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ORIGINAL RESEARCH
ADULT BRAIN

Deep Transfer Learning and Radiomics Feature Prediction of
Survival of Patients with High-Grade Gliomas

W. Han, L. Qin, C. Bay, X. Chen, K.-H. Yu, N. Miskin, A. Li, X. Xu, and G. Young

ABSTRACT

BACKGROUND AND PURPOSE: Patient survival in high-grade glioma remains poor, despite the recent developments in cancer treat-
ment. As new chemo-, targeted molecular, and immune therapies emerge and show promising results in clinical trials, image-based
methods for early prediction of treatment response are needed. Deep learning models that incorporate radiomics features promise
to extract information from brain MR imaging that correlates with response and prognosis. We report initial production of a com-
bined deep learning and radiomics model to predict overall survival in a clinically heterogeneous cohort of patients with high-grade
gliomas.

MATERIALS AND METHODS: Fifty patients with high-grade gliomas from our hospital and 128 patients with high-grade glioma from
The Cancer Genome Atlas were included. For each patient, we calculated 348 hand-crafted radiomics features and 8192 deep fea-
tures generated by a pretrained convolutional neural network. We then applied feature selection and Elastic Net-Cox modeling to
differentiate patients into long- and short-term survivors.

RESULTS: In the 50 patients with high-grade gliomas from our institution, the combined feature analysis framework classified the
patients into long- and short-term survivor groups with a log-rank test P value , .001. In the 128 patients from The Cancer Genome
Atlas, the framework classified patients into long- and short-term survivors with a log-rank test P value of .014. For the mixed cohort
of 50 patients from our institution and 58 patients from The Cancer Genome Atlas, it yielded a log-rank test P value of .035.

CONCLUSIONS: A deep learning model combining deep and radiomics features can dichotomize patients with high-grade gliomas
into long- and short-term survivors.

ABBREVIATIONS: C-indices 4 concordance indices; CNN 4 convolutional neural network; GBM 4 glioblastoma multiforme; HGG 4 high-grade glioma;
OS 4 overall survival; SE 4 spin-echo; TCGA 4 the Cancer Genome Atlas

G lioblastoma multiforme (GBM), the largest diagnostic sub-
category of high-grade glioma (HGG) and the most com-

mon malignant adult brain tumor, afflicts 12,000–13,000 new
patients annually in the United States. GBM, comprising a geneti-
cally and phenotypically heterogeneous category of tumors, has a

very poor prognosis and a low rate of treatment response. The
standard combined treatment of surgery, temozolomide, and che-
moradiation has improved the median overall survival (OS) of
GBM to roughly 2 years. Presently, there is no method to reliably
predict the OS of patients with GBM as a response to treatment.
The absence of such reliable prediction is a barrier in designing
clinical trials and selecting optimal treatments for patients.

In the existing literature, MR imaging features of a brain tu-
mor, including its volume, intensity, shape, and texture of con-
trast enhancement and evidence of tumor necrosis, diffusivity,
infiltration, and blood volume, have been demonstrated to cor-
relate with the OS of HGG.1-6 A large number of these features
were included for radiomics, techniques that leverage the wealth
of information in images by extracting semiquantitative or
quantitative predefined image features to derive a relationship
between the features and clinical outcomes of interest.

Radiomics feature analysis has been shown to correlate
with molecular and histologic tissue types and outcomes,
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such as response and OS of HGG, but the correlation remains
imperfect. A major weakness that likely constrains the per-
formance of radiomics is that predefined features are low-
order features selected on the basis of heuristic knowledge
about oncologic imaging. Therefore, extracting higher level
and more complicated features and integrating these addi-
tional features into the framework of radiomics may result in
improved predictive power.

