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REVIEW ARTICLE

Non-Contrast-Enhancing Tumor: A New Frontier in
Glioblastoma Research

X A. Lasocki and X F. Gaillard

ABSTRACT
SUMMARY: There is a growing understanding of the prognostic importance of non-contrast-enhancing tumor in glioblastoma, and recent
attempts at more aggressive management of this component using neurosurgical resection and radiosurgery have been shown to prolong
survival. Optimizing these therapeutic strategies requires an understanding of the features that can distinguish non-contrast-enhancing
tumor from other processes, in particular vasogenic edema; however, the limited and heterogeneous manner in which it has been defined
in the literature limits clinical translation. This review covers pertinent literature on our growing understanding of non-contrast-enhancing
tumor and focuses on key conventional MR imaging features for improving its delineation. Such features include subtle differences in the
degree of FLAIR hyperintensity, gray matter involvement, and focal mass effect. Improved delineation of tumor from edema will facilitate
more aggressive management of this component and potentially realize associated survival benefits.

ABBREVIATIONS: CET � contrast-enhancing tumor; FET � [18F]-fluoroethyl-L-tyrosine; GBM � glioblastoma; nCET � non-contrast-enhancing tumor

The molecular characterization of gliomas has been the focus of

recent glioma research. While our growing understanding of

the genetics of gliomas, now reflected in the updated World

Health Organization classification, provides great hope, it is easy

to forget that currently, this does not substantially affect treat-

ment options. For example, glioblastomas (GBMs) have recently

been subclassified into those with a mutation in the isocitrate

dehydrogenase (IDH) gene and those without a mutation

(known as IDH wild-type).1 While IDH mutant GBMs have a

significantly better prognosis than IDH wild-type tumors,1,2 con-

ventional treatment for both subtypes currently remains the

same.3 Unlike the treatment of many extracranial malignancies,

which has been revolutionized by the development of immuno-

therapy4 and monoclonal antibodies against key drivers of tumor-

igenesis,5 progress in the treatment of diffuse gliomas has been

slower and they remain largely incurable. Until new treatment

options enter clinical practice, it is, therefore, important to opti-

mize existing therapies. This is arguably of greater importance

now than ever before because with longer survival, also comes the

growing prospect of living long enough to benefit from new

emerging therapeutic options.

GBM is the most aggressive—and, unfortunately, most

common—form of diffuse glioma.1 The treatment of GBM typi-

cally consists of maximal safe neurosurgical resection followed by

adjuvant chemoradiotherapy.3 Gross macroscopic resection of

the contrast-enhancing tumor (CET) component of GBMs is as-

sociated with longer survival6-8 and thus represents the neurosur-

gical standard of care. Despite satisfactory resection and adjuvant

chemoradiotherapy, however, local recurrence of GBM is almost

inevitable due to tumor cells infiltrating beyond the CET compo-

nent.9 Often, at least a portion of the tumor extending beyond the

contrast-enhancing margin is visible with MR imaging and is

known as non-contrast-enhancing tumor (nCET), usually best

visualized on T2-weighted FLAIR imaging.

The frequency with which complete or near-complete resec-

tion of the CET component can be achieved is increasing due to

technologic advances, including neuronavigation techniques, flu-

orescence-guided surgery, and intraoperative MR imaging, which

are translating into improved survival.10-12 The potential gains

from improved resection of the CET component are thus plateau-

ing, increasing the importance of residual nCET. Historically,

nCET in the context of a GBM has been thought to be of a lower

grade. This view is being refuted because such nCET frequently

progresses faster than one would expect purely on the basis of
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imaging appearances, with even distant areas of nCET rapidly

evolving to CET in patients with IDH wild-type GBM.13 The high

malignant potential of the nCET component is supported by our

growing understanding of the genetics of gliomas, with IDH wild-

type grade II and III tumors typically behaving more like GBMs

than their IDH mutant counterparts of equivalent grade,1 leading

to the colloquial term “stealth glioblastomas.” If anything, the

nCET component of a GBM could be expected to be more ad-

vanced genetically than in lower grade IDH wild-type tumors be-

cause dedifferentiation has already occurred in another portion of

the tumor. The nCET component is also typically highly cellular.

Eidel et al14 recently showed that nCET had the highest content of

viable tumor cells— higher than that present within the CET or

necrotic components.

