Review of round window pathologies
Multiphase color maps for acute stroke
Treatment decisions for M2 occlusions
Delayed diagnosis of spinal dural fistula
INDICATIONS FOR USE:
The WEB Aneurysm Embolization System is indicated for use at the middle cerebral artery (MCA) bifurcation, internal carotid artery (ICA) terminus, anterior communicating artery (AComm) complex, or basilar artery apex for the endovascular treatment of adult patients with saccular, wide neck bifurcation intracranial aneurysms with dome diameter from 3 mm to 10 mm and either neck size 4 mm or greater or the dome-to-neck ratio is greater than 1 and less than 2.

The WEB Aneurysm Embolization System is contraindicated for patients with known bacterial infection that may interfere with or negatively affect the implantation procedure and patients with known hypersensitivity to nickel. For complete indications, contraindications, potential complications, warnings, precautions, and instructions, see instructions for use (IFU provided with the device).

The VIA® Catheter is intended for the introduction of non-liquid interventional devices (such as stents/flow diverters) and infusion of diagnostic (such as contrast media) or non-liquid therapeutic agents into the neuro, peripheral, and coronary vasculature. The VIA Catheter is contraindicated for use with liquid embolic materials, such as n-butyl 2-cyanoacrylate or ethylene vinyl alcohol & DMSO (dimethyl sulfoxide). The VIA Catheter is contraindicated for use in the pediatric population (<22 yrs of age).

Caution: Federal law restricts these devices to sale by or on the order of a physician.
The world leader and first PMA-approved device in an important new category of intrasaccular flow disruptors.

The WEB® System is a safe and effective single-device solution for treating wide neck bifurcation aneurysms.

Contact a MicroVention sales associate to learn more about integrating the WEB® device into your practice.
Dotarem®
(gadoterate meglumine) Injection

REAL-WORLD TESTED.
REAL-WORLD PROVEN.

The Dotarem® safety profile has been tested and proven in both studies and 30 years of global clinical use.*

0.007%
Spontaneously Reported Worldwide Adverse Events. (>50 million doses)3-10

Dotarem remains an industry standard for contrast imaging with a low incidence of immediate adverse events for patients of all ages.2-10

A low incidence of adverse events can help your patient focus on what matters most in their life.

Dotarem®
The first and only macrocyclic and ionic GBCA molecule.

1

REAL-WORLD TESTED.
REAL-WORLD PROVEN.

The Dotarem® safety profile has been tested and proven in both studies and 30 years of global clinical use.*

0.007%
Spontaneously Reported Worldwide Adverse Events. (>50 million doses)3-10

Dotarem remains an industry standard for contrast imaging with a low incidence of immediate adverse events for patients of all ages.2-10

A low incidence of adverse events can help your patient focus on what matters most in their life.

Dotarem®
The first and only macrocyclic and ionic GBCA molecule.

1
Indications and Usage
DOTAREM® (gadoterate meglumine) injection is a prescription gadolinium-based contrast agent indicated for intravenous use with magnetic resonance imaging (MRI) in brain (intracranial), spine and associated tissues in adult and pediatric patients (including term neonates) to detect and visualize areas with disruption of the blood brain barrier (BBB) and/or abnormal vascularity.

Contraindications
History of clinically important hypersensitivity reactions to DOTAREM.

Warnings and Precautions
• Hypersensitivity Reactions: Anaphylactic and anaphylactoid reactions have been reported with DOTAREM, involving cardiovascular, respiratory, and/or cutaneous manifestations. Some patients experienced circulatory collapse and died. In most cases, initial symptoms occurred within minutes of DOTAREM administration and resolved with prompt emergency treatment.

• Before DOTAREM administration, assess all patients for any history of a reaction to contrast media, bronchial asthma and/or allergic disorders. These patients may have an increased risk for a hypersensitivity reaction to DOTAREM.

• Administer DOTAREM only in situations where trained personnel and therapies are promptly available for the treatment of hypersensitivity reactions, including personnel trained in resuscitation.

• Gadolinium Retention: Gadolinium is retained for months or years in several organs. The highest concentrations have been identified in the bone, followed by brain, skin, kidney, liver and spleen. The duration of retention also varies by tissue, and is longest in bone. Linear GBCAs cause more retention than macrocyclic GBCAs.

• Consequences of gadolinium retention in the brain have not been established. Adverse events involving multiple organ systems have been reported in patients with normal renal function without an established causal link to gadolinium retention.

• Acute Kidney Injury: In patients with chronically reduced renal function, acute kidney injury requiring dialysis has occurred with the use of GBCAs. The risk of acute kidney injury may increase with increasing dose of the contrast agent; administer the lowest dose necessary for adequate imaging.

• Extravasation and Injection Site Reactions: Ensure catheter and venous patency before the injection of DOTAREM. Extravasation into tissues during DOTAREM administration may result in tissue irritation.

Adverse Reactions
• The most common adverse reactions associated with DOTAREM in clinical trials were nausea, headache, injection site pain, injection site coldness and rash.

• Serious adverse reactions in the Postmarketing Experience have been reported with DOTAREM. These serious adverse reactions include but are not limited to: arrhythmia, cardiac arrest, respiratory arrest, pharyngeal edema, laryngospasm, bronchospasm, coma and convulsion.

Use in Specific Populations
• Pregnancy: GBCAs cross the human placenta and result in fetal exposure and gadolinium retention. Use only if imaging is essential during pregnancy and cannot be delayed.

• Lactation: There are no data on the presence of gadoterate in human milk, the effects on the breastfed infant, or the effects on milk production. However, published lactation data on other GBCAs indicate that 0.01% to 0.04% of the maternal gadolinium dose is present in breast milk.

• Pediatric Use: The safety and efficacy of DOTAREM at a single dose of 0.1 mmol/kg has been established in pediatric patients from birth (term neonates ≥ 37 weeks gestational age) to 17 years of age based on clinical data. The safety of DOTAREM has not been established in preterm neonates. No cases of NSF associated with DOTAREM or any other GBCA have been identified in pediatric patients age 6 years and younger.

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit www.fda.gov/medwatch or call 1-800-FDA-1088. Please see the full Prescribing Information, including the patient Medication Guide, for additional important safety information.

*Dotarem was launched globally in 1989 and approved by the FDA for use in the US in 2013.

References:

GU09191202
It’s Easy and Free!

Log on to CME Gateway to:

• View or print reports of your CME credits from multiple societies from a single access point.

• Print an aggregated report or certificate from each participating organization.

• Link to SAMs and other tools to help with maintenance of certification.

American Board of Radiology (ABR) participation!

By activating ABR in your organizational profile, your MOC-fulfilling CME and SAM credits can be transferred to your own personalized database on the ABR Web site.

Sign Up Today!
go to CMEgateway.org
191 PERSPECTIVES M. Hauben

REVIEW ARTICLE

HEAD & NECK

PRACTICE PERSPECTIVES

GENERAL CONTENTS

206 Assessment of a Bayesian Vitrea CT Perfusion Analysis to Predict Final Infarct and Penumbra Volumes in Patients with Acute Ischemic Stroke: A Comparison with RAPID R.A. Rava, et al.

213 Predictive Value of Noncontrast Head CT with Negative Findings in the Emergency Department Setting A.L. Callen, et al.

219 Visualization of Lenticulostriate Arteries on CT Angiography Using Ultra-High-Resolution CT Compared with Conventional-Detector CT K. Murayama, et al.

224 A Method to Estimate Brain Volume from Head CT Images and Application to Detect Brain Atrophy in Alzheimer Disease V. Adduru, et al.

246 MR Diffusional Kurtosis Imaging–Based Assessment of Brain Microstructural Changes in Patients with Moyamoya Disease before and after Revascularization P.-G. Qiao, et al.

How Do Physicians Approach Intravenous Alteplase Treatment in Patients with Acute Ischemic Stroke Who Are Eligible for Intravenous Alteplase and Endovascular Therapy? Insights from UNMASK-EVT
J.M. Ospel, et al.

Impact of Aortic Arch Anatomy on Technical Performance and Clinical Outcomes in Patients with Acute Ischemic Stroke
J.A. Knox, et al.

DWI-Based Algorithm to Predict Disability in Patients Treated with Thrombectomy for Acute Stroke
H. Raoult, et al.

Endovascular Treatment Decisions in Patients with M2 Segment MCA Occlusions
M. Almekhlafi, et al.

Delayed Leukoencephalopathy: A Rare Complication after Coiling of Cerebral Aneurysms
A. Ikemura, et al.

Intra-Arterial Verapamil Treatment in Oral Therapy–Refractory Reversible Cerebral Vasoconstriction Syndrome
J.M. Ospel, et al.

Artery of Davidoff and Schechter Supply in Dural Arteriovenous Fistulas
K.D. Bhatia, et al.

Asymptomatic Cerebral Vasospasm after Carotid Artery Stenting
C.H. Kang, et al.

Characterization of Carotid Plaque Components by Quantitative Susceptibility Mapping
M. Azuma, et al.

Standard Diffusion-Weighted Imaging in the Brain Can Detect Cervical Internal Carotid Artery Dissections
G. Adam, et al.

MRI Patterns of Extrapontine Lesion Extension in Diffuse Intrinsic Pontine Gliomas
L. Makepeace, et al.

Frequency, Extent, and Correlates of Superficial Siderosis and Ependymal Siderosis in Premature Infants with Germinal Matrix Hemorrhage: An SWI Study
M.S. Albayram, et al.

Macrocerebellum in Achondroplasia: A Further CNS Manifestation of FGFR3 Mutations?
H.M. Pascoe, et al.

Considerations for Mean Upper Cervical Cord Area Implementation in a Longitudinal MRI Setting: Methods, Interrater Reliability, and MRI Quality Control
C. Chien, et al.

Renal Excretion of Contrast on CT Myelography: A Specific Marker of CSF Leak
S. Behbahani, et al.

Long-Term Outcome of Patients with Spinal Dural Arteriovenous Fistula: The Dilemma of Delayed Diagnosis
F. Jablawi, et al.

Differentiation between Tuberculous and Pyogenic Spondylodiscitis: The Role of the Anterior Meningovertebral Ligament in Patients with Anterior Epidural Abscess
S.B. Strauss, et al.
ONLINE FEATURES

LETTERS
E7 Comments on “Prolonged Microgravity Affects Human Brain Structure and Function” J.J. Bevelacqua, et al.
E9 Erratum

BOOK REVIEWS R.M. Quencer, Section Editor
Please visit www.ajnrblog.org to read and comment on Book Reviews.

DWI (A) and fat-saturated TIWI (B) show a right carotid dissection as a crescent-shaped increased signal. MR angiography (C) shows near-occlusion of the arterial lumen.
We’re Inside Every Great Neuroradiologist!

Join the leaders in neuroradiology today!
Learn more at www.asnr.org/join
AJNR urges American Society of Neuroradiology members to reduce their environmental footprint by voluntarily suspending their print subscription.

The savings in paper, printing, transportation, and postage directly fund new electronic enhancements and expanded content.

The digital edition of AJNR presents the print version in its entirety, along with extra features including:

- Publication Preview
- Case Collection
- Podcasts
- The AJNR News Digest
- The AJNR Blog

It also reaches subscribers much faster than print. An electronic table of contents will be sent directly to your mailbox to notify you as soon as it publishes. Readers can search, reference, and bookmark current and archived content 24 hours a day on www.ajnr.org.

ASNR members who wish to opt out of print can do so by using the AJNR Go Green link on the AJNR Website (http://www.ajnr.org/content/subscriber-help-and-services). Just type your name in the email form to stop print and spare our ecosystem.
ASNR and AJNR are pleased once again to join efforts with other imaging-related journals that have training programs on editorial aspects of publishing for trainees or junior staff (<5 years on staff), including Radiology (Olmsted fellowship), AJR (Figley and Rogers fellowships), JACR (Bruce J. Hillman fellowship), and Radiologia.

CALL FOR AJNR EDITORIAL FELLOWSHIP CANDIDATES

2020 Candidate Information and Requirements

GOALS

- Increase interest in editorial and publication-related activities in younger individuals.
- Increase understanding and participation in the AJNR review process.
- Incorporate into AJNR's Editorial Board younger individuals who have previous experience in the review and publication process.
- Fill a specific need in neuroradiology not offered by other similar fellowships.
- Increase the relationship between “new” generation of neuroradiologists and more established individuals.
- Increase visibility of AJNR among younger neuroradiologists.

ACTIVITIES OF THE FELLOWSHIP

- Serve as Editorial Fellow for one year. This individual will be listed on the masthead as such.
- Review at least one manuscript per month for 12 months. Evaluate all review articles submitted to AJNR.
- Learn how electronic manuscript review systems work.
- Be involved in the final decision of selected manuscripts together with the Editor-in-Chief.
- Participate in all monthly Senior Editor telephone conference calls.
- Participate in all meetings of the Editors during the annual meetings of ASNR and RSNA and the Radiology Editors Forum as per candidate’s availability. The Foundation of the ASNR will provide $2000 funding for this activity.
- Evaluate progress and adjust program to specific needs in annual meeting or telephone conference with the Editor-in-Chief.
- Embark on an editorial scientific or bibliometric project that will lead to the submission of an article to AJNR or another appropriate journal as determined by the Editor-in-Chief. This project will be presented by the Editorial Fellow at the ASNR annual meeting.
- Serve as liaison between AJNR and ASNR's Young Professionals Network. Participate in meetings and telephone calls with this group. Design one electronic survey/year, polling the group regarding readership attitudes and wishes.
- Recruit trainees as reviewers as determined by the Editor-in-Chief.
- Organize and host a Fellows’ Journal Club podcast.
- Serve as Guest Editor for an issue of AJNR's News Digest with a timely topic.

QUALIFICATIONS

- Be a fellow in neuroradiology from North America, including Canada (this may be extended to include other countries).
- Be a junior faculty neuroradiology member (<5 years) in either an academic or private environment.
- Be an “in-training” or member of ASNR in any other category.

APPLICATION

- Include a short letter of intent with statement of goals and desired research project. CV must be included.
- Include a letter of recommendation from the Division Chief or fellowship program director. A statement of protected time to perform the functions outlined is desirable.
- Applications will be evaluated by AJNR's Senior Editors prior to the ASNR meeting. The name of the selected individual will be announced at the meeting.
- Applications should be received by March 2, 2020 and sent to Ms. Karen Halm, AJNR Managing Editor, electronically at khalmi@asn.org.
Title: Chrysler Building Reflections. I exclusively shot film at the time I took this image, which was quite a few years ago. I never record the camera and film specifications, though at that time I was shooting with a Nikon N80 with an AF Zoom Nikkor 24-85 mm, f/2.8-4D lens, and using Kodak Portra. The glass curtain walls of international style architecture provide large, unadorned reflective surfaces that are heat tempered. Thermal tempering can induce deviations from flatness in the glass, known as warps, overall and local bows, and local and roller wave distortions. Depending on the surrounding structures reflected from the glass, which in this case is the iconic Chrysler Building, an infinite number of phantasmagoric images appear, one continuously morphing into another with slight shifts in perspective. It is interesting to this fan of distorted reflections that these deviations from flatness are typically discussed as defects in the construction materials literature, while actually not-to-be-missed opportunities to create modern art images, underscoring a core message of photography: stop, or at least slow down, and contemplate our amazing world.

Manfred Hauben, MD, Pfizer Inc and NYU Langone Health, New York City
The round window (RW) serves as a boundary between the basal turn of the cochlea anteriorly and the round window niche posteriorly. It, along with the oval window, is 1 of 2 natural openings between the inner and middle ear. The round window is often overshadowed by the “first window” (the oval window) and pathologic “third windows” (eg, superior semicircular canal dehiscence). Nevertheless, numerous developmental, acquired, neoplastic, and iatrogenic processes can affect the round window membrane and niche. Any of these can cause conductive hearing loss because occlusion of the round window prevents propagation of acoustic energy along the cochlear axis. In operative interventions in which a primary goal of surgery is to improve conductive hearing loss or access the round window region for cochlear implantation, accurate preoperative identification of round window abnormalities is essential to first determine whether surgery is a worthwhile endeavor and subsequently to guide the surgical strategy. In this article, the various pathologic entities and surgical considerations of the round window that can be encountered on imaging are reviewed.

Physiology and Functionality
The inner ear “windows” refer to openings in the otic capsule that connect the fluid in the inner ear to either the middle ear or intracranial space. The 2 primary natural openings are the oval and round windows. Other windows include the cochlear and vestibular aqueducts and tiny foramina that transmit vessels and/or nerves to the inner ear and adjacent structures (eg, the petromastoid canal and singular canal).

