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ORIGINAL RESEARCH
ADULT BRAIN

A Method to Estimate Brain Volume from Head CT Images
and Application to Detect Brain Atrophy in Alzheimer

Disease
V. Adduru, S.A. Baum, C. Zhang, M. Helguera, R. Zand, M. Lichtenstein, C.J. Griessenauer, and A.M. Michael

ABSTRACT

BACKGROUND AND PURPOSE: Total brain volume and total intracranial volume are important measures for assessing whole-brain
atrophy in Alzheimer disease, dementia, and other neurodegenerative diseases. Unlike MR imaging, which has a number of well-vali-
dated fully-automated methods, only a handful of methods segment CT images. Available methods either use enhanced CT, do
not estimate both volumes, or require formal validation. Reliable computation of total brain volume and total intracranial volume
from CT is needed because head CTs are more widely used than head MRIs in the clinical setting. We present an automated head
CT segmentation method (CTseg) to estimate total brain volume and total intracranial volume.

MATERIALS AND METHODS: CTseg adapts a widely used brain MR imaging segmentation method from the Statistical Parametric
Mapping toolbox using a CT-based template for initial registration. CTseg was tested and validated using head CT images from a clinical
archive.

RESULTS: CTseg showed excellent agreement with 20 manually segmented head CTs. The intraclass correlation was 0.97 (P,
.001) for total intracranial volume and 0.94 (P, .001) for total brain volume. When CTseg was applied to a cross-sectional
Alzheimer disease dataset (58 with Alzheimer disease patients and 58 matched controls), CTseg detected a loss in percentage
total brain volume (as a percentage of total intracranial volume) with age (P, .001) as well as a group difference between
patients with Alzheimer disease and controls (P, .01). We observed similar results when total brain volume was modeled with
total intracranial volume as a confounding variable.

CONCLUSIONS: In current clinical practice, brain atrophy is assessed by inaccurate and subjective “eyeballing” of CT images.
Manual segmentation of head CT images is prohibitively arduous and time-consuming. CTseg can potentially help clinicians to auto-
matically measure total brain volume and detect and track atrophy in neurodegenerative diseases. In addition, CTseg can be
applied to large clinical archives for a variety of research studies.

ABBREVIATIONS: AD 4 Alzheimer disease; BET 4 Brain Extraction Tool; ICC 4 intraclass correlation coefficient; TBV 4 total brain volume; TIV 4 total
intracranial volume; TPM 4 tissue probability map

Total brain volume (TBV) is an important measure for assess-
ing brain atrophy in aging and neurodegenerative diseases.1

TBV is estimated fromMR or x-ray CT brain images by segment-
ing the brain parenchyma using manual or automated methods.
Automated methods are preferred due to efficiency, reliability,
and reproducibility. A number of automated segmentation meth-
ods are available for MR images that are extensively applied in

the clinical domain.2 In the clinical setting, CT is more widely
used than MR imaging due to faster acquisition speed, a smaller
number of contraindications, lower cost, and its ability to answer
a range of clinical questions.3 However, only a handful of auto-
mated segmentation methods exist for head CT images.

Several existing methods in CT segmentation are either
semiautomated4,5 or targeted toward a specific brain region6-8

or disease condition.5,9 Methods available for segmenting CT
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images to measure global volume metrics such as total intra-
crancial volume (TIV) and TBV from images with no detecta-
ble pathology were not formally validated.10-12 Some well-
validated methods segment only TIV13,14 but not TBV.
However, TBV is more indicative of disease conditions in
neurodegenerative dieseases,15 and TIV is used merely as a
nuisance variable for normalization purposes. Manniesing et
al4 estimated TBV using head CT but used enhanced CT
images.4 However, their method cannot be applied to single-
time-point CT images with no image enhancement. Irimia et al16

adapted SPM12 (http://www.fil.ion.ucl.ac.uk/spm/),17 a widely used
MR imaging–based segmentation method, for CT segmentation and
validated it by comparing it with MR images segmented using
FreeSurfer (http://surfer.nmr.mgh.harvard.edu). However, they vali-
dated only the accuracy of ventricular CSF and not TIV or TBV.

We present a fully-automated CT segmentation (CTSeg;
https://github.com/NuroAI/CTSeg) method for brain segmenta-
tion and estimation of TBV and TIV from nonenhanced single-
time-point head CT images by adapting SPM12. CTSeg was vali-
dated for brain segmentation and TBV and TIV estimation by
comparing it with manual segmentation (n=20). Additionally,
we present a clinical application in which CTSeg is used to show
TBV differences in Alzheimer disease (AD) (n=116).