Non-Contrast-Enhancing Tumor Affects Prognosis
It is increasingly being recognized that the nCET component of a

GBM affects prognosis. Jain et al15 showed that both nCET cross-

ing the midline and elevated relative cerebral blood volume

within the nCET component are associated with shorter survival.

Similarly, Lasocki et al16 found that those with peripheral GBMs

with substantial cortical nCET (a subset of the total nCET) have

shorter survival than those with peripheral tumors without this

component. These findings are supported by studies assessing the

postoperative residual nCET component. Grabowski et al17

found that T2/FLAIR residual volume was a significant predictor

of survival on both univariate and multivariate analysis. These

results have recently been validated by a multicenter study show-

ing that high postoperative residual nonenhancing volume con-

veyed a worse prognosis.18

IDH wild-type GBMs are much more common than their IDH

mutant counterparts1 and almost certainly accounted for most

tumors in the above studies. Thus, prognostic significance can

most confidently be attached to residual nCET for an IDH wild-

type GBM, but it is less clear for IDH mutant GBMs. The associ-

ation between a greater proportion of nCET and the presence of

an IDH mutation was first described by Carrillo et al.19 Substantial

nCET is more common in IDH mutant GBMs, though also relatively

common in IDH wild-type GBMs, limiting the strength of this asso-

ciation.20 Specifically, IDH mutations are present in only about 5% of

all glioblastomas,2 while substantial (�33%) nCET is present in

about 21% of IDH wild-type glioblastomas.20 Thus, a glioblastoma

with substantial nCET is nevertheless more likely to be IDH wild-

type than IDH mutant.20 Knowledge of the IDH status is, therefore,

important in determining the significance of nCET. While greater

residual nCET generally conveys a worse prognosis provided it is not

simply related to IDH mutant status, the survival benefit conferred by

an IDH mutation is likely to substantially outweigh the detrimental

effect of greater residual nCET.

The Effect of Antiangiogenic Therapy
Antiangiogenic agents such as bevacizumab and cediranib often

produce a rapid decrease in the degree of contrast enhancement as

a result of reconstitution of the disrupted blood-brain barrier.

This does not represent a true response, however; thus, the phe-

nomenon is known as a pseudoresponse.21 Assessment of CET is

less reliable in these patients, and monitoring nCET takes on

greater importance. This is reflected in the updated Response As-

sessment in Neuro-Oncology criteria,22 and inclusion of T2/

FLAIR imaging in patients treated with bevacizumab has been

shown to improve the prediction of survival beyond that achieved

by assessment based solely on postcontrast imaging.23,24 Because

T2 hyperintensity can have many contributors, assessment of

nCET requires determining that the increase in T2 hyperintensity

is attributable to tumor progression.24 Thus, knowledge of the

features of nCET is critical. The morphology of nCET in patients

treated with antiangiogenic agents may also be important, with

Nowosielski et al25 having shown that a circumscribed pattern of

progressive T2 hyperintensity in patients treated with bevaci-

zumab is associated with shorter survival compared with a diffuse

pattern.

Neurosurgical Resection of Non-Contrast-Enhancing
Tumor
A growing appreciation of the importance of nCET in GBM has

led some authors to suggest extending the surgical resection to the

nCET component, rather than solely focusing on CET.15,16 The

goal, at this stage, remains to delay progression and the develop-

ment of symptomatic recurrence rather than provide a cure. A

similar strategy was successfully used in grade II gliomas by

Yordanova et al,26 who performed “supratotal resection” in 15

cases. This was defined as extension of the resection beyond the

area of signal abnormality visible on MR imaging, compared

with confining the resection to the region of abnormal signal.26

This cohort had a lower rate of anaplastic transformation and a

lower rate of requiring adjuvant treatment compared with a

control cohort.26

Recent effort to more aggressively resect nCET in GBM has

also shown additional prognostic benefit over that achieved by

gross macroscopic resection of the CET component alone. Li et

al27 showed that in patients in whom total resection of the CET

component was achieved, resection of �53.21% of the surround-

ing FLAIR abnormality conveyed an additional survival benefit.