Recently, a deep convolutional neural network (CNN) achieved

outstanding performance in many areas of medical image analysis,
such as segmentation,7,8 classification,9,10 prediction of tumor grade,11

and patient survival.12,13 A typical CNN structure is a feed-for-
ward network that includes an input layer, multiple hidden

layers, and an output layer. Because the convolutional filters
and other parameters are adjusted automatically during the

training process, the parameters of CNN are learned in a way
that optimizes the use of information contained in the input

images. In this process, a CNN may create and select a large
number of features at its hidden layers. These features,

termed “deep features” in this work, may be exploited for pre-
dicting the OS of patients with HGG in an unbiased fashion
that does not require any prior definition and may contain
extensive abstract information from the hidden layers. In
training a CNN, when the available dataset is of limited size,
one can apply a pretrained CNN for the task on hand. This
practice, called “transfer learning,” has been shown to be an
effective way of using deep learning in many cases.12,14,15 In
this study, we integrated deep transfer learning and tradi-
tional radiomics techniques to explore a very large number of
features in brain MR imaging of patients with HGGs. We
then classified patients into longer term and shorter term sur-
vivors by training a machine learning model to predict OS on
the basis of these image features.

MATERIALS AND METHODS
Our general workflow is depicted in Fig 1A, consisting of ROI-
marking, image-preprocessing, feature extraction by traditional
radiomics and deep learning, and statistical analysis.

FIG 1. A, Flowchart shows our survival prediction system. B, The framework of VGG-19 model for deep-feature extraction.
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Datasets
This study was approved by our institutional review board. We
retrospectively retrieved 2 patient cohorts for this study. The first
cohort is 50 patients with World Health Organization IV GBM,
with known OS information, who had brain MRIs at the
Brigham and Women’s Hospital between 2006 and 2011. Brain
MR imaging after maximal surgical resection and before radia-
tion therapy was retrieved for each patient. Only the gadolinium-
enhanced T1-weighted spin-echo sequences acquired on 1.5T
and 3T scanners from GE Healthcare (Milwaukee, Wisconsin)
were used. The parameters for these axial contrast-enhanced T1-
weighted images were as follows: TR = 416–566 ms, TE = 8–22
ms, FOV = 200–240 mm, matrix size = 256� 256 or 512� 512,
section thickness = 5–6 mm. The second cohort set is 128 patients
with World Health Organization IV GBM brain MR imaging
retrieved from gadolinium-based contrast-enhanced T1-weighted
images from The Cancer Genome Atlas (TCGA) (http://
cancergenome.nih.gov), publicly available, and The Cancer
Image Archive (http://cancerimagingarchive.net/) with known
OS information. The MRIs were acquired on 1.5T and 3T scan-
ners from GE Healthcare (Milwaukee, Wisconsin), Siemens
(Erlangen, Germany), Philips Healthcare (Best, the Netherlands)
between 1995 and 2008. For the acquisition of the axial contrast-
enhanced T1-weighted images, there were 58 2D spin-echo (SE),
49 3D gradient recalled-echo, and 21 other sequences. Scan pa-
rameters for SE sequences were as followings: TR = 409–809 ms,
TE = 8–20 ms, FOV = 200–280 mm, matrix size = 488–
683� 421–683, section thickness = 1–6 mm. For gradient
recalled-echo sequences, 28 were acquired using echo-
spoiled gradient echo with TR = 25–250 ms, TE = 2.48–
13.8 ms, flip angle = 25°–70°, FOV = 200–260 ms, matrix =
536–634� 421–634, section thickness = 1–4 mm. Others
were acquired using an MPRAGE sequence, with TR = 1160–
2160 ms, TE = 2.75–4.24 ms, TI = 600–1100 ms, flip angle =
9°–15°, matrix = 561–624� 421–624, section thickness =
0.9–5 mm.

From the 2 cohorts, we constituted 3 data groups. The first
group is the 50 patients from Brigham and Women’s Hospital.
Scans for this group were all acquired using the SE sequence. The
second group is the 128 patients from TCGA, and scans were
acquired using SE or gradient recalled-echo sequences. The third
group comprised the 50 SE scans from Brigham and Women’s
Hospital and the 58 selected SE scans from TCGA.

Tumor Segmentation and Image Preprocessing
For both patient cohorts, ROIs were manually traced by a radiol-
ogist on the section with the largest tumor area.