Functionally, the role of the oval and round windows is related to sound transmission: Vibratory acoustic energy enters through the oval window, is transmitted through the cochlea, and exits into the middle ear cavity via the round window. The fluid in the cochlea through which sound is transmitted is functionally incompressible due to the surrounding osseous structures. Movement of the cochlear fluid is thereby dependent on the mobility of the round and oval window membranes: Inward displacement of the oval window membrane via the stapes by ossicular vibration is matched by outward round window membrane displacement.

Developmental Anomalies
Normal Anatomy. The round window is located along the posterior aspect of the cochlear promontory and measures 1.5–2.1 mm horizontally, 1.9 mm vertically, and 0.65 mm in thickness (Fig 1). The round window membrane is thicker along its edges and...
thinner in the middle and is made up of 3 layers: 2 epithelial layers facing the inner and middle ear, respectively, and connective tissue in the core. Contrary to its name, the shape of the round window is typically skewed, ovoid, and nonplanar according to a recent study. The round window niche is primarily defined by the relatively thin overhanging bone that naturally extends from the promontory. This overhanging bone may obscure complete direct visualization of the round window membrane during routine middle ear surgery and cochlear implantation. Most ears have a thin layer of mucosa covering the round window membrane, often called a “pseudo-membrane,” that blocks direct visualization of the window if not removed.

Round Window Stenosis and Atresia. Round window absence is a rare abnormality that may be seen in conjunction with various syndromes, including incomplete partition anomalies, mandibulofacial dysostosis, and Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities and deafness (CHARGE) syndrome, in addition to cases of aural atresia (Fig 3). In very rare cases, it may also occur without an associated syndrome (Fig 4). Some authors have posited that such nonsyndromic cases may represent an inherited autosomal dominant genetic disorder with variable penetrance. Even in nonsyndromic cases, few reports exist of round window atresia as an isolated finding; most of these patients have associated middle ear or pinna abnormalities.

Patients with round window atresia typically have a mixed but predominantly conductive hearing loss, with an associated typical air-bone gap of 30–40 dB. Attempts to surgically recreate the round window do not always produce substantial gains in hearing. The reasons remain uncertain because few such surgical...
case reports exist. However, the inconsistent results may be related to the presence of associated anomalies such as congenital stapes fixation, otosclerosis, or re-ossification following an operation.

Unfortunately, because surgeons often have incomplete exposure of the round window niche during routine otologic procedures and because of its rarity, round window atresia can easily be overlooked intraoperatively. It is also frequently missed on imaging, and many patients with round window atresia are not diagnosed until middle ear exploration. Close attention must therefore be paid to the morphology of the round window and round window niche on imaging performed for conductive or mixed hearing loss.

Stenosis of the round window membrane and/or recess is more common than complete round window absence. Like round window atresia, stenosis of the round window can have syndromic associations and contribute to hearing loss. The lower limit of normal size for the round window niche is generally cited as being 1.5 mm. Nevertheless, imaging characteristics of stenotic recesses can be quite variable, ranging from mild to severe (Fig 5).

Acquired Abnormalities

Acquired abnormalities that affect the round window include a range of traumatic, inflammatory, and iatrogenic processes. Otitis media associated with mucosal thickening and effusion may obscure the round window or adjacent niche (Fig 6). Less commonly, baro-trauma or increased pressure may cause the round window membrane to rupture, leading to perilymph fistula with sensorineural hearing loss and vertigo. Temporal bone fractures through the round window may disrupt the membrane. Several primary osseous processes such as Paget disease, fibrous dysplasia, otosclerosis, and osteogenesis imperfecta can affect the temporal bone, including the annular ring of the round window. Below, several of the most common causes of acquired abnormalities of the round window are discussed, with imaging correlates.

Labyrinthitis Ossificans. Labyrinthitis ossificans (LO) refers to ossification within the membranous labyrinth, most frequently occurring within the scala tympani. Typically, LO is secondary to inflammatory changes from infection such as suppurrative otitis media, labyrinthitis, or meningitis, though trauma and otosclerosis have also been indicated as inciting processes. In cases of LO associated with bacterial meningitis, the basal turn of the cochlea is often preferentially affected because infection may spread from the subarachnoid space through the cochlear aqueduct to the proximal scala tympani (though spread may also occur through the modiolus). In some cases, LO may involve the round window, involvement thought to occur when the inciting event is otitis media or meningitis that spreads through the round window along the scala tympani (Fig 7).
Otosclerosis. Otosclerosis is an acquired condition in which spongiotic bone replaces mature endochondral bone of the otic capsule. Typically, otosclerosis involves the oval window and stapes footplate in the region of the fissula ante fenestram. Fenestral otosclerosis may also secondarily involve the round window in approximately 3%–13% of cases. Isolated round window otosclerosis has been reported, though the prevalence is rare (approximately 0.3% of cases). Nevertheless, secondary involvement or isolated involvement of the round window by otosclerosis is an important radiologic observation because it portends a poorer chance of surgical success. Specifically, round window involvement diminishes the movement of perilymphatic fluid following stapedectomy and prosthesis placement, the surgery typically used in cases of otosclerosis.

The appearance of otosclerosis on imaging depends on the disease phase. In the active (otospongiotic) stage, the affected bone surrounding the round window will appear lucent and de-mineralized (Fig 8). Later on, these areas are replaced by sclerotic bone during the nonactive (otosclerotic) stage. As this replacement occurs, the round window membrane may become thickened or irregular. Heaped-up osseous plaques may narrow the round window or adjacent niche.

Mansour et al categorized otosclerosis of the round window on the basis of the extent of involvement of the membrane and adjacent structures. Under this classification scheme, RW-I represented hypodensities about the round window edge, RW-II had partial thickening of the membrane, RW-III showed global membrane thickening with a persistent air-filled recess, RW-IV had obliteration of the recess, and RW-V demonstrated overgrowth of otosclerotic foci. Predictably, higher grades of round window involvement were found to be associated with more severe hearing loss, likely related to increased impedance within the scala tympani.

Jugular Bulb Dehiscence and Diverticula. The positional anatomy of the jugular bulb is variable throughout a person’s life. Jugular bulb abnormalities consequently develop with time and are typically acquired by the fourth decade of life. High-riding jugular bulbs are found in approximately 8% of patients, both on pathologic specimens and CT images. Dehiscent jugular bulbs and jugular bulb diverticula are more rare, occurring at a rate of 2.6% and 1.2%, respectively.

High-riding jugular bulbs, dehiscent bulbs, and jugular diverticula are often asymptomatic. However, they may also present with pulsatile tinnitus or, less commonly, conductive hearing loss, likely related to encroachment by the bulb on the round window, ossicular chain, or tympanic membrane (Fig 9). The incidence in which the round window membrane is specifically involved is rare; 1 histologic analysis of temporal bones identified 2 such cases in 1579 specimens (0.1%). Imaging findings vary on the basis of the type of jugular bulb abnormality. High-riding bulbs typically occur as an isolated finding, in which the dome of the jugular bulb is within 2 mm of the internal auditory canal (IAC) floor (though definitions vary). A high-riding bulb may extend further superolaterally, erode the sigmoid plate, and protrude into the middle ear cavity; this dehiscence is best seen on CT as thinning and/or absence of bone between the bulb and middle ear structures.
Finally, diverticula will appear as distinct outpouchings from the bulb. Any jugular bulb anomaly seen on CT should be closely examined for the presence of abutment of the bulb on the round window membrane, niche, or other middle ear structures.

Neoplastic Processes. Several neoplastic processes may affect the round window membrane or round window niche. Some, such as metastases and primary osseous tumors, are centered in the bone; secondary round window involvement by these lesions depends on their size and location. Notably, most primary osteodystrophies and osseous neoplasms spare the otic capsule, given divergent embryology and composition. Other tumors have an anatomic proclivity to involve the round window membrane. For example, intralabyrinthine schwannomas may extend through the round window membrane and into the round window niche (dashed arrows), better demonstrated on the follow-up axial (D), Pöschl (E), and coronal (F) CT images.

FIG 9. Jugular bulb anomalies. Coronal (A), Pöschl (B), and axial (C) images demonstrate a high-riding jugular bulb (asterisk) that extends into the round window niche (straight black arrows). The bony margins overlying the jugular bulb within the middle window are markedly thinned, compatible with dehiscence (white arrows).

FIG 10. Intralabyrinthine schwannoma with involvement of the round window. Axial (A and B) and coronal (C) contrast-enhanced T1WI shows an avidly enhancing mass in the left cochlea (straight arrows) and vestibule (curved arrow), compatible with a schwannoma. The mass extends through the round window membrane and into the round window niche (dashed arrows), better demonstrated on the follow-up axial (D), Pöschl (E), and coronal (F) CT images.

Surgical Considerations

Surgical Access and Round Window Visualization. Several conditions may require surgical dissection at the round window niche. Most commonly, the niche is accessed during cochlear implantation. Most cases are performed using a standard cortical mastoidectomy with facial recess. The bony overhang of the round window niche is then drilled to allow direct round window membrane visualization during electrode insertion. Conversely, when surgical access of the round window or niche is performed to treat infectious or neoplastic middle ear processes, the region is typically visualized via a transcanal approach. In addition, there are uncommon situations in which round window occlusion is performed to treat traumatic perilymphatic fistulas or superior canal dehiscence syndrome. In these cases, the middle ear is typically accessed via a transcanal approach, the round window is visualized with an operating microscope or endoscope, and fascia with or without cartilage is packed in the round window niche.

Recently, endoscopes have gained popularity in otologic surgery. Endoscopy allows superior visualization around corners, particularly during removal of a cholesteatoma in the sinus tympani and anterior epitympanum. Thus, endoscopes are sometimes used to augment microscopic techniques in complex cases. However, for visualization and access of the round window, the use of an endoscope does not carry a substantial advantage over microscope visualization in most cases because the round window niche is readily seen when performing either transcanal or transmastoid-facial recess surgery via a direct line of sight.

Postoperative Changes in Third-Window Lesions. Third-window lesions refer to any range of pathology that creates an abnormal connection between the inner ear and either the middle ear or the intracranial cavity. Acoustic energy is lost through these windows, often causing a so-called “pseudoconductive” hearing loss, which manifests as increased bone and decreased air
There are many such connections: vestibular aqueduct enlargement, semicircular canal dehiscence, and any other type of osseous thinning between the inner ear and adjacent vascular or nervous channels. Patients can present with Tullio phenomenon (vertigo symptoms induced by loud noises) or Hennebert sign (similar symptoms induced by increases in pressure within the ear canal) due to deflection of the superior canal cupula by endolymphatic fluid escaping the osseous defect.

For cases of superior semicircular canal dehiscence, surgical plugging of the pathologic osseous defect can be completed, either via a middle cranial fossa craniotomy or transmastoid approach. Alternatively, the round window can be targeted; surgeons may reinforce the round window with overlying tissue (eg, fascia, cartilage, fat) or occlude the round window niche (Fig 12). Currently, most authors favor the former approach over the latter; although round window occlusion is considered low-risk, this strategy may induce conductive hearing loss. Furthermore, the theoretic physiologic justification for this approach is lacking because occlusion of the round window should theoretically create preferential shunting toward the pathologic third window.

Cochlear Implant. Cochlear implants may be inserted through a cochleostomy adjacent to the round window or directly through the round window membrane. Most surgeons surveyed in 2007 preferred the former approach, though these decisions may be based on historical presumptions; early multichannel leads were thought to traumatize the cochlea if placed through the round window. A more recent survey found that today most surgeons prefer round window membrane electrode insertions, given the natural and less traumatic access provided to the scala tympani—the preferred location of electrode placement. A recent study found no difference in the number of audiometric outcomes or postoperative complications among groups undergoing electrode placement via either approach; however, most cochlear implant surgeons now prefer the round window approach when trying to preserve any residual natural acoustic hearing.

Regardless of the cochlear entry point, complications do occur. The electrode can kink, flip over at its tip, or migrate. Postoperative imaging can also demonstrate various degrees of electrode displacement, including within the semicircular canal, internal carotid artery, internal auditory canal, and vestibule. Across time, electrodes may also migrate from their initial position (Fig 13). Postoperative images should be evaluated in the context of the surgical approach (ie, via the round window or adjacent cochleostomy) and should include an assessment of electrode position, integrity, and change since prior examinations.
Numerous acquired and developmental processes may affect the round window, presenting with varying clinical symptoms. Such cases can be challenging to radiologists who are unfamiliar with the local anatomy and pathologies. Nevertheless, because the round window and round window niche are often anatomically obscured during an operation, imaging plays a uniquely important role. Thus, radiologists should scrutinize the round window and familiarize themselves with the anomalies and disease processes that may be encountered in this important anatomic region.

CONCLUSIONS

FIG 13. A 64-year-old woman who had poor progress of hearing following the placement of a cochlear implant. Axial CT image at the time of presentation (A) shows that the electrode array is retracted from its expected location, with multiple electrode leads located outside of the cochlea (straight white arrow). Follow-up imaging after surgical revision (B) shows normal positioning of the implant, with the first electrode located approximately 4 mm past the round window (curved black arrow).

REFERENCES

17. Choo YB. Microscopic characteristics of round window problems in otorhinolaryngoscopy 1984;94:1–9 CrossRef Medline
ABSTRACT

SUMMARY: Various imaging protocols exist for the identification of vessel occlusion and assessment of collateral flow in acute stroke. CT perfusion is particularly popular because the color maps are a striking visual indicator of pathology. Multiphase CTA has similar diagnostic and prognostic ability but requires more expertise to interpret. This article presents a new multiphase CTA display format that incorporates vascular information from all phases of the multiphase CTA series in a single time-variant color map, thereby facilitating multiphase CTA interpretation, particularly for less experienced readers. Exemplary cases of multiphase CTA from this new display format are compared with conventional multiphase CTA, CT perfusion, and follow-up imaging to demonstrate how time-variant multiphase CTA color maps facilitate assessment of collateral flow, detection of distal and multiple intracranial occlusions, differentiation of pseudo-occlusion from real occlusion, and assessment of flow relevance of stenoses, antegrade and retrograde flow patterns, and clot permeability.

ABBREVIATIONS: ACA = anterior cerebral artery; mCTA = multiphase CT angiography; PCA = posterior cerebral artery

Since the publication of multiple recent trials attesting to the benefit of thrombolysis and thrombectomy even in patients presenting late after stroke onset, fast and reliable detection of cerebrovascular pathology is ever more important. Several ongoing trials are using imaging to further expand treatment indications in patients with acute stroke. Imaging protocols designed for patients with acute stroke, therefore, need to be reliable in detecting and measuring a whole host of cerebrovascular pathology, including arterial flow dynamics across time, pial collateral status, distal arterial occlusions, and thrombus characteristics such as extent and permeability, carotid pseudo-occlusions, and venous thrombus, to name a few. Because acute stroke is a time-sensitive state in which any delay in decision-making affects patient outcome, such imaging protocols need to be easy to interpret for the average stroke physician in a small hospital. These imaging protocols also need to be easy to acquire and process without being affected too much by patient motion, a common occurrence when imaging patients with stroke.

Multiphase CTA (mCTA) provides time-resolved images of the cerebral vasculature that satisfy many of the above requirements for use in patients with acute stroke. The current display format of mCTA consists of 3 gray-scale images of the cerebral vasculature displayed side by side; visualization requires the reader to link these images together and scroll through them simultaneously. Interpretation, therefore, requires some degree of expertise. The technique was, however, used as a selection criterion for endovascular treatment in patients with acute ischemic stroke with large-vessel occlusions presenting <12 hours from symptom onset in the Endovascular Treatment for Small Core and Proximal Occlusion Ischemic Stroke (ESCAPE) trial and is being used in the ongoing Safety and Efficacy of NA-1 inSubjects Undergoing Endovascular Thrombectomy for Stroke (ESCAPE-NA1; NCT02930018) and the A Randomized Controlled Trial of TNK-tPA Versus Standard of Care for Minor Ischemic Stroke With Proven Occlusion (TEMPO 2; NCT02398656) trials. Good collaterals as determined on CTA have also been shown to
correlate with reduced infarct volume in patients presenting beyond 6 hours.1 Most interesting, no association between collateral status and outcome was noted in this study.1 CTP, another imaging technique with time-resolved images of parenchymal blood flow but with more complex acquisition and postprocessing, is considered easier to interpret because the display format is a single color-coded cerebral map of estimated blood flow and predicted tissue fate. This feature is in spite of obvious disadvantages of CTP, including longer image-acquisition times, susceptibility to patient motion, more radiation exposure, an additional contrast dose, a lack of whole-brain coverage, and complex and heterogeneous postprocessing algorithms. mCTA, on the other hand, requires no postprocessing, has a lower radiation dose, and can be acquired in <30 seconds (as opposed to CTP, which requires continuous scanning for 45–90 seconds), thereby minimizing motion artifacts.