These patients had a median survival of 20.7 months, compared

with 15.5 months when �53.21% of the surrounding FLAIR ab-

normality was resected.27 Pessina et al28 had similar results,

though they examined the extent of resection differently. Patients

who had undergone supratotal resection, namely those in whom

the entirety of the CET component and the surrounding FLAIR

hyperintensity were resected, had an impressive median survival

of 29 months.28 Of note, this definition varies from that used by

Yordanova et al26 because they did not aim to extend the resection

beyond the area of FLAIR hyperintensity.28 In contrast, patients

with gross total resection (defined as �90%) of the CET compo-

nent and variable resection of the infiltrative tumor component

had a median survival of 16 months. For patients with gross total

resection of the CET component, 45% resection of the infiltrative

tumor component was the threshold that conveyed a survival

benefit, achieving a 2-year survival rate of 54% compared with

12% when resection of the infiltrative component was less exten-

sive.28 The thresholds identified by these authors are somewhat

arbitrary, and in practice, the extent will be limited by the neuro-

surgeon’s ability to visualize and safely resect the nCET compo-

nent. Most interesting, Beiko et al29 found that greater resection
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of nCET was associated with improved prognosis only in IDH

mutant malignant astrocytomas (grades III and IV), but not in

IDH wild-type tumors of the same grades.

Although the results of these neurosurgical studies are impres-

sive, the limited and heterogeneous manner in which the nCET

component was defined in these studies raises questions. The def-

inition of Li et al27 was simply that of the “surrounding FLAIR

abnormality,” and this is overly simplistic on the basis of our

knowledge of gliomas. GBMs are typically associated with at least

some surrounding edema; thus, it is difficult to determine how

much of the nCET component was truly resected, and this will

have been dependent on the relative contributions of nCET and

edema to the overall area of FLAIR abnormality. While one can

assume that some effort was made to target areas that were

thought to represent nCET, presumably based on the MR imaging

appearances, the limited description of the methods of Li et al

limits translation into clinical practice. The description provided

by Pessina et al28 is similarly unclear. While they do discuss the

surrounding FLAIR abnormality representing infiltrative tumor,

there is no indication as to how or if this was differentiated from

vasogenic edema.

Similar limitations are present in the aforementioned studies

assessing postoperative residual FLAIR hyperintensity. Grabowski et

al17 acknowledged that a portion of the residual FLAIR hyperin-

tensity may represent edema, both persisting after resection of the

tumor (because this takes a variable time to resolve) and related to

the surgery itself. The possibility of persistent edema is also rele-

vant to the association with prognosis because Pope et al30 have

shown that more pronounced edema at diagnosis is associated

with worse survival. Thus, unless effort has been made to specif-

ically distinguish nCET from edema, part of the worse prognosis

related to a greater amount of residual FLAIR hyperintensity post-

operatively could simply relate to a tumor that induces more

edema, rather than necessarily residual nCET.

The patterns of nCET vary substantially among patients,31

though the literature on this topic is limited. These patterns them-

selves may have prognostic implications31 that have not been ac-

counted for in the above studies. For example, nCET having a

masslike morphology or preferentially involving the gray matter

may be associated with a better prognosis than a pattern infiltrat-

ing the white matter.31 These more favorable morphologies are

also generally easier to delineate, which is important if one is

planning more aggressive resection. Furthermore, their typically

more superficial location (compared with nCET involving the

white matter) is likely to be associated with less surgical morbid-

ity, again assisting surgical resection. There is thus the potential

for selection bias in the above neurosurgical studies because more

aggressive resection may have been facilitated by the nCET having

a morphology that, in itself, conveyed an improved prognosis,

compared with patients with a more infiltrative—and thus more

difficult to resect—pattern of nCET.

Such considerations are supported by the results of Baldock

et al,32 who divided GBMs into “nodular” and “diffuse” based on

a mathematic calculation of “relative invasiveness.” This study

found that nodular tumors received a significant survival benefit

from gross total resection of CET over subtotal resection or bi-

opsy, but diffuse tumors did not. While this study examined re-

section of CET rather than nCET, the morphologic patterns as-

sessed are equally relevant to nCET. Similarly, IDH mutant

malignant astrocytomas (grades III and IV) have been shown to

be more amenable to complete resection of CET than their IDH

wild-type counterparts.29 IDH status was not disclosed in the

study by Li et al27; thus, a component of the improved prognosis

attributed to more extensive resection could have related to a

greater proportion of IDH mutant tumors, which will in itself

have conveyed a better prognosis. Nevertheless, the effect of the

potential for a greater proportion of IDH mutant tumors is likely

to have been small, given the low frequency of IDH mutations in

glioblastoma,2 well-demonstrated by the cohort of Pessina et al28

(with only 3.2% of tumors being IDH mutant).