Before the extraction of quantitative features, several pre-
processing techniques were applied to improve texture dis-
criminations. First, intensity normalization was performed in
a nonlinear way to convert MR images into standardized in-
tensity ranges for all subjects.16 Second, to improve the com-
putational performance and the signal-to-noise ratio of the
texture outcome, we used gray-level quantization, which maps
the full intensity range of the tumor region to different levels
of gray.17 Two gray-level quantization algorithms (equal-prob-
ability quantization, uniform quantization) and 2 numbers of

gray levels (16 and 32) were adopted. Finally, all images were
resampled to an isotropic pixel size using bilinear interpola-
tion. Scale values of 1mm (pixel size4 1� 1 mm3) and initial
in-plane resolution were both tested.

For deep features, we cropped the MR images by finding a
rectangular ROI that enclosed the outlined tumor. Then we
resized the tumor patch to a 224� 224 square to fulfill the
requirement for the input size of the pretrained CNN model that
we used. Also considering that the CNN model that we used was
pretrained on natural images with a color range of 0–255, we nor-
malized the intensity of tumor patch images to the same color
range.

Feature Extraction
Two types of features were extracted. The first type is hand-
crafted features that were manually extracted from an ROI.
Hand-crafted features were divided into 3 groups: 1) nontexture
features, including volume, size, and intensity features (such as
solidity, eccentricity); 2) first-order histogram-based texture fea-
tures, including skewness, kurtosis, variance, and others; and 3)
second-order texture features, including features from the gray-
level co-occurrence matrix, gray-level run length matrix, gray-
level size zone matrix, and neighborhood gray-tone difference
matrix. In total, we calculated 348 radiomics features for each
ROI.

The second type of features were deep features. We chose
the VGG-19,18 which was pretrained on the natural image
dataset ImageNet (http://www.image-net.org/),19 which con-
tains .1.2 million images as our CNN. VGG-19 has 19 layers
with weights, formed by 16 convolutional layers and 3 fully
connected layers. All the convolutional layers are built with a
fixed kernel size of 3� 3, and the stride and padding are fixed
at 1. The network has 5 max-pooling layers with a window
size of 2� 2 and uses rectified linear units as the nonlinear
activation function. The first 2 fully connected layers have
4096 features each, while the last FC layer has 1000 features
with SoftMax activation (https://www.moleculardevices.
com/products/microplate-readers/acquisition-and-analysis-
software/softmax-pro-software) (Fig 1B). After we ran the
front propagation of the VGG-19 model with pretrained
weights as the initialization, a total number of 8192 deep
features were extracted from the first 2 fully connected
layers. All features were normalized by transforming the
data into z scores with a mean of 0 and an SD of 1.

Feature Reduction
Feature reduction is a critical step because with 8192 deep fea-
tures and 348 radiomics features, the number of features may
result in overfitting in OS prediction. In addition, some features
may have zero variance, have high correlations with other fea-
tures, or have little relevance to the goal of OS prediction. Thus,
the number of features needs to be reduced. We adopted 3 steps
for feature reduction, namely, median absolute deviation, con-
cordance indices (C-indices), and the Pearson coefficient correla-
tion, to improve the generalizability and interpretability of our
model.
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Statistical Analysis
For censored survival data, we used the Elastic Net-Cox propor-
tional hazards model20 to analyze the OS of patients with HGG.
We denoted the sample size as N. To maximize the use of the
limited data, we applied leave-one-out cross validation N times as
the outer loop to split the data into training and test sets. Each
pair of training and test sets was examined independently. The
model was fit on the basis of the training set by maximizing the
penalized partial log-likelihood function for the Cox model with
a penalty term. In this model, the penalty parameter l was opti-
mized within the 10-fold cross-validation loop.; a, which was
used to determine the influence of the L1 penalty on the L2 pen-
alty was set to be 0.1. After optimization, the model output a sur-
vival score for each patient in the training and test sets. We used
the median of survival scores in each training set as the threshold
to classify each patient in the test set into either a longer term or a
shorter term survivor cohort. Finally, Kaplan-Meier analysis was
used to estimate survival probabilities of each cohort,21 and a log-
rank test was implemented to test the hypothesis that the survival
curves differed statistically significantly between the 2 cohorts. A
P value representing the statistical significance of the curve sepa-
ration was used as an index to model predictive performance. For
all analyses, a P value , .05 was indicative of statistical signifi-
cance. All testing was 2-tailed.