MATERIALS AND METHODS
Subjects
This study was reviewed and approved by the Geisinger Health
System institutional review board. CT images were originally col-
lected as part of patients’ routine clinical care but were fully de-
identified. We created 2 datasets: 1) a manual segmentation data-
set (n=20, subjects free of brain abnormalities) and 2) an AD
dataset (n=167, subjects with and without a diagnosis of AD).
Fifteen subjects with AD had catheters and were removed from
further analysis. The AD dataset that was further analyzed con-
sisted of 152 subjects.

Manual Segmentation Dataset. A total of 20 subjects (mean age,
66 years; age range, 32–89 years; 10 women) were randomly
selected for manual segmentation of the intracranial space and
the brain parenchyma. These subjects were free of brain abnor-
malities and were unremarkable according to the radiology
reports. Additionally, through visual inspection, we confirmed
that the images were free of artifacts.

AD Dataset. The initial cross-sectional AD dataset consisted of
62 subjects (mean age, 77 years; age range, 68–83 years; 41
women) with a diagnosis of AD and 90 controls (mean age,
78 years; age range, 68–83 years; 64 women) who did not have a
diagnosis of AD. Subjects with AD and controls were selected on
the basis of the International Classification of Disease, Ninth
Revision (ICD-9-CM 331.0) codes.18 All CT images were free of
artifacts, and the radiology reports of the images confirmed no
acute pathologies or brain abnormalities. A retrospective evalua-
tion indicated that the controls had undergone a CT scan follow-
ing headaches or head injury. The CT images were acquired
using multiple CT scanners, and details of the scanner models
and imaging parameters are provided in On-line Table 1.

Manual Segmentation
Manual segmentation was performed by a trained operator using
ITK-SNAP 3.6 (www.itksnap.org).19 The intracranial space was
outlined according to the guidelines provided by Nordenskjöld et
al.20 The segmented intracranial image was then used to segment
the brain parenchyma by tracing the boundary between brain tis-
sue and CSF.

Automated Brain Segmentation
CTSeg (Fig 1) adapts the unified segmentation algorithm17 from
SPM12 and uses a CT template for the initial affine registration
step (see Methods: Automated Brain Segmentation in the On-
line Appendix for a detailed explanation of the CTSeg pipeline).
CTSeg creates probabilistic and binarized segmentation maps of

FIG 1. CTSeg pipeline for intracranial space and brain parenchyma segmentation from head CT images. Within parentheses is the 3D coordinate
space of the image. MNI indicates Montreal Neurological Institute.
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the brain and the intracranial space. The binarized segmentation
maps are obtained by thresholding the probabilistic maps using
optimal thresholds (Optimal Threshold Selection in the On-line
Appendix:).

Statistical Methods
The overlap between the automated and manual segmentation
masks was measured using the Dice similarity index (DSI).21 TIV
and TBV were obtained from the probabilistic maps, and the bi-
nary masks were obtained using CTSeg. For probabilistic maps,
volumes were calculated by integrating the partial tissue volumes
(tissue probability at the voxel� voxel volume) over all the voxels
from the respective tissue maps. Volume estimates were calcu-
lated from binary masks by multiplying the number of masked
voxels by the unit voxel volume.

Volumes estimated using CTSeg were compared with the
manual estimates using scatterplots and the Pearson’s correlation
coefficient. Systematic bias was assessed using Bland-Altman
analysis,22 and percentage difference was calculated as a percent-
age of the manual estimates. The absolute agreement between
automated and manual volumes was evaluated using the intra-
class correlation coefficient (ICC) computed using 2-way
ANOVA23 with fixed effects. The 95% confidence intervals of the
ICC were computed using bootstrapping with 1000 iterations.
The volumes were checked for normality using the Kolmogorov-
Smirnov test.24 The TIV estimates of CTSeg were also compared
with the state-of-the-art FSL Brain Extraction Tool for CT (BET;
http://bit.ly/CTBET_BASH).13