In this primarily descriptive article, we present the case for a novel mCTA display format that encodes vascular information from all mCTA phases into a single color-coded map using a simple algorithm, thereby combining the indicator effect of color with the technical advantages of mCTA.

Patient Cohort

Imaging data were obtained from the Precise and Rapid Assessment of Collaterals Using Multi-phase CTA in the Triage of Patients With Acute Ischemic Stroke for IA Therapy1 a prospective observational multicenter study that seeks to analyze the incremental value of mCTA and CTP in acute ischemic stroke (n = 596). The local institutional ethics boards (University of Calgary, Foothills Medical center) approved the study. Patient baseline characteristics from this study are summarized in the On-line Table.

Image Acquisition and Interpretation

The details about the multiphase CTA acquisition technique, parameters, and image interpretation can be found in the On-line Appendix. Color-coded mCTA summation maps presented here were created on a workstation using the FastStroke research prototype (GE Healthcare, Milwaukee, Wisconsin), a CT image-analysis software package that is intended to display the full set of imaging information of

FIG 1. Right-sided M1 segment MCA occlusion (arrow). ColorViz summation maps (upper row) show predominantly green vessels in the affected territory (arrowheads), indicating a 1-phase delay; the vessel extent is identical to that of the unaffected hemisphere. The findings are consistent with good pial artery filling and collateral flow. Corresponding conventional mCTA images are displayed in the lower row. The patient received intravenous alteplase, and follow-up MR imaging 24 hours after symptom onset (upper and lower right) shows infarction of the caudate head and lentiform nucleus only, with sparing of the cortex.

FIG 2. Left-sided M1 segment MCA occlusion (arrow). ColorViz summation maps (upper row) show predominantly green vessels (arrowheads) in the affected territory, indicating a 1-phase delay. However, the vessel extent is reduced compared with the unaffected hemisphere. Hence, the findings are consistent with intermediate pial artery filling and collateral flow. Corresponding conventional mCTA images are displayed in the lower row. The patient was treated with intravenous alteplase, and follow-up CT after 24 hours (upper and lower right) reveals an incomplete infarction pattern. While the insula, M1, and M2 regions are infarcted, the M3, M4, M5, and M6 regions are spared. Infarction is also present in the left PCA territory, indicating a fetal left PCA origin.
an advanced stroke CT imaging protocol (noncontrast CT, multiphase CTA, and CTP) in 1 single optimized, progressive workflow. The software fuses the vascular information from the different CTA phases (maximum of 9 phases) into a single color-coded view called ColorViz. It uses the original multiphase CTA thin slices to automatically display MIPs of the axial, coronal, sagittal, and oblique reformations. Colors are assigned on the basis of the timing and extent of contrast enhancement in the vessels and on a per-patient adaptive threshold technique; vessels maximally enhancing during the pre-venous phase appear red; those that enhance in venous phase and venous phase are displayed in green and blue, respectively. The overall and phase-specific extent of pial enhancement can then be quantified and compared with other territories in the contralateral hemisphere. Postprocessing is fully automated with the color-coded maps being available for review within 5–10 seconds. For evaluation of the vessel extent, the summation map can be switched to a single-color mode. Hence, the color display of the vasculature provides the full set of information about the dynamics and extent of pial artery filling from all mCTA phases in 1 single series. This feature expedites assessment of the intracranial vasculature compared with the conventional mCTA display format.

Evaluating Pial Arterial Filling/Collateral Flow

mCTA is a reliable tool for assessment of pial artery filling in acute stroke imaging. Several studies (some single-center) have shown that it reduces interrater reliability and has excellent predictive validity with regard to clinical outcome. It has, therefore, been used in past and in ongoing clinical stroke trials such as ESCAPE NA1 and TEMPO 2. Pial artery filling is evaluated by assessing the extent of arterial filling and delay in that filling compared with the opposite side. A third metric is delayed washout of contrast within the pial arteries over the 3
phases. Although pial artery filling and collateral flow are relatively easy to assess on conventional mCTA, the color-coded summation maps (ColorViz) further facilitate interpretation by combining all information into a single image and using a color-coded display format. Image-interpretation time is a few seconds for color-coded mCTA summation maps, as opposed to approximately 1 minute for conventional mCTA maps. An exemplary method for assessing collaterals on ColorViz based on assessing delay, extent, and washout within pial arteries is shown in Fig 1.

To assess pial artery filling using ColorViz, one visually determines the predominant vessel color (the color that is present in >40% of the vessels) in the affected vascular territory. Under normal circumstances, predominantly red vessels (such as the vessels on the contralateral side in Figs 1–3) indicate no delay, predominantly green vessels indicate a 1-phase delay (Fig 2), and predominantly blue vessels, a 2-phase delay (Fig 3). The absence of visible vessels in the affected territory indicates “no filling.” Because diseases such as congestive heart failure can lead to a reduction in cardiac output and systemic flow delays, the predominant color in the unaffected hemisphere is also assessed and compared with the predominant color in the affected side. Of note, this correction cannot be applied to conditions that cause unilateral flow delays, such as flow-limiting proximal ICA stenosis, a limitation of mCTA. The extent of pial artery filling is scored in a single color mode by comparing vessel extent in the affected territory with that in the contralateral hemisphere. Differentiation of veins and arteries is based on their distinct flow characteristics (veins are usually displayed in green or blue because they enhance in the peak venous and late venous phases), filling direction, morphology, and anatomic location. The affected hemisphere may be considered to have good collateral flow if pial vessels distal to the occlusion are well-seen and are predominantly red or green (Fig 1).

FIG 5. Right-sided A2 segment ACA occlusion (arrows). ColorViz summation images (upper row) show green and blue vessels distal to the occlusion (arrowheads), indicating impaired arterial filling within the right ACA territory. Corresponding conventional mCTA images are shown in the lower row. The patient received intravenous alteplase. Follow-up CT after 24 hours (upper and lower right) shows infarction in the right ACA territory.

FIG 6. Right-sided fetal PCA occlusion (arrows). As opposed to the left PCA (lower middle image), the right distal PCA (lower left image) is blue in the color-coded summation images, suggestive of impaired filling of the distal vessel. The delayed arterial filling leads to a subsequent delay in venous filling in the posterior fossa on the affected side (arrowheads), a useful feature that is often encountered in posterior circulation occlusions and can help to identify the site of occlusion. Mechanical thrombectomy was performed. Follow-up MR imaging after 24 hours (lower right) reveals small right-sided occipital and thalamic infarct.
Intermediate pial artery filling and collateral flow are present if either pial artery extent, pial artery filling, or both are moderately reduced in the affected territory (Fig 2). Most frequently, intermediate collateral flow manifests as green vessels (indicating a 1-phase delay) and reduced pial artery extent compared with the unaffected hemisphere.

Complete absence of pial artery filling or severely reduced extent and a 2-phase filling delay (ie, predominantly blue vessels) or complete absence of vessel opacification distal to the occlusion is considered poor pial artery filling (Fig 3).

Increasing Sensitivity in Vessel Occlusion Detection

While large-vessel occlusions are relatively easy to spot on single-phase CTA, distal occlusions are often missed. Both CTP (by detecting ischemia in the color maps) and mCTA (through delayed collateral filling and washout) have been shown to improve distal-vessel-occlusion detection compared with single-phase CTA alone. The additional color-indicator effect that is achieved using a color-coded display format and the ability to merge the vascular information in 1 rather than 3 series further facilitate detection of distal vessel occlusions on mCTA. The hallmark of distal occlusion in color-coded mCTA maps is areas of delayed flow manifesting as pial vessels in green and blue within 1 vascular territory (Fig 4).

Another advantage of color-coded mCTA summation maps is in detecting distal anterior cerebral artery (ACA) and posterior cerebral artery (PCA) occlusions (Figs 5 and 6). In theory, ACA and PCA occlusions can be easily detected on CTP by detecting perfusion abnormalities in the affected territories. However, the ACA and PCA territories are often not fully covered by the 4-, 8-, or 10-cm CTP slab that is frequently used with older generation scanners. Furthermore, mCTA does not succumb to skull base artifacts to the same extent as CTP and can therefore better visualize the posterior circulation. A particularly useful feature for posterior circulation occlusions is the venous filling delay in the posterior fossa, which results in a subsequent delay of venous filling, manifesting as an increased number of veins depicted in blue (Fig 6).

Detection of Multiple Intracranial Thrombi

Detecting intracranial thrombi other than the large-vessel occlusion that is easily identified is important because it may influence acute treatment strategies and ultimately affect patient outcomes. Color-coded mCTA is able to detect multiple intracranial occlusions in either the same (Fig 7) or different (On-line Fig 1) vascular territories.

CONCLUSIONS

Color-coded mCTA summation maps may facilitate easier assessment of acute stroke pathology, including better assessment of collateral status, distal occlusions, carotid pseudo-occlusions, intracranial stenosis, and thrombus permeability. ColorViz may be particularly useful for less experienced readers. Future work will, however, need detailed quantitative validation of each of the imaging constructs that ColorViz mCTA provides in patients with acute stroke.

REFERENCES

Assessment of a Bayesian Vitrea CT Perfusion Analysis to Predict Final Infarct and Penumbra Volumes in Patients with Acute Ischemic Stroke: A Comparison with RAPID

ABSTRACT

BACKGROUND AND PURPOSE: Brain CTP is used to estimate infarct and penumbra volumes to determine endovascular treatment eligibility for patients with acute ischemic stroke. We aimed to assess the accuracy of a Bayesian CTP algorithm in determining penumbra and final infarct volumes.

MATERIALS AND METHODS: Data were retrospectively collected for 105 patients with acute ischemic stroke (55 patients with successful recanalization [TICI 2b/2c/3] and large-vessel occlusions and 50 patients without interventions). Final infarct volumes were calculated using DWI and FLAIR 24 hours following CTP imaging. RAPID and the Vitrea Bayesian CTP algorithm (with 3 different settings) predicted infarct and penumbra volumes for comparison with final infarct volumes to assess software performance. Vitrea settings used different combinations of perfusion maps (MTT, TTP, CBV, CBF, delay time) for infarct and penumbra quantification. Patients with and without interventions were included for assessment of predicted infarct and penumbra volumes, respectively.

RESULTS: RAPID and Vitrea default setting had the most accurate final infarct volume prediction in patients with interventions ([Spearman correlation coefficient, mean infarct difference] default versus FLAIR: [0.77, 4.1 mL], default versus DWI: [0.72, 4.7 mL], RAPID versus FLAIR: [0.75, 7.5 mL], RAPID versus DWI: [0.75, 6.9 mL]). Default Vitrea and RAPID were the most and least accurate in determining final infarct volume for patients without an intervention, respectively (default versus FLAIR: [0.76, –0.4 mL], default versus DWI: [0.71, –2.6 mL], RAPID versus FLAIR: [0.68, –49.3 mL], RAPID versus DWI: [0.65, –51.5 mL]).

CONCLUSIONS: Compared with RAPID, the Vitrea default setting was noninferior for patients with interventions and superior in penumbra estimation for patients without interventions as indicated by mean infarct differences and correlations with final infarct volumes.

ABBREVIATIONS: AIS = acute ischemic stroke; FIV = final infarct volume; MAE = mean absolute error; Tmax = time until the residue function reaches its peak

CTP is an imaging technique used to quantify infarct and penumbra tissue in patients with acute ischemic stroke (AIS) evaluated for endovascular thrombectomy.1 CTP hemodynamic features include CBV, CBF, TTP, MTT, time until residue function reaches its peak (Tmax), and delay time, which are compared between contralateral hemispheres to identify ischemic tissues.2 Various perfusion thresholds can be used for each hemodynamic parameter to identify tissues as infarct and penumbra.3 Infarct is irreversibly damaged tissue that cannot recover in the event of reperfusion. Penumbra represents tissue deficient in blood flow but that can be salvaged through reperfusion.2 As recommended by the American Heart Association, ischemic volume estimations should be used for selection of patients with AIS for mechanical thrombectomy when symptom onset is beyond 6 hours.4

Bayesian CTP software, based on a probabilistic approach, has been developed in Vitrea (Vital Images, Minnetonka, Minnesota) and Olea Sphere (Olea Medical, La Ciotat, France). This method relies on adjacent perfusion scan regions to calculate hemodynamic maps and implements postprocessing noise reduction.5 Quantitative analysis provided by Bayesian CTP maps allows...
infarct and penumbra volume estimations using all CTP parameters, including the normally excluded MTT temporal parameter.6 Investigation of thresholds using various parameters for the Bayesian algorithm has yet to be conducted. Investigations are necessary due to discrepancies in CTP thresholds across perfusion map calculation methods and vendors.7 In particular, Vitrea software allows 3 predefined threshold settings, each using distinct combinations of perfusion maps and contralateral hemisphere thresholds, for infarct and penumbra quantification as well as user-defined ROIs to outline ischemic regions.

In this study, we aimed to investigate the effects of 3 preset Bayesian CTP threshold settings for predicting final infarct volumes (FIVs) by comparing them with DWI and FLAIR in patients with AIS. Additionally, we compared performances of Vitrea and RAPID (iSchemaView, Menlo Park, California), a clinically studied CTP software, in quantifying infarct and penumbra volumes.8,9 The variability of user-defined ROIs was investigated for determining ischemic regions in the Vitrea software.

MATERIALS AND METHODS

Image and Data Collection

The University at Buffalo review board approval was obtained, and informed consent was waived for this Health Insurance Portability and Accountability Act retrospective study. Inclusion criteria were patients with AIS who underwent CTP evaluation on arrival at the stroke center and DWI and FLAIR 24 hours following CTP imaging. Before CTP imaging, patients underwent noncontrast CT to rule out hemorrhagic stroke, and scan results were considered for clinical decision-making. Between March and August 2019, one hundred five consecutive patients were split into intervention and nonintervention cohorts. Intervention cases (n = 55) were required to have an emergent large-vessel occlusion and to have undergone mechanical thrombectomy. Nonintervention cases (n = 50) were patients with large- and small-vessel occlusions who received neither thrombectomy nor tPA. Patients with and without interventions were included for evaluation of CTP infarct and penumbra volume predictions, respectively. For patients with interventions, TICI scores were measured by 2 independent operators not involved in data collection. All patients with interventions received successful reperfusion (TICI 2b/2c/3).

CTP data were obtained from two 2012 Aquilion ONE CT units (Canon Medical Systems, Otawara, Japan). CTP protocol involved acquisition of 19 scans, each with 320 images with 0.5-mm resolution. A total dose-length product of 13,739 mGy·cm and CT dose index volumes ranging from 15.3 to 44.4 mGy for each scan volume were used. Contrast was 50 mL of iohexol (Omnipaque 350; GE Healthcare, Piscataway, New Jersey) at a 5-mL/s injection rate. In the stroke work-up, reconstructed CTP volumes are provided within 5 minutes from the start of scanning.

DWI and FLAIR were performed using a Vantage Titan 1.5T MR imaging unit (Canon Medical Systems). DWI and FLAIR protocols involved TEs of 100 and 120 ms and TRs of 8,165 and 10,000 ms, respectively.

CTP Infarct Quantification

CBV, CBF, MTT, TTP, and delay time perfusion maps were calculated using the Vitrea 7.10 Bayesian algorithm. Stroke regions were outlined throughout perfusion volumes. Three different combinations of perfusion map thresholds comparing contralateral hemispheres within Vitrea were used for infarct and penumbra quantification. Default Bayesian setting contralateral hemisphere thresholds were the following: A 38% reduction in CBF (with a 3.9-second increase in TTP or 55% reduction in MTT) indicated infarct while a 5.3-second increase in TTP or 58% reduction in CBF or a 5.8-second increase in delay time (without CBV reduction) indicated penumbra. Reduction in MTT can occur within regions of deep infarction or when the CT scan starts too early, resulting in a truncated time-density curve.10 The CBV Bayesian setting, which use CBV to quantify infarct, thresholds were the following: A 38% reduction in CBV (with a 5.3-second increase in TTP or 55% reduction in MTT) indicated infarct; a 5.3-second increase in TTP or 76% reduction in CBV or 82% increase in MTT (without CBV reduction) indicated penumbra; and delay time was not used. The CBF Bayesian setting, which used CBF to determine infarct, thresholds were the following: A 72% reduction in CBF (with a 3.9-second increase in TTP) indicated infarct; a 3.9-second increase in TTP indicated penumbra; and MTT, CBF, and delay time were not used in volume quantifications. These 3 threshold combinations were predefined within Vitrea by the manufacturer, and contralateral hemisphere voxels exceeding these thresholds were classified as infarct or penumbra, accordingly. Infarct and penumbra volumes and penumbra-to-infarct ratios were recorded for automated- and user-segmented Vitrea analysis of stroke regions.