Hardware and Software
The ROI was manually labeled using Hermes on DICOM
images (https://hermes-router.github.io/). Radiomics features
were computed using the Radiomics Matlab package (https://
www.mathworks.com/matlabcentral/fileexchange/51948-radiomics).3

Pretrained CNN models were run using Keras with Tensorflow

backend (https://keras.io/applications/#vgg19) on servers equipped
with Xeon CPU and Tesla K80 GPU. Elastic Net-Cox model
was built using R package ‘glmnet’ (https://cran.r-project.org/
web/packages/glmnet/index.html).

RESULTS
Clinical Characteristics of Patients
The demographic and clinical characteristics of patients in all 3
datasets are shown on Table 1. The median and mean OS were
503days and 690days for the patients in group one, 352 days and
449days for patients in group 2, and 490days and 642days for
group 3.

Feature Extraction
An example of a contrast-enhanced T1-weighted MR image of a
longer term survivor and that of a shorter term survivor are
shown in Fig 2A, -C. With different quantization algorithms, dif-
ferent numbers of gray-levels, and different scales for isotropic
pixel resampling, we collected 348 hand-crafted quantitative
radiomics features: 4 nontexture features, 24 first-order histo-
gram-based texture features, 72 second-order texture features
from the gray-level co-occurrence matrix, 104 second-order tex-
ture features from the gray-level run length matrix, 104 second-
order texture features from the gray-level size zone matrix, and
40 second-order texture features from neighborhood gray-tone
difference matrix. Table 2 summarizes the radiomics features
described in Chmelik et al.9 Meanwhile, we generated and pre-
processed the tumor patch images (Fig 2B, -D) as the input for
the deep CNN architecture. Then we extracted 8192 features
from the first 2 fully connected layers of the pretrained CNN
model. Finally, a set of 8540 features was generated for each ROI.

Feature Reduction and Multivariate
Statistical Analysis
Feature reduction was performed on the
training set of each leave-one-out 10-fold
cross-validation loop. We noticed that
the deep feature matrix is relatively
sparse and there are many uninformative
deep features with zero variance. We set
zero as the threshold of median absolute
deviation to reduce about 60% of the
total features, which were all from deep

Table 1: Demographic and clinical characteristics of patients in all 3 datasets
Demographics DATA 1 (n = 50) DATA 2 (n = 128) DATA 3 (n = 108)

Sex
Female (No.) (%) 23 (46%) 46 (35.9%) 43 (39.8%)
Male (No.) (%) 27 (54%) 82 (64.1%) 65 (60.2%)
Mean 0.46 6 0.50 0.35 6 0.48 0.39 6 0.49

Age (yr)
Range 23–87 17–86 23–87
Mean 57 6 13 58 6 14 56 6 12

OS (days)
Range 149–3156 7–1638 7–3156
Mean 690.34 6 625.31 449.30 6 352.93 642.1 6 519.30

FIG 2. Example of contrast-enhanced T1-weighted MR images of longer term survivors (A and B) with an overall survival of 1405 days and shorter
term survivors (C and D) with an overall survival of 447 days. A and C, Contrast-enhanced T1-weighted MR images with tumor contours in red. B
and D, Tumor patches segmented from A and C, respectively.
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features. The remaining deep features are less noisy, and some
of them have high C-indices. The ranges of C-indices among
the 3 datasets vary, so the threshold of C-indices was slightly
different. Because the distribution of C-indices for groups 2
and 3 was similar, the threshold of C-indices for these 2 data-
sets were the same at 0.66. The C-indices in the group 1 dataset
were relatively higher at 0.685. The threshold for the Pearson
coefficient correlation was set at 0.85 for all 3 datasets. Because
the feature reduction was performed within each cross-valida-
tion loop and was based only on the subselected training set
for the loop, the number of surviving features and the names
of those features vary among the different training loops. In all
loops, the number of surviving features was less than 100 and
most of the surviving features were deep features.