Despite these potential confounders, the size of the survival ben-

efit described is such that there is nevertheless likely to be true benefit

to more aggressive resection, and this benefit is intuitive given our

knowledge of the growth patterns of GBM. The same neurosurgical

advances aiding resection of CET, as briefly outlined above, will also

facilitate more aggressive resection of nCET. As a result, the identifi-

cation and delineation of nCET are likely to become an increasingly

important element of the preoperative MR imaging assessment of all

diffuse gliomas, irrespective of grade.

New Avenues in Radiation Oncology
Aggressive resection of CET is not always possible, however, for

example, due to the proximity to eloquent structures and the as-

sociated risks of operative morbidity. Such considerations are am-

plified if aiming to extend the resection to nCET because func-

tioning brain tissue is potentially embedded with the nCET

component. This feature highlights the important role of optimal

adjuvant radiation therapy. Postoperative radiation therapy, ac-

cording to the protocol of Stupp et al,33 has been the standard of

care for GBM for many years, though tumor recurrence remains

largely inevitable. This has prompted investigation into more ag-

gressive management of the nCET component with radiation

therapy, and this has also been shown to convey a survival bene-

fit.34 Duma et al34 have described a technique of performing ra-

diosurgery to the “leading edge” of a GBM, namely the migratory

white matter pathways adjacent to and leading away from the CET

component. The patients in their series had a median overall sur-

vival of 23 months, which is substantially longer than that in other

comparable series.33,34 These results provide further evidence

supporting aggressive management of nCET in GBMs and again

highlight the importance of not only high-quality pretreatment

imaging but also careful re-imaging shortly before commencing

radiation therapy. Edema related to CET may have receded, aid-

ing delineation of nCET. Volumetric FLAIR imaging is likely to be

of particular value in this context.

Identification of Non-Contrast-Enhancing Tumor
To facilitate more aggressive management of nCET, there is a

need to improve its accurate identification. In the preoperative

setting, the main contributors to the FLAIR hyperintensity sur-

rounding the CET component of a glioma are nCET and vaso-

genic edema. It is well-accepted that there is some overlap of these

2 etiologies, in particular adjacent to the CET component, but

often a confident distinction of the dominant process is possible
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for at least a portion of the signal abnormality. We aimed, there-

fore, to provide and illustrate criteria that can help distinguish

nCET and edema. Confirming that an abnormality on MR imag-

ing correlates with nCET histopathologically is problematic be-

cause it is frequently not resected or separately biopsied. Even a

comprehensive postmortem examination is limited by difficulties

with coregistration and sampling error. As a result, these imaging

criteria have been developed, in part, on the basis of knowledge of

the imaging appearances and evolution, but they are nevertheless

well accepted as evidenced by the description of similar strategies

in the widely used Visually Accessible Rembrandt Images set of

MR imaging features of glioma.35 As technology improves, these

principles are increasingly being validated by studies correlating

imaging-guided biopsies with colocalized MR imaging metrics.

Although advanced MR imaging techniques such as MR spec-

troscopy and perfusion have value in determining the extent of

nCET preoperatively, they are not universally available and are

time-consuming and operator-dependent. These practical con-

siderations are particularly relevant given the increasing use of

intraoperative MR imaging because

assessment of residual nCET intraoper-

atively is based on conventional se-

quences. Even when advanced se-

quences are used preoperatively, it is

useful to correlate these with the appear-

ance on conventional sequences. For ex-

ample, if CBV is elevated outside the

CET component, there may be correla-

tive features on T2WI and FLAIR.