RAPID analysis was conducted offsite by sending CTP volumes from the CT scanner to iSchemaView and receiving predicted ischemic volumes through the PACS of the hospital. With RAPID, infarct is tissue with CBF <30% compared with the contralateral hemisphere and penumbra is volume of tissue with a Tmax of >6 seconds. Fig 1 compares all 3 Vitrea settings and

FIG 1. Ground truth infarct labels with the hyperintensified regions in the DWI and FLAIR identifying infarct. Default, CBV, and CBF Vitrea perfusion analysis demonstrates infarct as red and penumbra as yellow, while RAPID perfusion analysis represents infarct as pink and penumbra as green. For this nonintervention case, there is agreement between Vitrea and RAPID infarct volumes and their respective locations within the MR imaging scans. Final infarct volumes for each MR imaging method and CTP software (summation of infarct and penumbra due to it being a nonintervention case) are as follows: DWI = 135.0 mL, FLAIR = 167.6 mL, default Vitrea = 132.4 mL, CBV Vitrea = 141.2 mL, CBF Vitrea = 115.3 mL, RAPID = 176.0 mL.
RAPID with DWI and FLAIR in predicting FIVs for the same patient without an intervention.

Final Infarct Volume

DWI and FLAIR were used as FIV ground truths because they are common standards for computing FIVs. DWI and FLAIR give accurate representations of infarct by locating regions of restricted diffusion and hyperintense lesions, respectively.\(^{11,12}\) Because DWI has shown lesion reversal in instances of rapid reperfusion, FLAIR MR imaging was the main infarct ground truth.\(^{13}\) Infarct volumes from DWI were quantified using FLAIR data were loaded into 3D Slicer software (http://www.slicer.org), and infarct was segmented and quantified using thresholding in which gray-scale pixel values of \(\geq 80\) indicate regions of infarct.\(^{15}\) For nonintervention cases, FIVs were compared against summations of infarct and penumbra because the entirety of penumbra should convert to infarct when no treatment occurs.\(^{16}\) Although vascular reperfusion may occur from embolus breakage leading to penumbra being salvaged.

Statistical Analysis

Frequency distributions for categoric data and summary statistics for continuous variables were tabulated for analyzed data. For intervention and nonintervention subgroups, differences in infarct between predicted CTP and ground truth DWI and FLAIR volumes were determined. For patients without interventions, infarct was estimated as a summation of infarct and penumbra because all penumbra should convert to infarct. Mean absolute errors (MAEs) for each subgroup were calculated. Shapiro-Wilk tests were conducted assessing the normality of infarct volume data. Regression analysis was performed to compare FIVs with predicted CTP volumes for intervention and nonintervention groups. Results were represented as scatterplots, and Spearman correlation coefficients were calculated. Software-processing times to predict ischemic volumes were determined. Vitrea and RAPID processing times were defined as the time from loading CTP volumes into Vitrea until the perfusion maps were generated and time from CTP scan completion until RAPID perfusion maps were uploaded to the PACS of the hospital, respectively. Interreader variability was assessed across 5 Vitrea users to determine the mean difference and MAE of segmented infarcts.

RESULTS

Patient Demographic Analysis

Predicted infarct volumes and patient characteristics are presented in Table 1. Tabulated data include separation into 55 intervention and 50 nonintervention cases. In Table 1, age is normally distributed, while all other continuous variables are

Table 1: Characteristics and outcomes of patients with ischemic stroke

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All (n = 105)</th>
<th>Endovascular Intervention (n = 55)</th>
<th>Nonintervention (n = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex (%)</td>
<td>46.7% (49/105)</td>
<td>50.9% (28/55)</td>
<td>42.0% (21/50)</td>
</tr>
<tr>
<td>Age (mean) (yr)</td>
<td>67.1 ± 14.7</td>
<td>64.8 ± 16.3</td>
<td>69.6 ± 12.6</td>
</tr>
<tr>
<td>NIHSS score (median) (IQR)</td>
<td>11.0 (6.0–17.0)</td>
<td>12.0 (9.0–19.0)</td>
<td>6.5 (4.0–14.8)</td>
</tr>
<tr>
<td>Site of occlusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle cerebral artery</td>
<td>72.4% (76/105)</td>
<td>76.3% (42/55)</td>
<td>68.0% (34/50)</td>
</tr>
<tr>
<td>Posterior cerebral artery</td>
<td>12.4% (13/105)</td>
<td>7.3% (4/55)</td>
<td>18.0% (9/50)</td>
</tr>
<tr>
<td>Internal carotid artery</td>
<td>11.4% (12/105)</td>
<td>10.9% (6/55)</td>
<td>12.0% (6/50)</td>
</tr>
<tr>
<td>Basilar artery</td>
<td>3.8% (4/105)</td>
<td>5.5% (3/55)</td>
<td>2.0% (1/50)</td>
</tr>
<tr>
<td>Time from onset of stroke to perfusion imaging (median) (IQR) (min)</td>
<td>267.0 (160.0–710.0)</td>
<td>171.0 (91.0–364.0)</td>
<td>629.0 (147.5–976.8)</td>
</tr>
<tr>
<td>Time from onset of stroke to reperfusion (median) (IQR) (min)</td>
<td>–</td>
<td>243.0 (157.5–526.0)</td>
<td>–</td>
</tr>
<tr>
<td>Time from perfusion imaging to recanalization (median) (IQR) (min)</td>
<td>–</td>
<td>64.0 (52.0–104.0)</td>
<td>–</td>
</tr>
<tr>
<td>Default Vitrea infarct volume (median) (IQR) (mL)</td>
<td>6.7 (2.0–24.0)</td>
<td>4.7 (1.3–19.4)</td>
<td>6.8 (3.3–25.4)</td>
</tr>
<tr>
<td>CBV Vitrea infarct volume (median) (IQR) (mL)</td>
<td>6.5 (1.0–17.3)</td>
<td>4.0 (0.7–15.9)</td>
<td>8.5 (3.2–21.0)</td>
</tr>
<tr>
<td>CBF Vitrea infarct volume (median) (IQR) (mL)</td>
<td>2.5 (0.1–31.4)</td>
<td>0.3 (0.0–8.4)</td>
<td>6.6 (4.4–18.4)</td>
</tr>
<tr>
<td>RAPID infarct volume (median) (IQR) (mL)</td>
<td>6.0 (0.0–17.0)</td>
<td>0.0 (0.0–16.5)</td>
<td>28.0 (4.0–90.0)</td>
</tr>
<tr>
<td>Posttreatment reperfusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TICI 2b</td>
<td>–</td>
<td>38.2% (21/55)</td>
<td>–</td>
</tr>
<tr>
<td>TICI 2c</td>
<td>–</td>
<td>25.5% (14/55)</td>
<td>–</td>
</tr>
<tr>
<td>TICI 3</td>
<td>–</td>
<td>36.4% (20/55)</td>
<td>–</td>
</tr>
<tr>
<td>Final FLAIR MR imaging infarct volume (median) (IQR) (mL)</td>
<td>9.8 (3.2–25.1)</td>
<td>11.8 (4.4–32.4)</td>
<td>7.4 (2.7–18.4)</td>
</tr>
<tr>
<td>Final DWI MR imaging infarct volume (median) (IQR) (mL)</td>
<td>9.8 (2.3–25.7)</td>
<td>11.8 (3.2–36.0)</td>
<td>6.7 (2.0–17.7)</td>
</tr>
</tbody>
</table>

Note: –IQR indicates interquartile range; – indicates data that was not obtained for the nonintervention patients and that cannot be quantified for all patients.
non-normally distributed on the basis of Shapiro-Wilks testing ($P < .05$). Normally and non-normally distributed data are represented as mean ± SD and median (interquartile range), respectively. Student t, Mann-Whitney-Wilcoxon, and χ^2 P values for normally distributed continuous, non-normally distributed continuous, and categoric data, respectively, are given in Table 1 to determine the statistical significance among the subcategories.

Software Analysis

Differences in the amount of predicted CTP and MR imaging FIVs using all software are shown in Table 2 with MAEs for intervention and nonintervention categories. Shapiro-Wilk testing indicated no statistical evidence ($P > .05$) suggesting that infarct difference values are non-normally distributed for all threshold settings. For patients with interventions, Student t analysis showed no statistical differences in MAEs in each tested software against FLAIR and DWI. For nonintervention cases, Student t analysis of MAEs showed statistically significant differences ($P < .05$) between RAPID and all Vitrea settings for FLAIR and DWI. Fig 2 shows that regression plots of the default Vitrea setting predicted infarct versus DWI and FLAIR FIV for intervention and nonintervention categories. The default setting frequently showed the lowest mean infarct difference, lowest MAE, and highest correlations with final infarct volumes. Regression plots for RAPID-predicted infarct-versus-MR imaging FIV measurements are shown in On-line Fig 1. Shapiro-Wilk testing indicated that infarct volume calculations were non-normally distributed, all with $P < .05$. Spearman correlations for each CTP setting against final DWI and FLAIR infarct measurements for patients with and without interventions are shown in Table 3. The On-line Table shows mean infarct differences and MAEs between automated Vitrea analysis for each setting and follow-up MR imaging. Mean penumbra-to-infarct ratios for patients with and without interventions using each CTP software are as follows: (intervention, nonintervention): default = (5.6, 1.4), CBV = (8.6, 2.3), CBF = (17.4, 2.3), RAPID = (2.8, 9.2). Ninety-five percent CIs for processing times of Vitrea and RAPID software were 186.2 ± 5.3 seconds and 885.6 ± 66.1 seconds, respectively.

Interreader Variability Analysis

Interreader variability studies demonstrated a mean difference of 0.6 mL and an MAE of 3.1 mL in user-segmented regions of infarct in Vitrea software. No statistical significance was demonstrated among user-segmented infarct volumes ($P = .97$).

DISCUSSION

This study provided an analysis for the effects of perfusion-parameter and threshold selection on ischemic tissue quantification in Bayesian CTP software. Comparisons with DWI, FLAIR, and RAPID were used to quantify these effects. Accurate quantification of penumbra is crucial because treatment decisions are based on the size of salvageable penumbra. Studies have shown that accurately quantifying infarct has directly indicated clinical outcome in patients with stroke. For instance, infarct overestimation can result in patients being excluded from reperfusion treatments, while infarct underestimation can increase the likelihood of poor clinical outcomes due to hemorrhage following revascularization procedures. Although optimal perfusion parameters for identifying infarct are patient-specific, infarct underestimation is preferred because it allows patients to reobtain lost neurologic function through enrollment in endovascular procedures.

Differences in predicted volume and FIV along with MAEs for patients with interventions indicate the Vitrea default setting as optimal for Bayesian CTP software. Discrepancies in MR imaging and CTP infarct measurements may be due to the 24-hour delay between MR imaging and CTP imaging, allowing tissue to convert from penumbra to infarct at a rate of 10.1 mL/h in patients with hypoperfusion intensity ratios of >0.5. The hypoperfusion intensity ratio represents the ratio of severely hypoperfused tissue to the volume of tissue with any hypoperfusion.

Vitrea software was compared with RAPID and proved to be noninferior as seen by similar infarct differences and correlations with final infarct volumes.

For patients without interventions, default Bayesian was the most accurate for determining final infarct volumes. These patients did not receive mechanical thrombectomy or tPA because of minimal penumbra or contraindications to thrombolysis. Typically, endovascular interventions are not performed unless there is at least a 2:1 penumbra-to-infarct mismatch. In this instance, tissue originally determined as penumbra on perfusion imaging would die and show up as infarct on follow-up MR imaging. Additionally, all penumbra converts to infarct in patients who delay initial perfusion imaging, indicated by the statistical
significance between patients with and without interventions from the onset of stroke to perfusion imaging in Table 1. This significant difference could affect penumbra estimation results for patients without interventions. This possibility is due to most patients coming for perfusion imaging after all penumbra has turned to infarct, indicating that CTP software is only predicting infarct as opposed to an inclusion of infarct and penumbra in some cases. Patients without interventions, additionally, show lower median infarct volumes compared with patients with interventions due to inclusion of patients with small-vessel occlusion in the nonintervention category. NIHSS scores are statistically different between patients with and without interventions because combined infarct and penumbra volumes agree with MR imaging infarct volumes.

Strong agreement of mean differences and correlations between RAPID- and Bayesian CTP–predicted infarct volumes with MR imaging FIVs for patients with interventions is significant due to ongoing discrepancies between CTP software in calculating infarct volume. A recent study showed that infarct predictions using IntelliSpace Portal (Philips Healthcare, Best, the Netherlands) and syngo. via (Siemens, Erlangen, Germany) CTP software did not correlate well with RAPID.22 This finding prevents a common standard from being established for when vascular interventions should be performed in patients with AIS.

For patients with interventions, significant differences are seen in summed infarct and penumbra estimations with FIVs due to the overestimation of penumbra by RAPID. These infarct differences are in the negative direction, indicating that predicted CTP-summed infarct and penumbra are larger than the FIV. Furthermore, the large penumbra-to-infarct ratio for patients without interventions using RAPID indicates that most estimated infarct and penumbra summation is penumbra, showing that penumbra is causing the overestimation. This overestimation could be due to the use of Tmax to calculate penumbra in RAPID. The Tmax parameter is known to be sensitive to changes in the shape of the arterial input function, which is used to generate the Tmax parameter through deconvolution. Quantum noise can significantly alter the shape of the arterial input function, impacting the Tmax parameter and amount of quantified penumbra.23 In a previous study using the Tmax parameter, lesion volumes differed by 13% depending on the amount of quantum noise present.24

A potential reason that infarct volumes calculated using Bayesian CTP software indicated strong agreement with final DWI and FLAIR infarct volumes was the allowed user interaction.
to segment regions affected by the occlusion. This segmentation allows exclusion of erroneous infarct volumes occurring around the skull due to improper software segmentation as seen in Online Fig 2. In Bayesian CTP software, it is evident which regions correspond to these erroneous volumes as demonstrated by inter-reader variability results indicating no statistical significance in infarct segmentation among 5 users.

Vitrea Bayesian CTP software has demonstrated great efficiency, with processing time being 12 minutes faster than with RAPID on average. Processing time included transfer time of RAPID perfusion maps to the PACS of the hospital. Because RAPID analysis was conducted offline, transfer speeds may have hindered the rate that CTP data were analyzed.

Limitations of this study include no independent method to verify penumbra volumes. However, because mean penumbra-to-infarct ratios for each CTP software were above the Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke 3 (DEFUSE 3) trial threshold of 1.5, some validity can be added to the penumbra estimations because each software is capable of determining patients’ eligible for thrombectomy.9 Furthermore, this study is limited by the heterogeneous mixture of patients within the nonintervention group because it includes patients with large- and small-vessel occlusions, along with patients outside the tPA treatment window. Inclusion of patients with small-vessel occlusion can affect infarct estimation results because CTP does not pick up small infarcts well.

Additional limitations to this study are that it included only 10 patients with infarct measurements of >50 mL and did not evaluate spatial overlap of predicted and final infarct volumes. Furthermore, this study did not test all potential perfusion map thresholds. Possibly, an even more optimal grouping of infarct predictive perfusion thresholds exists. Use of DWI and FLAIR as FIVs is another limitation because each MR imaging method could present different ground truth infarct volumes, but FLAIR should be used as the main ground truth due to reversibility of lesions shown in DWI.13 The assumption that all penumbra turns to infarct in patients in this study is another limitation because it is possible that emboli could break apart, leading to reperfusion in patients without interventions. Last, this study did not include outside validation sets, yet it was conducted within a comprehensive stroke center that receives hundreds of cases of AIS per year.

CONCLUSIONS

The Vitrea default setting proved to be noninferior to RAPID as seen by similar calculated infarct differences and correlations with FIVs for patients with interventions. Additionally, the default Bayesian Vitrea setting appeared to estimate penumbra volumes more accurately than RAPID as indicated by lower infarct differences and higher correlations for the patients without interventions.

Disclosures: Ryan A. Rava—RELATED: Grant; James H. Cummings Foundation Inc*; Other: Canon Medical Systems Inc. Maxim Mokin—UNRELATED: Consultancy: Medtronic, Canon Medical Systems Inc; Stock/Stock Options: Serenity Medical.