CTSeg-estimated volumes from the images of age-matched
subjects with AD and controls were used to compare brain atrophy
between patients with AD and controls. Subjects with AD and con-
trols were age-matched by minimizing the age difference using
the MatchIt package25 in R (https://www.rdocumentation.org/
packages/MatchIt/versions/3.0.2/topics/matchit).26 Previous studies
have demonstrated that sex has no significant effect on TBV as a
percentage of TIV (%TBV)27 because it is a normalized measure
that accounts for the variability introduced by head size and
sex.27,28 Therefore, subjects were not sex-matched because all our
analyses were performed on %TBV. TBV versus TIV and %TBV
versus age scatterplots were used to compare brain atrophy in
patients with AD and controls. Linear regression models were used
to determine the significance of age, sex, and AD diagnosis on %
TBV. For the regression models, the Age � AD diagnosis interac-
tion term was added to check whether the rate of brain volume loss
was significantly different between patients with AD and controls.
Additionally, we investigated the effect of TIV by modeling TBV,
using TIV as a confounding factor in the linear models, as

recommended in recent studies.20,29 TIV and sex were added in
addition to Age and AD diagnosis while modeling TBV. Results
with P , .05 are considered significant for all statistical analyses.
Statistical analyses were performed using Python 2.7 (https://www.
python.org/download/releases/2.7/), R 3.4.3 (http://www.r-project.
org/), and Matlab 8.6.0. (MathWorks, Natick, Massachusetts).

RESULTS
Segmentation
CTSeg successfully segmented all 20 images from the manual seg-
mentation dataset. The optimal image-intensity threshold obtained
using a random selection of 10 training images was 0.2 for the
brain mask and 0.0006 for the intracranial mask. These thresholds
were robust when applied to the test set (On-line Fig 1).

Binary masks from CTSeg agreed well with the manual seg-
mentation masks (the DSI was 0.94 6 0.008 for brain and 0.98 6
0.002 for the intracranial masks). The gyri and sulci in the superior
slices of the brain were well-captured by CTSeg (On-line Fig 2).

Brain Volumetry
Comparison between automated and manual volume estimates is
presented in Table 1. The binarized TBV and TIV estimates
showed excellent agreement with the manual estimates (ICCs =
0.94 and 0.97, respectively), whereas the probabilistic estimates
showed lower agreement (ICCs = 0.74 and 0.71 for TBV and
TIV, respectively). TIV estimated using the BET also showed
excellent agreement with manual TIV (ICC = 0.94) but was lower
than binarized TIV from CTSeg. Binarized CTSeg also had the
lowest bias in terms of the percentage difference (Table 1), and in
the Bland-Altman plots (Fig 2) for both TIV (mean difference of
�0.04L for CTSeg binarized versus �0.05L for BET and �0.13
for CTSeg probabilistic) and TBV (mean difference of 0.02L for
CTSeg binarized versus �0.08L for CTSeg probabilistic for
TBV). The pattern of the linear fit in the Bland-Altman plots
showed that error increases with average volume and, there-
fore, head size for both estimates of CTSeg. However, the rate
of increase was higher for probabilistic estimates than binar-
ized estimates of CTSeg. The BET TIV estimate showed the
lowest dependence of error on the average volume but
showed larger bias than the binarized CTSeg TIV. Because
the binarized CTSeg estimates showed better agreement with
manual estimates, proceeding evaluations were made using
only the binarized CTSeg method.

Brain Volumetry in AD
CTSeg was applied to the AD dataset containing 152 images.
CTSeg successfully segmented 135 images (58 with AD and 77

Table 1: Comparison of automated TBV and TIV estimates with manual ground truth estimatesa

Parameter/Method %Difference Pearson’s r (P Value) ICC (P Value) Bootstrap Mean ICC (95% CI)
TBV
CTSeg probabilistic –7.2262.98 0.96 (,.001) 0.74 (,.001) 0.727 (0.724–0.730)
CTSeg binarized 1.5863.46 0.95 (,.001) 0.94 (,.001) 0.937 (0.935–0.939)

TIV
CTSeg-probabilistic –12.1561.44 0.99 (,.001) 0.71 (,.001) 0.685 (0.680–0.689)
CTSeg binarized –3.2861.36 0.99 (,.001) 0.97 (,.001) 0.962 (0.961–0.963)
BET –5.1260.667 0.99 (,.001) 0.94 (,.001) 0.930 (0.928–0.932)

a %Difference is reported as means.
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controls) of 152 images (88%). Reasons for CTSeg failures are dis-
cussed in the next section. After we excluded CTSeg failures, 58
control subjects were optimally age-matched to 58 subjects with
AD (a total of n=116 subjects). A paired t test confirmed no sig-
nificant age difference (P= .74) between the 2 groups after age-
matching. Group comparisons were performed on binarized
volumes estimated from the age-matched subjects. TBV and
%TBV computed for AD and controls are presented in Fig 3.
Linear fit to %TBV indicated a higher loss with age in the
AD group than in controls. We observed significantly lower
mean %TBV (P, .05) in the AD group (76.24 6 2.87) com-
pared to the control group (77.52 6 3.05). A paired t test
among %TBVs of the matched subjects also showed a significant
difference (P, .05) between the two groups. The linear fit in the