In this study, individuals who were lost to follow-up or
were still alive at the end of the study were right-censored. The
ratio of noncensored-to-censored data in the 3 datasets was
45:5 for DATA 1, 97:31 for DATA 2, and 90:18 for DATA 3.
The Elastic Net-Cox proportional hazards model was used as
the multivariate statistical model to generate survival scores
for each patient. On the basis of the survival scores, we were
able to dichotomize patients into 2 groups: predicted long-
term and short-term survivors. In Fig 3, we demonstrate the
overall performance of our method in the group 1 dataset (Fig
3A) with a log-rank test P value, .001 (hazard ratio = 3.26;
95% CI, 1.7–6.0), group 2 dataset (Fig 3B) with a log-rank test
P value = .014 (hazard ratio = 1.65; 95% CI, 1.1–2.4), and the
group 3 dataset (Fig 3C) with a log-rank test P value = .035
(hazard ratio = 1.71; 95% CI, 1.0–2.3). The ratio of shorter
term-to-longer term survivors and the percentage of shorter
term survivors was 22:28 (44%) for DATA 1, 63:65 (49%) for
DATA 2, and 57:51 (53%) for DATA 3.

DISCUSSION
In this study, we demonstrated that machine learning–based sta-
tistical analysis of an image feature set comprising both radiomics
and deep learning features extracted from gadolinium-enhanced
brain MR imaging of patients with GBM can be used to distin-
guish longer term from shorter term survivors. The model was
proved efficient to analyze anonymized brain MR imaging data
from both publicly available sources and our hospital.

Previous literature on quantitative image-based prediction of
OS has suggested that deep features play a complementary role
to radiomics features.12,14,22,23 Our study demonstrates that
this remains true when using deep features extracted by VGG-
19, an advanced model with documented excellent perform-
ance in image classification. Deep features are not limited to
previously identified image attributes or even to those under-
standable by humans. This is an advantage because it leads to
the possibility of discovering information in medical images
that is not observable to human readers, which, in turn, raises
the rational hope of adding diagnostic value beyond simple
quantification of information already accessible in MR images.
The abstract “features” represented in the weights of the deep
CNN have a number of limitations. The meaning of individual
features is not easy for humans to clearly understand. Also, it
remains uncertain how reproducible the deep feature output is
from the current CNN operating with available dataset sizes
and processing power. As such, radiomics features were inte-
grated to the pipeline, which were well-defined and selected a
priori to comprise image attributes known or rationally
expected by human experts to contain predictive information.
At least in the near-term, we believe that the combination of
radiomics and deep features may be rationally expected to pro-
vide greater value than deep feature–based analyses alone.

Table 2: List of radiomics features in this study
Method Quant. algo. Ng NS Features NF

Non-textures Volume, size, solidity, eccentricity 4
Histogram Equal probability, uniform 16

32
2 Variance, skewness, and kurtosis 24

GLCM Equal probability, uniform 16
32

2 Energy, Contrast, Correlation, Homogeneity, Variance, Sum
Average, Entropy, Dissimilarity and Autocorrelation

72

GLRLM Equal probability, uniform 16
32

2 Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray-level Non-
uniformity (GLN), Run-Length Non-uniformity (RLN), Run
Percentage (RP), Low Gray-level Run Emphasis (LGRE), High Gray-
level Run Emphasis (HGRE), Short Run Low Gray-level Emphasis
(SRLGE), Short Run High Gray-level Emphasis (SRHGE), Long Run
Low Gray-level Emphasis (LRLGE), Long Run High Gray-level
Emphasis (LRHGE), Gray-level Variance (GLV) and Run-Length
Variance (RLV)

104

GLSZM Equal probability, uniform 16
32

2 Small Zone Emphasis (SZE), Large Zone Emphasis (LZE), Gray-level
Non-uniformity (GLN), Zone-Size Non-uniformity (ZSN), Zone
Percentage (ZP), Low Gray-level Zone Emphasis (LGZE), High
Gray-level Zone Emphasis (HGZE), Small Zone Low Gray-level
Emphasis (SZLGE), Small Zone High Gray-level Emphasis (SZHGE),
Large Zone Low Gray-level Emphasis (LZLGE), Large Zone High
Gray-level Emphasis (LZHGE), Gray-level Variance (GLV) and
Zone-Size Variance (ZSV)