Edema has several characteristic fea-

tures. Edema is typically confined to the

white matter, sparing the cortical ribbon

and thus producing the characteristic

fingerlike appearance (Fig 1).30 Corre-

lating with standard T2WI is useful for

identifying this appearance because the

cortex is usually better visualized.16,30

Similar gray matter sparing of deep gray

matter nuclei is also seen, with edema

extending along the internal and exter-

nal capsules (Fig 2). In contrast, gliomas

frequently involve gray matter,16,36-38

and such involvement can be confidently

diagnosed as nCET (Figs 3 and 4).16

The white matter involvement of

edema is typically relatively concentric

around the enhancing lesions, other
than where hindered by the relative
barrier afforded by the gray matter. In
contrast, eccentric extension of FLAIR
hyperintensity, not accounted for by an-
atomic constraints, is highly suggestive
of nCET. Wallerian degeneration is the
main differential to consider for FLAIR
hyperintensity along the course of the
corticospinal tract, but this is most com-

monly seen in the context of a resection

cavity or large necrotic tumor involving

the precentral gyrus. There is also usually appreciable volume loss,

aiding the distinction. Parenchymal expansion, conversely, is a

useful feature to confirm nCET, particularly in the corpus callo-

sum (Fig 4).

Another useful differentiating feature is that edema is typically

associated with more marked T2 and FLAIR hyperintensity than

nCET,30 often fading somewhat toward the periphery of the

edema. In contrast, FLAIR hyperintensity related to nCET is usu-

ally more subtle. The relatively mild FLAIR hyperintensity of

nCET is well-demonstrated in the gray matter where the distinc-

tion is simpler but can also be seen in the white matter, for exam-

ple with an eccentric tongue of nCET extending beyond an area

that has the typical appearance of edema. This finding has recently

been supported by a study correlating radiographically localized

biopsies with multiparametric MR imaging, which found that T2

FLAIR was inversely correlated with cell density.39 These results

support mild FLAIR hyperintensity being a feature of nCET, while

greater hyperintensity indicates that edema dominates.

FIG 1. FLAIR imaging (A) showing edema around the CET component (B) sparing the cortex
(arrowhead), producing the characteristic fingerlike appearance.

FIG 2. FLAIR imaging (A) showing edema extending around the left lentiform nucleus. The CET
component is shown in B.
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A final conventional MR imaging

feature useful for identifying nCET is

mass effect. The edema surrounding

CET may be extensive and may produce

generalized mass effect, though often

this is less pronounced. In contrast, the

mass effect from nCET is often more fo-

cal, with parenchymal expansion and

distortion rather than compression.

Edema can thin the cortex and thus

mimic cortical involvement, but relative

expansion of the cortex, even mild, is

convincing evidence of nCET. Expan-

sion of nCET may be more rounded and

mass-like,31 and this appearance is per-

haps most easily identified as nCET. A

white matter infiltration pattern of

nCET is typically associated with less

mass effect, but other features, as de-

scribed above, usually allow this distinc-

tion. Multifocality, in which there is ev-

idence of a communication between

enhancing lesions, most commonly on

FLAIR imaging,40 can also be used to in-

fer intervening nCET.

Despite our best effort, we acknowl-

edge that the above criteria do not allow

the complete differentiation between

nCET and edema in many patients. In

particular, even when effort is made to

identify areas confidently diagnosable as

nCET, this will underestimate its true

extent. Areas of FLAIR hyperintensity

that have the typical appearance of

edema will almost inevitably contain

some nCET to a degree that is both vari-

able and difficult to determine. Ad-

vanced MR imaging sequences are thus

most useful in the white matter and are

well-established. With the growing

number of available techniques, a comprehensive review of

these is beyond of the scope of this article, but the key features

are discussed briefly below. Both the conventional and ad-

vanced MR imaging features for identifying nCET are summa-

rized in the Table.

The potential use of DWI for identifying nCET is based on the

correlation between ADC values and tumor cellularity.41-43 This

association suggests that relative diffusion restriction (lower ADC

values) is a marker of nCET, in contrast to the facilitated diffusion

occurring with edema.44 Published results have been conflict-

ing,41,44-46 but reassuring results have been obtained with newer

techniques. For example, Price et al47 have suggested value in DTI,

with infiltrating tumor suggested by the presence of an increase in

the isotropic component of the diffusion tensor and a marginal

increase in the anisotropic component. Stadlbauer et al48 have

suggested that fractional anisotropy correlates better with histo-

pathologic parameters than mean diffusivity. Functional diffu-

FIG 3. FLAIR imaging (A) demonstrating nCET involving the anterior right temporal cortex (aster-
isk), insula, and thalamus (arrowhead). A narrow window width has been used to improve con-
spicuity. The small CET component lies further superiorly (B, arrow).

