined brain slices and radiologic

landmarks, on readily available, commercial imaging worksta-

tions, and yielded good inter- and intrarater reproducibility.

An automated approach, such as tract-based spatial statistics

would allow faster and more readily reproducible global brain

analysis, albeit with attendant image coregistration chal-

lenges,28 between a 3D high-resolution T1-weighted structural

scan and the DTI scan due to inherent geometric distortions.

In addition, this would require computing expertise and was

outside the scope of our study.

Although we have shown structural abnormality in these white

matter fibers, future studies could integrate whole-brain analyses

in diffusion tensor imaging and clinical cognitive testing to fur-

ther granulate motor and cognitive associations among the fibers.

Furthermore, the integration of whole brain analysis and clinical

cognitive testing can be elucidated along with advancements in

MR imaging techniques such as myelin water imaging.

CONCLUSIONS
Our DTI findings in PIGD implicate reduced white matter integ-

rity in the periventricular fibers of the GCC, ALIC, ATR, and SLF,

suggesting that poor gait performance may be the result of im-

paired structural integration in the subcortical motor neural sys-

tems. These findings provide insights into the underlying patho-

physiology of PIGD and may have potential impact on future

treatment strategies.
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