104

NGTDM Equal probability, uniform 16
32

2 Coarseness, Contrast, Busyness, Complexity and Strength 40

Note:—Quant. algo. indicates quantization algorithm; Ng, number of gray levels; NS, number of scales; NF, number of features; GLCM, gray-level co-occurrence matrix;
GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; NGTDM, neighborhood gray-tone difference matrix.
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Besides deep features and radiomics features, we also inves-
tigated the effect of demographic features by adding sex and
age information into the feature set of the TCGA dataset. This

investigation did not change the performance substantially,
likely because the areas under the curve of sex and age were both
so low (area under the curve of sex = 0.53; area under the curve of

FIG 3. Kaplan-Meier curve of predicted longer term and shorter term survival in a dataset (A) with 50 patients with HGG from Brigham and
Women’s Hospital, a dataset (B) with 128 patients with HGG from the TCGA, and a dataset (C) with 108 patients with HGG from Brigham and
Women’s Hospital and the TCGA.
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age = 0.62) that these features were eliminated during feature
reduction.We chose to include a deliberately heterogeneous cohort
treated with a wide range of therapies to make the training set and
model more readily generalizable to the heterogeneous patient
mixture encountered in the clinic. Most of the patients received a
standard treatment protocol of chemoradiation with temozolo-
mide. Many received bevacizumab. Additional patients received a
range of investigational therapies, including chemotherapies, tar-
geted molecular therapies, and a few immunotherapies. Tumor
genomics such as Isocitrate dehydrogenase 1 (IDH-1) mutation,
MGMT methylation, and epidermal growth factor receptor appli-
cation are powerful tumor markers that merit inclusion in future
models. Because, unfortunately, tumor genomic data were unavail-
able for many patients in our cohort, we did not attempt to include
this in our modeling. Twelve of 50 patients in our institutional
dataset were IDH-1 wild-type, but IDH-1 status was not assessed in
the remainder. Similarly, 11 of 50 were epidermal growth factor re-
ceptor–amplified, 20 of 50 were epidermal growth factor receptor
not highly amplified, and 19 were unknown.

Like any statistical correlation approach, the CNN depends
on the comprehensiveness of the training dataset, which is a stat-
istically robust subset of the whole dataset. In general, the CNN
model performance improves with increasing size of the dataset.
Unfortunately, in the field of medical imaging and particularly in
HGG brain MR imaging, annotating a large number of medical
images remains challenging and time-consuming. While 50–150
fully annotated GBM datasets with known patient data represent
a large amount of data to acquire, it is a small dataset from the
perspective of the CNN training set and may result in overfitting.
Under this circumstance, the transfer learning technique is intro-
duced to apply CNNmodels from one field to another. For exam-
ple, Paul et al14,22 generated deep features from a pretrained
CNN model to improve survival prediction accuracy for patients
with lung cancer. Lao et al12 adopted the pretrained CNN_S
model for prediction of survival in GBM. Ahmed et al23 chose a
pretrained CNN_F model in predicting the survival time of
patients with brain tumor. Choi et al24 used a pretrained VGG-19
model to classify retinal images. On the other hand, transfer
learning can reduce the number of training sets used by several
orders of magnitude, but it introduces certain bias into the result-
ing CNN in the form of the pretrained parameters. It is likely that
the success of the transferred model depends, in large part, on
which CNN is selected, but to date, there is no systematic way to
know which of the large number of available pretrained neural
networks is best suited to a given task, which layers are optimal
for choosing the features, or which pretrained dataset should be
used. We chose VGG-19 to generate deep features for this study
because it was trained on a large image data base and validated to
provide excellent accuracy in the many applications; and it has
been successfully applied to many medically related problems. In
future work, it may be important to compare our results with the
performance of other models such as VGG-16 (https://neurohive.
io/en/popular-networks/vgg16/)18 or ResNet-50 (https://neurohive.
io/en/popular-networks/resnet/).25

Transfer learning is not a fail-proof solution to the overfitting
problem because overfitting may also occur in the retraining of
the transferred CNN. Our initial output data matrix was very

unbalanced and sparse, with only several dozen patients but
8540 output features. Our applied feature-reduction method
eliminated roughly 99% of features and reduced the probability
of divergence and computational cost. Reducing the number of
features is essential to avoid overfitting in such small datasets, but
feature reduction remains complicated and somewhat controver-
sial.26,27 A number of methods exist. We chose not to use princi-
pal component analysis, a well-established method, because it
complicates further the interpretability problems intrinsic to
radiomics and deep learning models by generating new features
in a new coordinate system, yet 1 more step removed from the
original image.