REFERENCES

Predictive Value of Noncontrast Head CT with Negative Findings in the Emergency Department Setting

ABSTRACT

BACKGROUND AND PURPOSE: Noncontrast head CTs are routinely acquired for patients with neurologic symptoms in the emergency department setting. Anecdotally, noncontrast head CTs performed in patients with prior negative findings with the same clinical indication are of low diagnostic yield. We hypothesized that the rate of acute findings in noncontrast head CTs performed in patients with a preceding study with negative findings would be lower compared with patients being imaged for the first time.

MATERIALS AND METHODS: We retrospectively evaluated patients in the emergency department setting who underwent noncontrast head CTs at our institution during a 4-year period, recording whether the patient had undergone a prior noncontrast head CT, the clinical indication for the examination, and the examination outcome. Positive findings on examinations were defined as those that showed any intracranial abnormality that would necessitate a change in acute management, such as acute hemorrhage, hydrocephalus, herniation, or interval worsening of a prior finding.

RESULTS: During the study period, 8160 patients in the emergency department setting underwent a total of 9593 noncontrast head CTs; 88.2% (7198/8160) had a single examination, and 11.8% (962/8160) had at least 1 repeat examination. The baseline positive rate of the “nonrepeat” group was 4.3% (308/7198). The 911 patients in the “repeat” group with negative findings on a baseline/first CT had a total of 1359 repeat noncontrast head CTs during the study period. The rate of positive findings for these repeat examinations was 1.8% (25/1359), significantly lower than the 4.3% baseline rate (P < .001). Of the repeat examinations that had positive findings, 80% (20/25) had a study indication that was discordant with that of the prior examination, compared with only 44% (593/1334) of the repeat examinations that had negative findings (P < .001).

CONCLUSIONS: In a retrospective observational study based on approximately 10,000 examinations, we found that serial noncontrast head CT examinations in patients with prior negative findings with the same study indication are less likely to have positive findings compared with first-time examinations or examinations with a new indication. This finding suggests a negative predictive value of a prior noncontrast head CT examination with negative findings with the same clinical indication.

ABBREVIATIONS: ED = emergency department; NCHCT = noncontrast head CT

Use of CT in the emergency department (ED) has grown dramatically in recent years.1-3 Factors contributing to this growth include greater availability of CT and an increased reliance on imaging for initial patient triage and evaluation.1,2 In patients presenting to the ED with neurologic symptoms, noncontrast head CT (NCHCT) is the diagnostic tool of choice to exclude acute intracranial pathology and its use has grown apace with other CT imaging.1,3

In the absence of focal neurologic deficits, however, the diagnostic yield of NCHCT in the emergency setting is relatively low. For example, in patients presenting with syncope or dizziness, positive findings on NCHCT range from 2% to 7%.6,7 In addition, anecdotally, many neuroradiologists will attest that the yield is even lower in patients who have had a recent study with negative findings for a similar indication. This perception is
undoubtedly shaped by experience with a subset of patients, so-called “frequent flyers,” who present repeatedly to the ED with similar symptoms and undergo head CTs on each presentation.8,10

Concerns about repeat imaging are not limited to these extreme cases. For example, a recent single-institution study found that up to one-third of ED CT examinations ordered were for patients who had a recent, potentially redundant, CT examination.11 Data from the Center for Information Technology Leadership estimates that approximately 14% of imaging studies, reflecting up to $20 billion in annual health care expenditure, may reflect unnecessary duplicate imaging.6 Beyond financial considerations, there is increasing recognition that repeat CT imaging may tangibly increase cancer risk, especially in younger patients,8,12 with estimates that up to 1.5%–2% of cancers in the United States may be caused by health care–related exposure to ionizing radiation.12,13 In addition, excessive diagnostic testing may lead to incidental findings, which may initiate costly and, at times, unnecessary work-ups.

Prior work evaluating the use of chest CTs to rule out an acute pulmonary embolism demonstrated that repeat examinations performed within 90 days have a much lower rate of positive findings.14 However, little-to-no quantitative data are available regarding the relative diagnostic value of repeat head CT imaging in the emergency setting.

The goal of this study was to quantify the predictive value of a prior negative head CT in the ED. We hypothesized that there would be a lower rate of acute findings for NCHCTs performed in patients who had a recent study with negative findings compared with patients who were being imaged for the first time or with a new clinical indication.

MATERIALS AND METHODS

Patient Selection

After institutional review board approval of this Health Insurance Portability and Accountability Act–compliant study, we conducted a retrospective query of the Radiology Information Systems data base at The University of California, San Francisco from January 2013 to December 2016. Informed consent was not required, and no financial support was received in this study. We included all noncontrast head CTs ordered by our emergency department that were identified by the Current Procedural Terminology (CPT) code 70450 “CT of the head without contrast.” Noncontrast head CTs performed as part of Code Stroke studies that included CT angiography and/or perfusion were not included. Our analysis was limited to adult patients, defined as 18 of age or older. We conducted a retrospective review of medical records to determine patient demographic information, including sex and age. We divided patients who underwent a single CT examination or multiple examinations during the study period into “nonrepeat” and “repeat” groups, respectively. For patients in the repeat group, we recorded the time interval between the first (baseline) and repeat examinations. Study indications included in the clinical history by the ordering provider were recorded for each examination. If the study indication for the repeat examination was discordant with the baseline examination, this discordance was recorded as well.

Imaging Techniques

All imaging was performed on a 64-section CT imaging system (Discovery CT750 HD; GE Healthcare, Milwaukee, Wisconsin) with an effective axial section thickness of 0.625 mm, reformatted in bone and soft-tissue windows in sagittal and coronal planes. All studies were interpreted by members of the neuroradiology faculty as part of the normal daily clinical workflow. The “Impression” section of the generated study reports served as the basis for categorizing a study as having positive or negative findings as further detailed below.

Definition of Examinations with Positive and Negative Findings

Given the large number of cases, we used an automated classification workflow to identify examinations with negative findings. Specifically, the “Impression” section of each report was searched for the following keywords: “No acute,” “No significant,” “No interval,” “No new,” “No hemorrhage, hydrocephalus, herniation,” and so forth. These examinations were categorized as negative. Reports that could not be classified automatically were manually reviewed by a board-certified neuroradiologist (D.S.C., L.P.S., Y.A.C.) to determine whether they should be categorized as negative or positive. Positive was defined as any intracranial abnormality that would necessitate a change in acute management, including hemorrhage (both extra-axial and parenchymal), hydrocephalus, herniation, mass effect, or interval worsening of a prior finding. Finally, all “Impressions” were manually compared with their category to ensure the accuracy of classification.

Study Indication

History or study indication or both were provided in the form of free text by the ordering clinician. At the time of analysis, we reviewed the history/indication provided for each study and used it to classify study indications according to a set of categories that covered the range of indications encountered in the data. This set of indications included the following: altered mental status, trauma, cancer, headache, seizure, vertigo, nausea, fever, syncope, psychosis, numbness, altered speech, weakness, facial droop, visual abnormalities, substance use, hydrocephalus, hypertension, and intracranial pressure/hemorrhage. A single study could be assigned ≥1 indication. When repeat studies were performed on the same patient, the clinical indications were compared between baseline and repeat examinations. Examination indications were considered concordant if the same study indication categories were used. Indications were considered discordant if different or additional categories were used. For example, if 2 studies had indications of “trauma, headache” and “headache” alone, the study indications were considered discordant.

Data Collection and Validation

The rates of positive findings were compared for the nonrepeat and repeat groups, defined above. For the repeat group, we specifically examined the rate of positive findings for the first (baseline) examination and the rate of positive findings for subsequent repeat examinations in patients whose findings on the first/
baseline examination were negative. We recorded both the examination indication and findings for all examinations with positive findings in both the nonrepeat and repeat groups.

Statistical Tests
The 2-sample test for proportions and the χ² assessment were performed using MedCalc for Windows, Version 12.2.1 (MedCalc Software, Mariakerke, Belgium). A P value < .05 was considered statistically significant.

RESULTS

Demographic Data
In total, 9593 CT examinations were identified among 8160 unique patients who met the inclusion and exclusion criteria during the study period (Table 1). Of unique patients, 88.2% (7198/8160) had a single examination and 11.8% (962/8160) had at least 1 repeat examination. The mean age of patients in the repeat group was significantly higher compared with patients in the nonrepeat group (64.1 versus 57.9 years, P < .001). There was no significant difference in sex between the 2 groups (P = .97).

Positive Rate of Initial CT Examinations
A positive finding was identified in 4.4% (384/8160) of all first/baseline head CT examinations. There was no significant difference in the positive rate between patients in the nonrepeat group and the first examination of patients in the repeat group (4.3% [308/7198] versus 5.3% [51/962], P = .16). Among baseline studies with positive findings from the nonrepeat and repeat groups, there was no significant difference in either patient age (P = .99) or sex (P = .83) (Table 1).

The most common indications for positive findings on baseline CT examinations in the nonrepeat group were altered mental status (37.0%, 114/308), headache (17.2%, 53/308), trauma (17.2%, 53/308), and miscellaneous categories (28.6%, 88/308). For the repeat group, the most common indications for positive findings on baseline CT examinations were altered mental status (31.4%, 16/51), trauma (39.2%, 20/51), and headache (19.6%, 10/51). Among baseline studies with positive findings, there was no significant difference in the proportion of examinations with altered mental status or headache as the indication between the nonrepeat and repeat groups (P = .442 and P = .677, respectively). However, there was a significantly higher proportion of baseline examinations with positive findings with trauma as the indication in the repeat group (P = .003).

Assessment of Patients with Repeat Examinations
As described above, 962 patients underwent repeat head CT examinations during the study period; of these, 94.7% (911/962) had negative findings on the first (baseline) examination. A total of 1359 follow-up or repeat CTs were performed in these 911 patients. The average number of repeat examinations acquired per patient was 1.49 examinations, and the mean follow-up interval was 6.5 months. The proportions of patients with 1, 2, 3, and >3 repeat head CTs were, respectively, 73.3% (671/911), 15.8% (144/911), 6.2% (56/911), and 1.2% (40/911) (Fig 1). Of note, 3 patients had >10 studies with a maximum of 17. There was no significant difference in the rate of positivity in patients who had only 1 repeat compared with patients who had >1 repeat examination (20/671 [3%] versus 5/240 [2%], P = .45).

A positive finding was identified in 1.8% (25/1359) of all repeat head CTs that followed a first examination with negative findings, significantly different from the 4.3% positive rate in the nonrepeat group (P < .001) and the 5.3% positive rate for the first examination in the repeat group (P < .001) (Fig 2). Of patients in the repeat group who converted from negative to positive, the proportions who converted on the first, second, or third repeat examination were 80% (20/25), 16% (4/25), and 4% (1/25), respectively. Across the time scales relevant to this study, the interval between the first examination with negative findings and the follow-up did not substantially impact the probability of the repeat examination findings being positive. The proportions of repeat examinations with positive findings obtained within 30 days, 60 days, and 90 days of an initial negative head CT were 1.5% (5/344), 1.8% (8/491), and 1.7% (9/605), respectively (Table 2). For each interval, the proportion of examinations with positive findings was significantly lower than the 4.3% baseline positive rate. The 5 cases with positive findings obtained within 30 days of an initial head CT with negative findings included an acute on chronic subdural hemorrhage in a patient with altered mental status, new hemorrhagic metastasis in a patient with known metastatic lung cancer, new hydrocephalus in a patient with known leptomeningeal carcinomatosis, new subdural hemorrhage following a fall in an elderly patient, and new parenchymal hematoma in a patient on anticoagulation.

Across the 1359 repeat examinations, the proportion of examinations with positive findings varied by indication as follows (note that a given examination could have >1 indication): altered mental status 3% (8/300), trauma 2% (12/716), cancer 2% (1/44), headache 4% (2/52), seizure 0% (0/117), vertigo 2% (1/53), nausea 0% (0/32), fever 0% (0/8), syncope 2% (1/42), psychosis 0% (0/8), numbness 0% (0/21), altered speech 0% (0/22), weakness 5% (3/65), facial droop 0% (0/13), visual abnormalities 17% (1/6), substance use 0% (0/5), hydrocephalus 0% (0/6), hypertension 0% (0/1), and intracranial pressure/hemorrhage 0% (0/1).

Table 1: Patient demographics and outcomes/indicators for first examination in patients undergoing a single (nonrepeat) or serial (repeat) NCHCT examinations

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Nonrepeat (n = 7198)</th>
<th>Repeat (n = 962)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of men</td>
<td>0.478</td>
<td>0.486</td>
<td>.973</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>57.9</td>
<td>64.1</td>
<td><.001</td>
</tr>
<tr>
<td>Rate of positive findings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>on the first examination</td>
<td>4.3 (308)</td>
<td>5.3 (51)</td>
<td>.16</td>
</tr>
<tr>
<td>Proportion of men</td>
<td>0.522</td>
<td>0.529</td>
<td>.995</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>63.5</td>
<td>64.2</td>
<td>.832</td>
</tr>
<tr>
<td>Indications for positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>first examination (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altered mental status</td>
<td>37.0 (114)</td>
<td>31.4 (16)</td>
<td>.442</td>
</tr>
<tr>
<td>Headache</td>
<td>17.2 (53)</td>
<td>19.6 (10)</td>
<td>.677</td>
</tr>
<tr>
<td>Trauma</td>
<td>17.2 (53)</td>
<td>39.2 (20)</td>
<td><.001</td>
</tr>
<tr>
<td>Other</td>
<td>28.6 (88)</td>
<td>9.8 (5)</td>
<td>.005</td>
</tr>
</tbody>
</table>

P = .05 was considered statistically significant.
On a per-patient basis, 2.7% (25/911) of patients in the serially imaged group with negative findings on a first head CT ultimately went on to have at least 1 follow-up head CT with positive findings. Because it may include multiple follow-up examinations, this per-patient rate is higher than the positive rate for a single follow-up study; nevertheless, it is still significantly lower than the positive rate for the nonrepeat group ($P = .02$) and for the first examination in the serially imaged group ($P = .004$).

Comparison of Clinical Indications between Study Groups

Across all studies (baseline plus repeats), the most common indications for both positive and negative findings on CT examinations were similar. For positive findings, the most common indications were altered mental status (36%, 130/359), trauma (20%, 73/359), and headache (18%, 63/359). For negative findings, the most common indications were trauma (3341/
Table 2: Outcome of repeat examination by interval since the examination with negative findings*

<table>
<thead>
<tr>
<th>Interval between CTs</th>
<th>No. of Positive Examinations</th>
<th>Total Repeat Examinations</th>
<th>% Positive</th>
<th>P Valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td><30 days</td>
<td>5</td>
<td>344</td>
<td>1.5</td>
<td>.011</td>
</tr>
<tr>
<td><60 days</td>
<td>8</td>
<td>491</td>
<td>1.8</td>
<td>.007</td>
</tr>
<tr>
<td><90 days</td>
<td>9</td>
<td>605</td>
<td>1.7</td>
<td>.002</td>
</tr>
<tr>
<td><120 days</td>
<td>10</td>
<td>690</td>
<td>1.6</td>
<td><.001</td>
</tr>
<tr>
<td><180 days</td>
<td>11</td>
<td>804</td>
<td>1.5</td>
<td><.001</td>
</tr>
<tr>
<td>>180 days</td>
<td>25</td>
<td>1359</td>
<td>1.8</td>
<td><.001</td>
</tr>
</tbody>
</table>

*Outcome of repeat NCHCT examinations as a function of the interval (in days) since the prior examination with negative findings. The proportion of repeat examinations with positive findings remained between 1.5% and 1.8% (and significantly lower than the 4.3% positive rate of first/baseline examinations) for the durations (up to 1 year) considered in this study.

b The P value was taken against the 4.3% rate of first/baseline examinations.

9234, 36%), headache (1932/9234, 21%), and altered mental status (1686/9234, 18%).

Of the 911 patients who had negative findings on the baseline examination, there were 1359 total repeat examinations. Of the total 1359 repeat examinations, 613 (45%) had indications discordant with their baseline examination, and 746 (55%) had indications discordant with their baseline examination. The discordant repeat examinations had a significantly greater proportion of positive findings than in the concordant group, with 20/613 (3%) having positive findings, compared with only 5/746 (0.7%) in the concordant group (P < .001). It follows that repeat examinations with positive findings tended to have a clinical indication discordant with the baseline examination. Specifically, of the follow-up examinations that had positive findings, 20/25 (80%) had indications discordant with the baseline examination. Of the follow-up examinations that had negative findings, 593/1334 (44%) had an indication discordant with the baseline examination (P < .001).