FIG 4. FLAIR imaging (A) showing eccentric extension of nCET across the corpus callosum, with
associated expansion (arrowhead). Rounded hyperintensity in the left thalamus (arrow) is also
consistent with nCET. Note the paucity of edema in the white matter immediately adjacent to
the CET component (B).

Conventional and advanced MRI features useful for
differentiating between nCET and edema

nCET Edema
Conventional MRI features

Gray matter involvement Spares the gray matter
Eccentric Relatively concentric around

enhancing lesions
Relatively mild FLAIR and T2

hyperintensity
More marked FLAIR and T2

hyperintensity
Focal parenchymal expansion More diffuse mass effect if

marked edema
Advanced MRI sequences

Relative diffusion restriction Facilitated diffusion
Choline elevation, NAA

depletion
Normal MRS findings

Elevated rCBV around CET rCBV elevation confined
to CET

Note:—rCBV indicates relative cerebral blood volume.
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sion maps and high-b-value DWI have also been suggested as

useful tools for identifying nCET.49,50

On MR perfusion imaging, nCET can be identified by relative

CBV elevation outside the CET component, and again it is relative

to normal parenchyma. Although relative CBV elevation may be a

marker more of tumor vascularity than cellularity,51 a correlation

with both microvascular density and cell density has been sug-

gested.52 Identifying nCET based on diffusion restriction and el-

evated relative CBV may be particularly important because both

features predict the subsequent development of enhance-

ment.53,54 It is possible, however, that a confident diagnosis of

nCET on conventional sequences also predicts transformation to

a higher grade; indeed, this seems to be the case for visible cortical

nCET,13 though the literature on this topic is limited.

The use of MR spectroscopy for identifying nCET is based on

the presence of a “glioma trace,” with choline elevation (denoting

increased membrane turnover) and decreased NAA. It is not

clear, however, whether such MR spectroscopy changes necessar-

ily imply that nCET is the dominant process (above edema), a

finding important when weighing the risks and benefits of more

aggressive resection. Greater degrees of choline elevation and/or

NAA depletion are associated with higher histologic grades of

glioma55,56; thus, it may be useful to use an MR spectroscopy

threshold to predict value in resection.

In some cases, there will be overlap between features (both

conventional and advanced); while in others, nCET will be iden-

tifiable by only a single MR imaging sequence or specific MR

imaging feature. It is, therefore, important to use a multiparamet-

ric approach to improve both sensitivity and specificity for iden-

tifying nCET and to confirm that it is the dominant process within

a given area of signal abnormality. This approach is not limited to

MR imaging, and the addition of PET has the potential to provide

complementary information. The most commonly used PET

tracer, FDG, has limited use in the brain due to high uptake in

normal brain tissue. This has, however, been overcome by the

introduction of novel PET tracers, such as the amino acid tracer

[18F]-fluoroethyl-L-tyrosine (FET), and FET-PET can be com-

bined with MR imaging to improve delineation of nCET and thus

aid radiation therapy planning.57,58

Computational methods are also being investigated. For ex-

ample, Artzi et al59 have suggested that combining radiomic tex-

ture analysis with machine learning may improve the delineation

of nCET. The authors themselves concede that histologic valida-

tion remains a limitation, though some of this concern has been

overcome by Hu et al,60 who correlated similar techniques with

image-guided biopsies and were able to identify nCET with an

accuracy of 88% in both the training and validation cohorts. Nev-

ertheless, specificity remains a consideration when identifying

subtle differences not readily discernible by the human eye. Such

subtle nCET would be expected to contain a lower proportion of

tumor cells than areas identified by a neuroradiologist, and a neu-

rosurgeon may hesitate to extend the resection. With time, quan-

tification of such techniques can be expected to improve, and the

combination of computational techniques with a growing arma-

mentarium of MR imaging sequences likely represents the future

of this field. It will be some time until such techniques are dissem-

inated into routine clinical practice, however, and optimizing the

use and interpretation of conventional sequences remain a

priority.

CONCLUSIONS
There is a growing understanding of the prognostic importance of

nCET in GBM. Extending neurosurgical resection beyond CET to

the nCET component is associated with improved survival, as is

more aggressive targeting of nCET with radiosurgery. Optimizing

these therapeutic strategies requires an understanding of the fea-

tures that can differentiate nCET from other causes of signal ab-

normality, in particular edema. Improved delineation of nCET

from edema will facilitate more aggressive management of nCET

and the associated survival benefits.
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