TBV-versus-TIV plot showed that the
slope is lower for AD, suggesting a lower
TBV-to-TIV ratio in subjects with AD.
The results of the linear regression anal-
ysis are presented in On-line Table 2.
Both age (P, .001) and AD diagnosis
(P, .05) had a significant effect on %
TBV. The Age � AD diagnosis term
was insignificant as an interaction term
in the linear model. Similar results were
observed when TBV was modeled
using sex and TIV as additional cova-
riates. Age and AD diagnosis were sig-
nificant when these variables were
modeled as main effects. TIV had a
significant contribution in all regres-
sion models. Results remained the
same when sex was removed from the

main effects model.

Segmentation Failures in the AD Dataset
CTSeg failed to produce acceptable segmentations for 4 of 62 AD
images and 13 of 90 control images. Failures in the segmentation
included segmentations of nonbrain regions like eyes as brain tis-
sue or segmentation maps that did not resemble brain or intracra-
nial space. On-line Table 3 summarizes the failure rate of CTSeg
for different scanners. The overall failure rate was,15% across all
the scanners.

DISCUSSION
TBV is an important measure for assessing brain atrophy in AD
and other neurodegenerative diseases. Although CT is widely

FIG 2. Scatterplots (upper row) of automated-versus-manual volume estimates and the linear fit between automated and manual volumes (thick
line) and the line of equality (thin line). Bland-Altman plots (lower row) with automated-minus-manual volume differences on the y-axis and the aver-
age of automated and manual volumes on the x-axis. Mean difference62 SDs is represented by dotted and dashed horizontal lines, respectively.

FIG 3. Scatterplot of %TBV (left) estimated using CTSeg versus age. Scatterplot of TBV versus
TIV (right).
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used in the clinical setting, segmentation methods to estimate
TBV from head CT images are not available. We presented
CTSeg, an automated head CT segmentation method, and vali-
dated the method by comparing it with manual segmentation.

TBV and TIV from binary CTSeg masks showed better agree-
ment with manual estimates than the TBV and TIV estimates
from probabilistic masks. This outcome was expected because the
MR imaging–based default tissue probabilistic atlas map (TPM;
https://www.fil.ion.ucl.ac.uk/spm/toolbox/TPM/) that we used
did not model some of the anatomy present in CT images, and
binarizing the masks by thresholding mitigated these errors.
Additionally, the systematic bias in the TIV estimate using the bi-
nary masks was better than TIV estimated using the BET-based
method by Muschelli et al.13

The utility of CTSeg was demonstrated in a cross-sectional
dataset containing AD and control groups. We found that
CTSeg-estimated volumes had a significant %TBV (P, .05) dif-
ference between the AD and control groups in a linear regression
model with age, sex, and AD diagnosis as covariates. The sex of
the subjects had no significant effect on the %TBV. This finding
is in agreement with previous findings using MR images that
used TIV to normalize global brain volumes.27,28 The average %
TBV estimated from AD images was lower than that for matched
controls. The statistical insignificance of Age � AD diagnosis
interaction on %TBV can be attributed to the cross-sectional na-
ture of our dataset. We expect that significant TBV group differ-
ences can be achieved if longitudinal head CT images of the same
subjects are tracked. Furthermore, some of the %TBV variability
may be due to not accounting for the duration from the actual
onset of AD with respect to the time of the CT acquisition.
Another factor that may have contributed to the %TBV is that
our controls may have atrophy due to undiagnosed disorders.
We expect to see higher group differences in TBV if ADs are
compared with disorder free healthy controls. Additionally, when
TBV is modeled with TIV as a confounding variable, we observed
similar results compared with %TBV. TIV was a significant con-
founding variable in all the models. Sex was insignificant in all
the models, suggesting that correction for TIV removes the struc-
tural differences between men and women; this finding agrees
with previous ones using MR imaging–estimated volumes.29