DISCUSSION

NCHCT examinations performed in the emergency department setting with the same study indication were significantly less likely to have positive findings if the patient had a recent prior NCHCT with negative findings. Among nearly 10,000 examinations performed during a 4-year period at a single academic medical center, we found that NCHCTs had positive findings in only 1.8% of patients who had a recent prior NCHCT with negative findings, compared with 4.3% in first-time (baseline) examinations, and they had positive findings in only 0.7% in patients for whom the indications for the baseline and repeat examinations were the same. This result corroborates prior work suggesting that NCHCT examinations performed in the emergency setting in patients without focal neurologic deficits largely have negative findings,6,7 while extending the result to suggest that at a statistical level, there is a negative predictive value for a recent examination with negative findings with the same clinical indication.

We hypothesized that a repeat study that had the same clinical indication as its prior baseline examination would be associated with a lower rate of positive findings than a repeat study with a different indication. This hypothesis was confirmed by the data, with 80% of repeat examinations with positive findings having a different clinical indication compared with the baseline examination, while only 44% of repeat examinations with negative findings had a different clinical indication.

We also hypothesized that the negative predictive effect of a prior study with negative findings might decline and the rate of positive findings might return to that of first-time examinations as the interval between a negative baseline and follow-up examination increased. At <30 days of follow-up, the positive rate was 1.5%, significantly lower than the first-time examination rate of 4.3%. Somewhat surprising, positive rates for follow-up examinations remained low (<2%, and significantly lower than that of first-time examinations) even as the time since the baseline study with negative findings increased up to 12 months. This finding suggests that the negative predictive effect of a NCHCT with negative findings is long-lasting, at least for the month-to-year time scale evaluated in this study.

The current study did not explore why a prior NCHCT with negative findings performed for the same indication has a negative predictive value. We speculate that for some patients presenting with vague neurologic symptoms, there may be no underlying anatomic/imaging correlate for their presenting symptom. For others, an anatomic correlate may exist, but CT may not be sensitive enough to detect it, meaning that the yield for repeat CT imaging for the same indication will remain low. These latter patients might benefit from a more sensitive diagnostic evaluation with MR imaging as has been shown to be the case in patients who present with dizziness.7 Developing criteria to reliably discriminate between these 2 groups will be an important goal for future work.

During the past decade, many factors have contributed to the increased use of CT examinations in the emergency department setting. These include increased availability of CT; technologic advances that have reduced scan time, radiation dose, and cost; system-based cost-saving and outcome-focused initiatives that have emphasized earlier and more accurate diagnosis; as well as a general fear on the part of providers of missing something in an era of increasing malpractice litigation.2,11,15,16 At a population level, CT scans undoubtedly help ED physicians arrive at earlier and more accurate diagnoses. Similarly, at a population level, increased CT imaging has a measurable cost, both in exposure to ionizing radiation and its associated cancer risk and in increased health care dollars spent on studies with limited diagnostic yield.

While crucially important from a public health and medical economics perspective, the cost-benefit of CT imaging at the population level does not necessarily help the practicing emergency department physician or radiologist determine the relative cost/benefit of a CT examination in any given patient. Our current results suggest that information easily available from the electronic medical record, such as the outcome and indications of prior imaging, has potential value in stratifying patients with respect to the appropriateness of NCHCT imaging. Such information, combined with decision-support systems, could be used to facilitate more personalized and effective imaging decisions.17-19 Indeed, a prior retrospective study of ED CT use suggested that simply alerting ED physicians to the existence of prior relevant CT imaging could alter ordering practice.11
Our study has at least 2 important limitations. First, as a single-institution retrospective study, our results may not reflect the ordering practices or patient demographics of other centers and did not consider examinations that our patients may have undergone at other institutions during the study period. Second, our results suggest that the examination indication impacts the prior probability that a repeat examination will have positive findings. However, even though our study included ~10,000 patients, the low overall rate of CT examinations with positive findings precluded an analysis of the relationship between specific indications and positive findings on baseline and repeat examinations. Going forward, our goal is to conduct a larger multicenter study to validate these results across institutions and provide sufficient power to answer these more nuanced questions.

CONCLUSIONS
We investigated the rate of positive findings in repeat noncontrast head CTs performed on patients presenting to the ED who had prior negative findings on NCHCT with the same or different indications and compared it with the rate of positive findings in patients being imaged for the first time. In this retrospective observational study based on approximately 10,000 eligible examinations, we found that, overall, serial NCHCT examinations in patients with a prior study with negative findings are much less likely to be positive compared with first-time examinations. Most important, this difference depends on whether the prior study had the same clinical indication. This finding suggests that when a patient returns to the emergency department with the same neurologic symptom, a repeat NCHCT may be of limited diagnostic benefit.

Disclosures: Leo P. Sugrue—UNRELATED: Board Membership: Research Radiology, Inc; Stock/Stock Options: Research Radiology, Inc.

REFERENCES
Visualization of Lenticulostriate Arteries on CT Angiography Using Ultra-High-Resolution CT Compared with Conventional-Detector CT

ABSTRACT

BACKGROUND AND PURPOSE: The newly developed ultra-high-resolution CT is equipped with a 0.25-mm detector, which has one-half the conventional section thickness, one-half the in-plane detector element width, and one-half the reconstructed pixel width compared with conventional-detector CT. Thus, the ultra-high-resolution CT scanner should provide better image quality for microvasculature than the conventional-detector CT scanners. This study aimed to determine whether ultra-high-resolution CT produces superior-quality images of the lenticulostriate arteries compared with conventional-detector CT.

MATERIALS AND METHODS: From February 2017 to June 2017, thirteen patients with aneurysms (4 men, 9 women; mean age, 61.2 years) who underwent head CTA with both ultra-high-resolution CT and conventional-detector CT were enrolled. Two board-certified radiologists determined the number of all lenticulostriate arteries on the CTA coronal images of the MCA M1 segment reconstructed from 512 matrices on conventional-detector CT and 1024 matrices on ultra-high-resolution CT.

RESULTS: There were statistically more lenticulostriate arteries identified on ultra-high-resolution CT (average, 2.85 ± 0.83; 95% CI, 2.509–3.183) than on conventional-detector CT (average, 2.17 ± 0.76; 95% CI, 1.866–2.480) (P = .009) in 16 of the total 26 MCA M1 segments.

CONCLUSIONS: Improvements in lenticulostriate artery visualization were the result of the combined package of the ultra-high-resolution CT scanner plus the ultra-high-resolution scanning protocol, which includes higher radiation doses with lower than the national diagnostic reference levels and stronger adaptive iterative dose-reduction processing. This package for ultra-high-resolution CT is a simple, noninvasive, and easily accessible method to evaluate microvasculature such as the lenticulostriate arteries.

ABBREVIATIONS: AIDR = adaptive iterative dose reduction; C-CT = conventional-detector CT; C-CTA = conventional CTA; CTDIvol = volume CT dose index; LSA = lenticulostriate artery; UHR = ultra-high-resolution

The lenticulostriate arteries (LSAs) are perforating arteries that originate in the MCA and supply the basal ganglia. Accurately assessing the variation and structure of the LSAs reduces the likelihood of postoperative complications when performing resections of insular gliomas and when clipping or coilng MCA M1–2 segment aneurysms.1,2 It is also clinically important to evaluate the features of the LSAs in patients with symptomatic intracranial atherosclerotic stenosis to determine the best therapeutic strategy.3 However, although conventional-detector CT (C-CT), which uses a detector with a range of 0.5 mm, has been used to image the proximal side of the LSA,4 it is not easy to image the entire LSA from the proximal-to-distal side using C-CT.

In 2005, Canon Medical Systems and the National Cancer Center, Japan, jointly developed a prototype ultra-high-resolution CT system (UHR-CT; TSX-304R; Canon Medical Systems, Otawara, Japan). The UHR-CT was equipped with a 0.25-mm detector, which has one-half the conventional section thickness, one-half the in-plane detector element width, and one-half the reconstructed pixel width compared with the C-CT. Kakinuma et al5 reported that the prototype UHR-CT scanner had significantly better image quality for lung nodules than the C-CT scanners. Clinical studies that have tested phantoms using the
production version of the UHR-CT (Aquilion Precision; Canon Medical Systems) have reported that a higher image quality could be obtained compared with C-CT.6,7 Another such study that imaged the artery of Adamkiewicz reported improved images.8 On the basis of these findings, we predicted that UHR-CTA will have improved imaging quality of the LSAs that exceeds that of conventional CTA (C-CTA). Therefore, the goal of this study was to investigate whether UHR-CTA produced superior images of the LSAs compared with C-CTA.

MATERIALS AND METHODS

Subjects

Our institutional review board (Fujita Health University) approved this opt-out research design. Opt-out opportunities were provided to all participants included in this retrospective study. Forty-two consecutive patients with intracranial aneurysms who underwent intracranial UHR-CTA between February 2017 and June 2017 and who underwent C-CTA using 320-row detector CT during a follow-up study (14–373 days later; mean interval, 224 days) were selected. Twenty-nine patients were excluded for the following reasons: unavailable datasets, the scanning parameters differing from those defined in the protocol, insufficient scanning range for evaluating the LSAs, and enhanced adaptive iterative dose reduction 3D (AIDR 3D; Canon Medical Systems)9,10 not used for the denoising procedure. Therefore, 13 patients (4 men and 9 women; age range, 35–74 years; mean age, 61.2 years) with 26 bilateral MCA M1 segments were enrolled in this study.

CTA Protocols for UHR-CT and C-CT

Contrast-enhanced volume data for UHR-CTA were acquired with a 160–detector row UHR-CT scanner (Aquilion Precision) using helical scanning. The UHR-CTA scanner used in this study is a medical device with certification as a CT scanner that is safe for clinical use. The other scan parameters were as follows: section thickness of 0.25 mm, tube voltage of 120 kV, automatic exposure control tube current SD of 5, pitch factor of 0.625, reconstructed FOV size of 190–240 mm, and gantry rotation speed of 1 s/rotation. Contrast-enhanced volume data for C-CTA were acquired with a 320–row detector CT scanner (Aquilion ONE; Canon Medical Systems) using nonhelical scanning. The other scan parameters were as follows: section thickness of 0.5 mm, tube voltage of 120 kV, automatic exposure control tube current SD of 3–5, pitch factor of 0.625, reconstructed FOV size of 180–240 mm, and gantry rotation speed of 1 s/rotation. The contrast medium volume was calculated on the basis of each patient’s body weight, and 250 mg I/kg of iopamidol (Iopamiron 370; Bayer Healthcare, Osaka, Japan) was injected intravenously as a bolus for a fixed infusion duration of 10 seconds, followed by an intravenous bolus injection of 30 mL of physiologic saline solution at the same rate as the contrast medium.

Image Postprocessing and Data Analysis

The CTA coronal MIP images of 20-mm thick MCA M1 segments were reconstructed from a pixel matrix of 512 × 512 for C-CTA with a 0.5-mm thickness and a pixel matrix of 1024 × 1024 for UHR-CTA with a 0.25-mm thickness with a strong AIDR 3D. C-CTA was reconstructed with a weak AIDR 3D using the analysis software installed in the CT console. Previous studies evaluating the LSAs on MR imaging and CTA determined the number of LSA branches within 5 mm from the MCA and the number of branches beyond 5 mm.11,12 The number of LSAs, defined as those longer than 5 mm, were analyzed.12 Two board-certified radiologists (K.M. with 14 years of experience; S.S. with 14 years of experience) participated as observers. A standard window level and width were applied during reader observations. The observers were allowed to freely vary window levels and widths.

Statistical Analysis

We compared the mean visible number of LSAs recorded by 2 blinded and independent observers between the C-CTA and UHR-CTA images. A Wilcoxon matched-pairs signed rank test was used to calculate \(P\) values for comparisons. For all statistical analyses, a \(P\) value of <.05 indicated a statistically significant between-group difference. The statistical analyses were performed using commercially available statistical software (GraphPad Prism software, Version 6, GraphPad Software, San Diego, California; BellCurve for Excel, Version 2.11, Social Survey Research Information, Tokyo, Japan).

Radiation Dose

The estimated volume CT dose index (CTDI\textsubscript{vol}) for CTA displayed on the CT scanner console was recorded for each patient. The estimated dose-length product was calculated as CTDI\textsubscript{vol} × Scan Length. The radiation dose was also compared against the diagnostic reference level of the Japan Network for Research and Information on Medical Exposure (J-RIME) (http://www.radher.jsp/J-RIME/report/DRLhoukokusyoEng.pdf). The J-RIME is the network used to collect data related to medical exposure and to construct a framework within Japan for appropriate medical radiation doses. The J-RIME suggested that national diagnostic reference levels established in 2015 for routine brain CT examination were 85 mGy (CTDI\textsubscript{vol}) and 1350 mGy × cm (dose-length product).

RESULTS

The number of LSAs determined by the 2 observers is summarized in Fig 1. There were statistically more LSAs identified on UHR-CT (average, 2.85 ± 0.83; 95% CI, 2.509–3.183) than on C-CT (average, 2.17 ± 0.76; 95% CI, 1.866–2.480) (\(P = .009\)). There were also more LSAs identified on UHR-CT than on C-CT in 16 of the total 26 MCA M1 segments. Figures 2 and 3 show representative images that clearly show bilateral LSAs from the proximal-to-distal tip in UHR-CTA compared with LSAs imaged by C-CTA, respectively.

The CTDI\textsubscript{vol} obtained with C-CT was 9.7–37.7 mGy (mean, 27.2 mGy), whereas it was 44.7–63.1 mGy (mean, 53.8 mGy) with UHR-CT. The estimated dose-length product range was calculated as CTDI\textsubscript{vol} × Scan Length, which was determined as 124.9–488.1 mGy × cm (mean, 266.5 mGy × cm) with C-CT and 685.8–942.5 mGy × cm (mean, 740.8 mGy × cm) with UHR-CT. The radiation doses for both C-CT and U-HRCT...
DISCUSSION

Our results suggest that UHR-CT provides higher quality images of intracranial CTA than C-CT because of improved spatial resolution and partial volume effect. UHR-CT is a simple, noninvasive, and easily accessible method to evaluate microvasculature such as the LSAs.

LSA imaging has various important clinical roles. Surgically, it is important to accurately assess the anatomic structures of the LSAs before insular glioma surgery and coiling and clipping of MCA aneurysms. Additionally, LSA imaging is an important step toward reducing postoperative complications. Patients with hypertension have significantly fewer LSAs compared with healthy volunteers. It is also important to evaluate LSA features in patients with symptomatic intracranial atherosclerotic stenosis. Investigations using flow-sensitive black-blood MRA with MR imaging have confirmed that it is superior for visualizing LSA branches in patients with stroke. Other studies using 7T MR imaging have reported advanced noninvasive methods for visualization of the cerebral microvasculature, including the LSAs. However, it is not easy to image the LSA when using TOF-MRA with conventional 1.5T MR imaging systems, which is the most prevalent technique currently available. Digital subtraction angiography is considered the criterion standard of cerebral vascular imaging, and 3D rotational angiography on an x-ray angiographic system is useful for identifying an important anatomic relationship between the MCA trunk and LSAs; however, it is an invasive procedure and has some risk of complications. Therefore, noninvasive CTA or MR imaging is necessary for imaging microvasculature, such as LSAs.

The world’s first UHR-CT scanner is equipped with a 0.25-mm detector of the physical size scaled back to the isocenter that has pixels one-quarter the size of those of the C-CT scanner. Kakinuma et al reported that the prototype UHR-CT scanner had a significantly better image quality for lung nodules than conventional high-resolution CT scanners. As has been observed in previous phantom tests and clinical studies of other organs, the results of our investigation showed that UHR-CT improved the image quality of the LSAs compared with C-CT (Figs 2 and 3). This difference is likely to be more pronounced for imaging microvascular networks, such as the LSAs.
CONCLUSIONS

Improvement in LSA visualization was the result of the combined package of the UHR-CT scanner plus the UHR scanning protocol, which includes a higher radiation dose with lower than the national diagnostic reference levels and stronger AIDR processing. This package for UHR-CT is a simple, noninvasive, and easily accessible method to evaluate microvasculature such as the LSAs.

ACKNOWLEDGMENT

The authors would like to thank Maruzen-Yushodo Co Ltd (https://kw.maruzen.co.jp/kousei-honyaku/) for the English language editing.