In our experiments, we found that there were more down-
stream features left in DATA 1 than in DATA 2 and DATA 3.
One reason could be the data homogeneity, ie, some predictors
in the homogeneous dataset may lead to an overfitting problem
because they may not be very predictive in a heterogeneous
dataset. In fact, in our data, DATA 1 was the most homogene-
ous one of all 3 datasets because it included only SE MR images
and the data were acquired from a single institution only. In
addition, the hazard ratio in DATA 1 was found to be higher
than in the second and third datasets, suggesting that data ho-
mogeneity may affect the performance of a machine learning
model in some way.

On a large-scale and high-throughput data mining field, espe-
cially medical imaging analysis, machine learning–based statisti-
cal analysis techniques are widely used. For example, de Carvalho
Filho et al28 used the support vector machine algorithm for lung
nodule classification. Lao et al12 used the lasso Cox regression
model to find a useful subset of reduced features, then con-
structed radiomics signatures to predict the OS of patients with
GBM. Yin et al27 compared 3 feature-selection methods and 3
classification methods for differentiation of sacral chordoma and
sacral giant-cell tumor. Yu et al29 used an Elastic Net-Cox hazard
ratio model to predict survival of patients with squamous cell car-
cinoma and stage I adenocarcinoma. In our study, we did not
model OS as a binomial classification problem because binary
classifiers do not consider censored information and are highly
dependent on the manually determined survival threshold.
Instead we chose Cox regression, a time-to-event model that is
better suited to handle censored data and model a continuous
range of the survival probabilities. Because the traditional Cox
model does not work well on high-dimensional data in which a
number of covariates are much larger than the sample size, we
selected the Elastic Net-Cox hazard ratio model for statistical
analysis. This penalized Cox model has been proved able to han-
dle high-dimensional data and obtain reliable survival predic-
tion.29 It is possible that other statistical approaches may improve
our ability to detect correlations in the data. This is an area that
will benefit from future study.

Because postcontrast T1-weighted images are the critical
mainstay of routine clinical brain tumor imaging,30 we chose
these as the initial image type around which to build our pipe-
line. Addition of more sequences (precontrast T1, T2, FLAIR
T2, SWI, DWI, PWI) with independent image contrast can be
expected to improve model performance and is planned for
future work.
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Other factors that may affect the final model performance
include interoperator variation in ROI selection. To investigate, we
had our 2 radiologists label our largest TCGA dataset independently.
The intraclass correlation coefficient on the downstream features
yielded a median of 0.76. Most individual-feature intraclass correla-
tion coefficients were.0.7. This high reproducibility implies that
inter-operator variation in ROI selection had little effect on our data-
set. We also performed a supplemental analysis to test the effect of
normal tissue in the training set input. In the patients in the TCGA,
we removed normal voxels from inside the bounding box and
retrained the deep learning model. The result was similar to the per-
formance with the normal tissue voxels retained in the bounding
box, with a P valueof .016. It remains unknown whether this result
would be true using larger bounding boxes comprising more normal
tissue. These analyses suggest that our model performance was ro-
bust to at least some variation in preprocessing. More investigation
is needed with more heterogeneous and independent datasets to
determine whether this is generally true.

CONCLUSIONS
We report successful production and initial validation of a deep
transfer learning model combining radiomics and deep features
to predict OS of patients with GBM from postcontrast T1-
weighed brain MR images. Further optimization of these results
will require systematic attention to each of the critical compo-
nents of the pipeline, including choice and modification of the
model, optimization of feature-reduction method, selection of
statistical correlation strategy, incorporation of additional MR
imaging data types, and inclusion of tumor genomics data.
Necessary future steps before clinical translation will need to
include interpretability analysis to determine the clinical signifi-
cance of the surviving features in the model and testing in a
dichotomized design that allows assessment or prediction per-
formance on an individual patient basis.
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