Unlike MR imaging, the intensity of CT images is standar-
dized and is a measure of radiation attenuation of the tissue.
Therefore, we do not think that the scanner variability signifi-
cantly affected our method. The standardized intensity in CT is,
in fact, an advantage and makes the comparison of CT images
across scanners easier, compared with MR images. Additionally,
we expect the optimal thresholds of CTSeg to be widely appli-
cable because SPM models the tissue intensities separately for
each image. We confirmed the optimal threshold using two
different approaches: random search and leave-one-out
cross-validation. The high Dice similarity index in both
approaches demonstrated the robustness of the optimal
threshold. However, further validation on a larger dataset is
required to verify the robustness of the threshold at different
noise levels of CT images.

In CTSeg, we used a standard MR image–based TPM specific
to an age range of 18–90 years for the segmentation.30 The CT

template used for the initial registration was developed for an age
range of 46–79 years.31 Although the age of the subjects used for
this study was 67–89 years, we achieved good segmentation accu-
racy using the standard TPM and the CT template. However, if
age-appropriate CT-based TPMs are used, we expect that seg-
mentation accuracy would further improve. The TPM and the
CT templates were created using images without brain abnormal-
ities. Therefore, CTSeg assumes that the CT images to be seg-
mented have brains that are free of large structural abnormalities
like glioma, stroke, operations, and image artifacts due to beam-
hardening and implants. However, CTSeg can be extended for
applications for abnormal brain, like identifying lesions.32

CTSeg marginally overestimated TBV due to the misclassifi-
cation of dura as brain in the superior slices of the image. This
overestimation can be attributed to the low contrast-to-noise ra-
tio among the soft tissues of CT images. Misclassification of the
dura is a known problem even in the segmentation of T1-
weighted MR images.33 TIV and TBV estimates from all auto-
mated methods tested in this study exhibited a linear dependence
of error with head size. Binarizing the probabilistic maps using
an optimal threshold slightly reduced this linear dependence to
some extent, and this phenomenon can be attributed to several
reasons: one reason may be the partial volume effect, in
which a single voxel represents $2 tissues due to the finite
spatial resolution of the image.34 The number of voxels at tis-
sue boundaries increases with head size, thereby increasing
the error in volume estimation due to the partial volume
effect. The linear dependence of error and head size can also
be attributed to errors in spatial registration and the allomet-
ric effect of the tissue priors. In the case of an intracranial
mask, the optimal threshold was very low due to the influence
of the high bone intensity (compared with CSF) on the partial
volume effect for voxels near the bone-CSF interface.

We computed optimal thresholds for CT images with 5-
mm image section thickness, which is the clinical standard
for CT images. Because the partial volume effect increases
with section thickness,35 thresholds may need to be derived
independently for images with different section thicknesses.
However, CT images reconstructed with smaller section
thicknesses have a lower contrast-to-noise, which can lead to
larger errors in the segmentation of brain tissue using CTSeg.
Therefore, care should be taken when applying CTSeg to
high-resolution images. On close visual inspection, we noted
that some brain-CSF boundary regions were misclassified,
especially in the left and right regions of the frontal lobe
where the brain is closer to the skull and in regions between
the brain hemispheres where the dura is present (On-line Fig
2). The misclassifications in intracranial maps (On-line Fig 3)
were observed at the boundaries of the intracranial space in
the superior and inferior slices, resulting in lower TIV esti-
mates compared with manual segmentation. We also note
that the binarized segmentation misclassified some parts of
the eyes as the intracranial volume. This shortcoming can be
corrected by registering a standard intracranial mask onto
the binary intracranial mask obtained using CTSeg and
excluding the voxels classified as TIV that are outside the reg-
istered standard intracranial mask.36
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CONCLUSIONS
We present CTSeg to automatically estimate TBV and TIV
from nonenhanced head CT images acquired for diagnostic
purposes that were originally intended for visual evaluations
by radiologists. We show that CTSeg can accurately estimate
TBV and TIV. Application of CTSeg on CT images from sub-
jects with AD and controls provides evidence that CTSeg can
be used for detection and tracking of global brain atrophy in
neurodegenerative diseases. AD does not have symptoms
until the mild cognitive impairment stage, which occurs sev-
eral years after the onset, and CTSeg may be used to track
brain atrophy in these patients. In addition, CTSeg can be
applied to clinical CT archives to develop normative brain
volumes and to research studies involving neurodegenerative
diseases that show global brain volume loss.
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