REFERENCES

A Method to Estimate Brain Volume from Head CT Images and Application to Detect Brain Atrophy in Alzheimer Disease

V. Adduru, S.A. Baum, C. Zhang, M. Helguera, R. Zand, M. Lichtenstein, C.J. Griessenauer, and A.M. Michael

ABSTRACT

BACKGROUND AND PURPOSE: Total brain volume and total intracranial volume are important measures for assessing whole-brain atrophy in Alzheimer disease, dementia, and other neurodegenerative diseases. Unlike MR imaging, which has a number of well-validated fully-automated methods, only a handful of methods segment CT images. Available methods either use enhanced CT, do not estimate both volumes, or require formal validation. Reliable computation of total brain volume and total intracranial volume from CT is needed because head CTs are more widely used than head MRIs in the clinical setting. We present an automated head CT segmentation method (CTseg) to estimate total brain volume and total intracranial volume.

MATERIALS AND METHODS: CTseg adapts a widely used brain MR imaging segmentation method from the Statistical Parametric Mapping toolbox using a CT-based template for initial registration. CTseg was tested and validated using head CT images from a clinical archive.

RESULTS: CTseg showed excellent agreement with 20 manually segmented head CTs. The intraclass correlation was 0.97 (P < .001) for total intracranial volume and 0.94 (P < .001) for total brain volume. When CTseg was applied to a cross-sectional Alzheimer disease dataset (58 with Alzheimer disease patients and 58 matched controls), CTseg detected a loss in percentage total brain volume (as a percentage of total intracranial volume) with age (P < .001) as well as a group difference between patients with Alzheimer disease and controls (P < .01). We observed similar results when total brain volume was modeled with total intracranial volume as a confounding variable.

CONCLUSIONS: In current clinical practice, brain atrophy is assessed by inaccurate and subjective “eyeballing” of CT images. Manual segmentation of head CT images is prohibitively arduous and time-consuming. CTseg can potentially help clinicians to automatically measure total brain volume and detect and track atrophy in neurodegenerative diseases. In addition, CTseg can be applied to large clinical archives for a variety of research studies.

ABBREVIATIONS: AD = Alzheimer disease; BET = Brain Extraction Tool; ICC = intraclass correlation coefficient; TBV = total brain volume; TIV = total intracranial volume; TPM = tissue probability map

Total brain volume (TBV) is an important measure for assessing brain atrophy in aging and neurodegenerative diseases. TBV is estimated from MR or x-ray CT brain images by segmenting the brain parenchyma using manual or automated methods. Automated methods are preferred due to efficiency, reliability, and reproducibility. A number of automated segmentation methods are available for MR images that are extensively applied in the clinical domain. In the clinical setting, CT is more widely used than MR imaging due to faster acquisition speed, a smaller number of contraindications, lower cost, and its ability to answer a range of clinical questions. However, only a handful of automated segmentation methods exist for head CT images.

Several existing methods in CT segmentation are either semiautomated or targeted toward a specific brain region or disease condition. Methods available for segmenting CT...
images to measure global volume metrics such as total intracrani-

cal volume (TIV) and TBV from images with no detectable

pathology were not formally validated. Some well-

validated methods segment only TIV but not TBV. How-
ever, TBV is more indicative of disease conditions in

neurodegenerative diseases, and TIV is used merely as

a nuisance variable for normalization purposes. Man-
niesing et al estimated TBV using head CT but used en-

hanced CT images. However, their method cannot be applied to single-
time-point CT images with no image enhancement. Irimia et al adapted SPM12 (http://www.fil.ion.ucl.ac.uk/spm/), a widely used MR imaging–based segmentation method, for CT segmentation and validated it by comparing it with MR images segmented using FreeSurfer (http://surfer.nmr.mgh.harvard.edu). However, they validated only the accuracy of ventricular CSF and not TIV or TBV.

We present a fully-automated CT segmentation (CTSeg; https://github.com/NuroAI/CTSeg) method for brain segmentation and estimation of TBV and TIV from nonenhanced single-time-point head CT images by adapting SPM12. CTSeg was validated for brain segmentation and TBV and TIV estimation by comparing it with manual segmentation (n = 20). Additionally, we present a clinical application in which CTSeg is used to show TBV differences in Alzheimer disease (AD) (n = 116).

MATERIALS AND METHODS

Subjects

This study was reviewed and approved by the Geisinger Health System institutional review board. CT images were originally collected as part of patients’ routine clinical care but were fully deidentified. We created 2 datasets: 1) a manual segmentation dataset (n = 20, subjects free of brain abnormalities) and 2) an AD dataset (n = 167, subjects with and without a diagnosis of AD). Fifteen subjects with AD had catheters and were removed from further analysis. The AD dataset that was further analyzed consisted of 152 subjects.

Manual Segmentation Dataset. A total of 20 subjects (mean age, 66 years; age range, 32–89 years; 10 women) were randomly selected for manual segmentation of the intracranial space and the brain parenchyma. These subjects were free of brain abnormalities and were unremarkable according to the radiology reports. Additionally, through visual inspection, we confirmed that the images were free of artifacts.

AD Dataset. The initial cross-sectional AD dataset consisted of 62 subjects (mean age, 77 years; age range, 68–83 years; 41 women) with a diagnosis of AD and 90 controls (mean age, 78 years; age range, 68–83 years; 64 women) who did not have a diagnosis of AD. Subjects with AD and controls were selected on the basis of the International Classification of Disease, Ninth Revision (ICD-9-CM 331.0) codes. All CT images were free of artifacts, and the radiology reports of the images confirmed no acute pathologies or brain abnormalities. A retrospective evaluation indicated that the controls had undergone a CT scan following headaches or head injury. The CT images were acquired using multiple CT scanners, and details of the scanner models and imaging parameters are provided in On-line Table 1.

Manual Segmentation

Manual segmentation was performed by a trained operator using ITK-SNAP 3.6 (www.itksnap.org). The intracranial space was outlined according to the guidelines provided by Nordenskjöld et al. The segmented intracranial image was then used to segment the brain parenchyma by tracing the boundary between brain tissue and CSF.

Automated Brain Segmentation

CTSeg (Fig 1) adapts the unified segmentation algorithm from SPM12 and uses a CT template for the initial affine registration step (see Methods: Automated Brain Segmentation in the Online Appendix for a detailed explanation of the CTSeg pipeline). CTSeg creates probabilistic and binarized segmentation maps of
the brain and the intracranial space. The binarized segmentation masks are obtained by thresholding the probabilistic maps using optimal thresholds (Optimal Threshold Selection in the On-line Appendix).

Statistical Methods

The overlap between the automated and manual segmentation masks was measured using the Dice similarity index (DSI). TIV and TBV were obtained from the probabilistic maps, and the binary masks were obtained using CTSeg. For probabilistic maps, volumes were calculated by integrating the partial tissue volumes (tissue probability at the voxel × voxel volume) over all the voxels from the respective tissue maps. Volume estimates were calculated from binary masks by multiplying the number of masked voxels by the unit voxel volume.

Volumes estimated using CTSeg were compared with the manual estimates using scatterplots and the Pearson’s correlation coefficient (ICC) computed using 2-way ANOVA with fixed effects. The 95% confidence intervals of the class correlation coefficient (ICC) computed using 2-way automated and manual volumes was evaluated using the intra-class correlation coefficient (ICC) computed using 2-way ANOVA with fixed effects. The 95% confidence intervals of the ICC were computed using bootstrapping with 1000 iterations. The volumes were checked for normality using the Kolmogorov–Smirnov test. The TIV estimates of CTSeg were also compared with the state-of-the-art FSL Brain Extraction Tool for CT (BET; http://bit.ly/CTSEG_BASH).

CTSeg-estimated volumes from the images of age-matched subjects with AD and controls were used to compare brain atrophy between patients with AD and controls. Subjects with AD and controls were age-matched by minimizing the age difference using the MatchIt package in R (https://www.rdocumentation.org/packages/MatchIt/versions/3.0.2/topics/matchit). Previous studies have demonstrated that sex has no significant effect on TBV as a percentage of TIV (%TBV) because it is a normalized measure that accounts for the variability introduced by head size and sex. Therefore, subjects were not sex-matched because all our analyses were performed on %TBV. TBV versus TIV and %TBV versus age scatterplots were used to compare brain atrophy in patients with AD and controls. Linear regression models were used to determine the significance of age, sex, and AD diagnosis on % TBV. For the regression models, the Age × AD diagnosis interaction term was added to check whether the rate of brain volume loss was significantly different between patients with AD and controls. Additionally, we investigated the effect of TIV by modeling TBV, using TIV as a confounding factor in the linear models, as recommended in recent studies. TIV and sex were added in addition to Age and AD diagnosis while modeling TBV. Results with $P < .05$ are considered significant for all statistical analyses. Statistical analyses were performed using Python 2.7 (https://www.python.org/download/releases/2.7/), R 3.4.3 (http://www.r-project.org/), and Matlab 8.6.0. (MathWorks, Natick, Massachusetts).

RESULTS

Segmentation

CTSeg successfully segmented all 20 images from the manual segmentation dataset. The optimal image-intensity threshold obtained using a random selection of 10 training images was 0.2 for the brain mask and 0.0006 for the intracranial mask. These thresholds were robust when applied to the test set (On-line Fig 1).

Binary masks from CTSeg agreed well with the manual segmentation masks (the DSI was 0.94 ± 0.008 for brain and 0.98 ± 0.002 for the intracranial masks). The gyri and sulci in the superior slices of the brain were well-captured by CTSeg (On-line Fig 2).

Brain Volumetry

Comparison between automated and manual volume estimates is presented in Table 1. The binarized TBV and TIV estimates showed excellent agreement with the manual estimates (ICCs = 0.94 and 0.97, respectively), whereas the probabilistic estimates showed lower agreement (ICCs = 0.74 and 0.71 for TBV and TIV, respectively). TIV estimated using the BET also showed excellent agreement with manual TIV (ICC = 0.94) but was lower than binarized TIV from CTSeg. Binarized CTSeg also had the lowest bias in terms of the percentage difference (Table 1), and in the Bland-Altman plots (Fig 2) for both TIV (mean difference of −0.04L for CTSeg binarized versus −0.05L for BET and −0.13 for CTSeg probabilistic) and TBV (mean difference of 0.02L for CTSeg binarized versus −0.08L for CTSeg probabilistic for TBV). The pattern of the linear fit in the Bland-Altman plots showed that error increases with average volume and, therefore, head size for both estimates of CTSeg. However, the rate of increase was higher for probabilistic estimates than binarized estimates of CTSeg. The BET TIV estimate showed the lowest dependence of error on the average volume but showed larger bias than the binarized CTSeg TIV. Because the binarized CTSeg estimates showed better agreement with manual estimates, proceeding evaluations were made using only the binarized CTSeg method.

Brain Volumetry in AD

CTSeg was applied to the AD dataset containing 152 images. CTSeg successfully segmented 135 images (58 with AD and 77

Table 1: Comparison of automated TBV and TIV estimates with manual ground truth estimates

<table>
<thead>
<tr>
<th>Parameter/Method</th>
<th>%Difference</th>
<th>Pearson’s r (P Value)</th>
<th>ICC (P Value)</th>
<th>Bootstrap Mean ICC (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTSeg probabilistic</td>
<td>−7.22 ± 2.98</td>
<td>0.96 (<.001)</td>
<td>0.74 (<.001)</td>
<td>0.727 (0.724–0.730)</td>
</tr>
<tr>
<td>CTSeg binarized</td>
<td>1.58 ± 3.46</td>
<td>0.95 (<.001)</td>
<td>0.94 (<.001)</td>
<td>0.937 (0.935–0.939)</td>
</tr>
<tr>
<td>TIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTSeg probabilistic</td>
<td>−12.15 ± 1.44</td>
<td>0.99 (<.001)</td>
<td>0.71 (<.001)</td>
<td>0.685 (0.680–0.689)</td>
</tr>
<tr>
<td>CTSeg binarized</td>
<td>−3.28 ± 1.36</td>
<td>0.99 (<.001)</td>
<td>0.97 (<.001)</td>
<td>0.962 (0.961–0.963)</td>
</tr>
<tr>
<td>BET</td>
<td>−5.12 ± 0.667</td>
<td>0.99 (<.001)</td>
<td>0.94 (<.001)</td>
<td>0.930 (0.928–0.932)</td>
</tr>
</tbody>
</table>

* a%Difference is reported as means.
controls) of 152 images (88%). Reasons for CTSeg failures are discussed in the next section. After we excluded CTSeg failures, 58 control subjects were optimally age-matched to 58 subjects with AD (a total of \(n = 116 \) subjects). A paired \(t \) test confirmed no significant age difference (\(P = .74 \)) between the 2 groups after age-matching. Group comparisons were performed on binarized volumes estimated from the age-matched subjects. TBV and %TBV computed for AD and controls are presented in Fig 3. Linear fit to %TBV indicated a higher loss with age in the AD group than in controls. We observed significantly lower mean %TBV (\(P < .05 \)) in the AD group (76.24 ± 2.87) compared to the control group (77.52 ± 3.05). A paired \(t \) test among %TBVs of the matched subjects also showed a significant difference (\(P < .05 \)) between the two groups. The linear fit in the TBV-versus-TIV plot showed that the slope is lower for AD, suggesting a lower TBV-to-TIV ratio in subjects with AD. The results of the linear regression analysis are presented in On-line Table 2. Both age (\(P < .001 \)) and AD diagnosis (\(P < .05 \)) had a significant effect on %TBV. The Age × AD diagnosis term was insignificant as an interaction term in the linear model. Similar results were observed when TBV was modeled using sex and TIV as additional covariates. Age and AD diagnosis were significant when these variables were modeled as main effects. TIV had a significant contribution in all regression models. Results remained the same when sex was removed from the main effects model.

Segmentation Failures in the AD Dataset

CTSeg failed to produce acceptable segmentations for 4 of 62 AD images and 13 of 90 control images. Failures in the segmentation included segmentations of nonbrain regions like eyes as brain tissue or segmentation maps that did not resemble brain or intracranial space. On-line Table 3 summarizes the failure rate of CTSeg for different scanners. The overall failure rate was <15% across all the scanners.

DISCUSSION

TBV is an important measure for assessing brain atrophy in AD and other neurodegenerative diseases. Although CT is widely...
used in the clinical setting, segmentation methods to estimate TBV from head CT images are not available. We presented CTSeg, an automated head CT segmentation method, and validated the method by comparing it with manual segmentation.

TBV and TIV from binary CTSeg masks showed better agreement with manual estimates than the TBV and TIV estimates from probabilistic masks. This outcome was expected because the MR imaging–based default tissue probabilistic atlas map (TPM; https://www.fil.ion.ucl.ac.uk/spm/toolbox/TPM/) that we used did not model some of the anatomy present in CT images, and binarizing the masks by thresholding mitigated these errors. Additionally, the systematic bias in the TIV estimate using the binary masks was better than TIV estimated using the BET-based method by Muschelli et al.13

The utility of CTSeg was demonstrated in a cross-sectional dataset containing AD and control groups. We found that CTSeg-estimated volumes had a significant %TBV ($P < .05$) difference between the AD and control groups in a linear regression model with age, sex, and AD diagnosis as covariates. The sex of the subjects had no significant effect on the %TBV. This finding is in agreement with previous findings using MR images that used TIV to normalize global brain volumes.27,28 The average %TBV estimated from AD images was lower than that for matched controls. The statistical insignificance of Age \times AD diagnosis interaction on %TBV can be attributed to the cross-sectional nature of our dataset. We expect that significant TBV group differences can be achieved if longitudinal head CT images of the same subjects are tracked. Furthermore, some of the %TBV variability may be due to not accounting for the duration from the actual onset of AD with respect to the time of the CT acquisition. Another factor that may have contributed to the %TBV is that our controls may have atrophy due to undiagnosed disorders. We expect to see higher group differences in TBV if ADs are compared with disorder-free healthy controls. Additionally, when TBV is modeled with TIV as a confounding variable, we observed similar results compared with %TBV. TIV was a significant confounding variable in all the models. Sex was insignificant in all the models, suggesting that correction for TIV removes the structural differences between men and women; this finding agrees with previous ones using MR imaging–estimated volumes.29

Unlike MR imaging, the intensity of CT images is standardized and is a measure of radiation attenuation of the tissue. Therefore, we do not think that the scanner variability significantly affected our method. The standardized intensity in CT is, in fact, an advantage and makes the comparison of CT images across scanners easier, compared with MR images. Additionally, we expect the optimal thresholds of CTSeg to be widely applicable because SPM models the tissue intensities separately for each image. We confirmed the optimal threshold using two different approaches: random search and leave-one-out cross-validation. The high Dice similarity index in both approaches demonstrated the robustness of the optimal threshold. However, further validation on a larger dataset is required to verify the robustness of the threshold at different noise levels of CT images.

In CTSeg, we used a standard MR image–based TPM specific to an age range of 18–90 years for the segmentation.30 The CT template used for the initial registration was developed for an age range of 46–79 years.31 Although the age of the subjects used for this study was 67–89 years, we achieved good segmentation accuracy using the standard TPM and the CT template. However, if age-appropriate CT-based TPMs are used, we expect that segmentation accuracy would further improve. The TPM and the CT templates were created using images without brain abnormalities. Therefore, CTSeg assumes that the CT images to be segmented have brains that are free of large structural abnormalities like glioma, stroke, operations, and image artifacts due to beam-hardening and implants. However, CTSeg can be extended for applications for abnormal brain, like identifying lesions.32

CTSeg marginally overestimated TBV due to the misclassification of dura as brain in the superior slices of the image. This overestimation can be attributed to the low contrast-to-noise ratio among the soft tissues of CT images. Misclassification of the dura is a known problem even in the segmentation of T1-weighted MR images.33 TIV and TBV estimates from all automated methods tested in this study exhibited a linear dependence of error with head size. Binarizing the probabilistic maps using an optimal threshold slightly reduced this linear dependence to some extent, and this phenomenon can be attributed to several reasons: one reason may be the partial volume effect, in which a single voxel represents \geq2 tissues due to the finite spatial resolution of the image.34 The number of voxels at tissue boundaries increases with head size, thereby increasing the error in volume estimation due to the partial volume effect. The linear dependence of error and head size can also be attributed to errors in spatial registration and the allometric effect of the tissue priors. In the case of an intracranial mask, the optimal threshold was very low due to the influence of the high bone intensity (compared with CSF) on the partial volume effect for voxels near the bone-CSF interface.

We computed optimal thresholds for CT images with 5-mm image section thickness, which is the clinical standard for CT images. Because the partial volume effect increases with section thickness,35 thresholds may need to be derived independently for images with different section thicknesses. However, CT images reconstructed with smaller section thicknesses have a lower contrast-to-noise, which can lead to larger errors in the segmentation of brain tissue using CTSeg. Therefore, care should be taken when applying CTSeg to high-resolution images. On close visual inspection, we noted that some brain-CSF boundary regions were misclassified, especially in the left and right regions of the frontal lobe where the brain is closer to the skull and in regions between the brain hemispheres where the dura is present (On-line Fig 2). The misclassifications in intracranial maps (On-line Fig 3) were observed at the boundaries of the intracranial space in the superior and inferior slices, resulting in lower TIV estimates compared with manual segmentation. We also note that the binarized segmentation misclassified some parts of the eyes as the intracranial volume. This shortcoming can be corrected by registering a standard intracranial mask onto the binary intracranial mask obtained using CTSeg and excluding the voxels classified as TIV that are outside the registered standard intracranial mask.36
CONCLUSIONS
We present CTSeg to automatically estimate TBV and TIV from nonenhanced head CT images acquired for diagnostic purposes that were originally intended for visual evaluations by radiologists. We show that CTSeg can accurately estimate TBV and TIV. Application of CTSeg on CT images from subjects with AD and controls provides evidence that CTSeg can be used for detection and tracking of global brain atrophy in neurodegenerative diseases. AD does not have symptoms until the mild cognitive impairment stage, which occurs several years after the onset, and CTSeg may be used to track brain atrophy in these patients. In addition, CTSeg can be applied to clinical CT archives to develop normative brain volumes and to research studies involving neurodegenerative diseases that show global brain volume loss.

ACKNOWLEDGMENTS
We thank the Geisinger Health System Foundation for the financial support.

Disclosures: Stefi A. Baum—UNRELATED: Board Membership: Only in astrophysics, my primary research field; no money paid; Consultancy: only in astrophysics, my primary research field; money paid via the National Aeronautics and Space Administration. Employment: University of Manitoba; Comments: I am a professor of Physics and Astronomy and Dean of Science at the University of Manitoba; Grants/Grants Pending: only in Canada in my primary field of research, Astrophysics from the Natural Sciences and Engineering Research Council of Canada.* Maya Lichtenstein—UNRELATED: Grants/Grants Pending: only in Canada in my primary field of research, Astrophysics from the Natural Sciences and Engineering Research Council of Canada; Comments: Site Principal Investigator for the T2 Protect: Phase 2 Randomized Dual Blind Placebo-Controlled Trial to Evaluate the Efficacy and Safety of BHV-4157 in Patients with Mild to Moderate Alzheimer’s Disease.* *Money paid to the institution.

REFERENCES

Metal Artifact Reduction in Head CT Performed for Patients with Deep Brain Stimulation Devices: Effectiveness of a Single-Energy Metal Artifact Reduction Algorithm

ABSTRACT

BACKGROUND AND PURPOSE: Deep brain stimulation electrodes induce massive artifacts on CT images, deteriorating the diagnostic value of examinations. We aimed to investigate the usefulness and potential limitations of a single-energy metal artifact reduction algorithm in head CT performed in patients with implanted deep brain stimulation devices.

MATERIALS AND METHODS: Thirty-four patients with deep brain stimulation (bilateral, n = 28) who underwent head CT on a 320-detector row scanner and whose images were reconstructed with and without single-energy metal artifact reduction at the examinations were retrospectively included. The severity of artifacts around electrodes was assessed objectively using SDs and an artifact index. Two radiologists subjectively evaluated the severity of artifacts from electrodes, the visibility of electrode localization and surrounding structures, and overall diagnostic confidence on 4-point scales. Background image quality (GM-WM contrast and image noise) was subjectively and objectively assessed. The presence and location of artifacts newly produced by single-energy metal artifact reduction were analyzed.

RESULTS: Single-energy metal artifact reduction provided lower objective and subjective metal artifacts and improved visualization of electrode localization and surrounding structures and diagnostic confidence compared with non-single-energy metal artifact reduction images, with statistical significance (all, \(P < .01 \)). No significant differences were observed in GM-WM contrast and image noise (all, \(P \geq .1 \)). The new artifacts from single-energy metal artifact reduction were prominently observed in patients with bilateral deep brain stimulation at high convexity, possibly induced by deep brain stimulation leads placed under the parietal scalp.

CONCLUSIONS: Single-energy metal artifact reduction substantially reduces the metal artifacts from deep brain stimulation electrodes and improves the visibility of intracranial structures without affecting background image quality. However, non-single-energy metal artifact reduction images should be simultaneously reviewed to accurately assess the entire intracranial area, particularly in patients with bilateral deep brain stimulation.

ABBREVIATIONS: DBS = deep brain stimulation; MAR = metal artifact reduction; SEMAR = single-energy metal artifact reduction

Deep brain stimulation (DBS) electrode implantation has been widely performed as an established surgical procedure for the treatment of various movement disorders such as Parkinson disease, medically intractable essential tremor, and dystonia.\(^1\) DBS has also been increasingly used for epilepsy, neuropathic pain, and psychiatric disorders.\(^2\) The main targets of DBS are the subthalamic nucleus, globus pallidus pars interna, and ventral intermediate nucleus of the thalamus.\(^1,2\) CT is fast, easily accessible, and less expensive compared with MR imaging and is often used for evaluating the contact location of electrodes, surgical complications, and other intracranial abnormalities not related to a surgical procedure in patients implanted with DBS devices. However, metal artifacts induced by the electrodes usually hamper the visualization of implants and the surrounding intracranial structures, thereby increasing the potential risk of missing relevant findings and deteriorating the diagnostic utility of the examination.\(^3\)

Metal artifacts are mainly introduced by 2 different physical phenomena: photon starvation as a consequence of a complete x-ray photon absorption and beam-hardening caused by the preferential absorption of low-energy photons.\(^4\) The degree of x-ray photon absorption and the resulting physical effects on CT...
images depend on the composition, size, and the shape of the metallic hardware. Small implants made of metal having a relatively low atomic number, such as a surgical clip made of titanium (atomic number 22), may cause minor beam-hardening. In contrast, hardware made of metals having a high atomic number, such as DBS electrodes made of platinum (atomic number 78) and iridium (atomic number 77), usually cause severe bright and dark streak artifacts due to photon starvation, deteriorating the image quality and diagnostic values of the CT examination.

Several techniques, including increased tube voltage, tube current, and application of high kiloelectron volt virtual monoenergetic imaging from dual-energy CT, can aid in the reduction of metal artifacts. However, these approaches have limited value for handling photon starvation induced by large or high atomic number metallic implants. As an alternative approach, a single-energy metal artifact reduction (SEMAR) algorithm, a raw data–based metal artifact reduction (MAR) algorithm used in conventional single-energy CT, has been recently developed. This algorithm removes severe metal artifacts induced by photon starvation using multiple steps of data segmentation and interpolation along with repeat forward and back projections in the projection and image data domains. Thus far, a few studies have shown that SEMAR can substantially improve the image quality by reducing the metal artifacts in several clinical conditions. However, no prior investigations have evaluated the added value and possible limitations of using the SEMAR algorithm for head CT performed on the subgroup of patients implanted with DBS devices, in which strong metal artifacts have been observed.

This study aimed to investigate the impact of the SEMAR algorithm on the subjective and objective image quality of head CT performed in patients implanted with DBS devices.

MATERIALS AND METHODS

This retrospective study was approved by the institutional review board (Kumamoto University), and the requirement for written informed consent was waived.

Patients

Using our radiology data base, we retrospectively screened patients for inclusion among those implanted with DBS devices who underwent noncontrast head CT between January 2016 and December 2018. Our inclusion criteria were the following: 1) older than 18 years of age; 2) use of a standardized image-acquisition protocol on a 320–detector row multidetector CT system, as detailed later; and 3) absence of other metallic materials possibly affecting the artifact analysis. In total, 34 patients (10 men, 24 women; mean age, 68.0 ± 10.3 years) who fulfilled the above criteria were analyzed. Clinical indications for head CT were the evaluation of contact locations and surgical complications (n = 24); suspicion of cerebrovascular disease unlikely related to surgical procedures (n = 7); head trauma (n = 1); and follow-up of known cavernous hemangioma (n = 1) or pituitary tumor (n = 1). Among the included patients, 28 were implanted with bilateral DBS devices and 6 were implanted with unilateral DBS devices; thus, a total of 62 DBS electrodes were evaluated. Detailed patient demographics are summarized in Table 1.

DBS Implantation Procedure

All patients underwent a standard DBS implantation procedure in accordance with our institution’s good clinical practice. In brief, DBS leads (Model-3387 for subthalamic nucleus–DBS and globus pallidus pars interna–DBS or Model-3389 for the ventral intermediate nucleus of the thalamus–DBS, both 40-cm long: Medtronic; Minneapolis, Minnesota), composed of iridium alloy and containing 4 platinum-iridium electrodes near the tip, were placed within the target positions through burr-holes in the skull. After the operator ensured that the electrodes were correctly positioned to control movement symptoms, the excess extracranial DBS leads were looped under the scalp around the burr-holes. The extracranial DBS lead and internal pulse generator subcutaneously implanted in the subclavian portion of the chest were connected with the extension wire running under the skin from the chest to the neck and head (Fig 1, left).

Image Acquisition

A 320–detector row multidetector CT system (Aquilion ONE, VISION Edition; Canon Medical Systems, Otawara, Japan) was used for scanning. Patients were scanned in the supine position with the following parameters: tube voltage, 120 kV (peak); tube current, 260 mA (without automated modulation); rotation time, 1.0 seconds; pitch factor, 0.637; detector collimation, 80 × 0.5 mm. For each patient, 2 sets of axial images with 5-mm slices were reconstructed: one using the iterative reconstruction technique (adaptive iterative dose reconstruction [AIDR] 3D; Canon Medical Systems) at the noise-reduction level of “weak,” referred to as non-SEMAR images, and the second using the AIDR 3D (weak) plus the SEMAR algorithm, referred to as SEMAR images. Both image series were reconstructed when clinical CT was performed as part of the original head CT examination.

Quantitative Image Analysis

Quantitative image analyses were performed in consensus by 2 board-certified radiologists having 11 and 14 years of experience in neuroimaging. In this session, all images were reviewed together by both the radiologists. At the section level exhibiting visually the most pronounced artifacts from electrodes, 4 circular

Table 1: Patient and device characteristics

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>Mean ± SD or No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male/female ratio</td>
<td>10 (29.4):24 (70.6)</td>
</tr>
<tr>
<td>Underlying disease</td>
<td>Parkinson disease 21 (61.8)</td>
</tr>
<tr>
<td>Essential tremor</td>
<td>6 (17.6)</td>
</tr>
<tr>
<td>Dyskinesia</td>
<td>5 (14.7)</td>
</tr>
<tr>
<td>Others</td>
<td>2 (5.9)</td>
</tr>
<tr>
<td>Unilateral/bilateral DBS</td>
<td>6 (17.6):28 (82.4)</td>
</tr>
<tr>
<td>DBS lead model</td>
<td>Model 3387/3389 (Medtronic) 53 (85.5):9 (14.5)</td>
</tr>
<tr>
<td>Targets of DBS</td>
<td>STN/GPi/Vim 42 (67.7):11 (17.7):9 (14.5)</td>
</tr>
</tbody>
</table>

Note: GPI indicates globus pallidus internal; STN, subthalamic nucleus; Vim, ventral intermediate nucleus of thalamus.
ROIs of approximately 20 mm² were drawn around each electrode (Fig 2). Additionally, ROIs were placed on the cerebral white matter (approximately 50 mm²) and adjacent cortical gray matter (approximately 10 mm²) on the frontal lobe at the section level not or least affected by the metal artifacts, while the visible artifacts, focal lesions, and adjacent structures were excluded from the ROIs. The mean and SD of the CT attenuation in each ROI were recorded. The averaged SD of the 4 ROIs placed around each DBS electrode was considered an index of the metal artifacts. For minimizing the effect of background image noise on the metal artifact quantification, we also calculated the artifact index (AI) as follows:

\[
AI = \sqrt{\frac{(SD \text{ around the DBS Electrodes})^2}{(Background \ Image \ Noise)^2}}.
\]

In this study, the SD at the cerebral WM on the frontal lobe was defined as the background image noise in accordance with the literature. The GM-WM contrast was calculated as the difference between the CT attenuations of the GM and WM. This value was divided by the background image noise to calculate the contrast-to-noise ratio. The GM-WM contrast and contrast-to-noise ratio were not measured for the area affected by artifacts because the presence of dark and bright artifacts could make the CT attenuation unreliable for representing brain tissue contrast. The size and location of each ROI were kept constant for non-SEMAR and SEMAR images using the copy and paste function, and quantifications were performed twice to retain data consistency using the averaged values for the analysis. The mean and SD of each quantitative value among 34 patients were calculated for non-SEMAR and SEMAR images.

Qualitative Image Analysis

Two board-certified radiologists having 8 and 11 years of experience who were blinded to the reconstruction algorithms and patient information independently evaluated the non-SEMAR and SEMAR image quality in random order using 4-point scales. Scoring was performed on images without any features to help readers identify the SEMAR and non-SEMAR images. The window level and width were set at 35 and 80 HU, respectively. At the section levels with the most severe artifacts, the severity of metal artifacts from DBS electrodes was assessed as 1 = severe (unacceptable); 2 = moderate (acceptable only under limited conditions); 3 = mild (mostly acceptable); 4 = minimal/absent. The visibility of the electrode localization and intracranial anatomic landmarks (basal ganglia, thalamus, cortico-medullary junction, lateral ventricle, third ventricle, and Sylvian fissure) were scored as 1 = no visualization; 2 = poor (only partially visible); 3 = moderate (mostly visible); and 4 = good (completely visible). At the region not or minimally affected by the artifacts, the background image quality was assessed on the basis of the image noise and GM-WM contrast (1 = undiagnostic; 2 = suboptimal; 3 = average; and 4 = excellent). Then, the overall...
diagnostic confidence was graded as 1 = undiagnostic and 2 = diagnostic only under limited conditions; 3 = mostly diagnostic; and 4 = completely diagnostic. Interreader disagreement was resolved by consensus during a subsequent joint reading to determine the final score. The mean and SD of each score obtained from 34 patients were calculated for SEMAR and non-SEMAR images.

Assessment of New Artifacts Induced by SEMAR
Subsequent to the above blinded qualitative assessments, readers were asked to simultaneously review the SEMAR and non-SEMAR images and to determine the presence and degree of new artifacts developed by the SEMAR algorithm on a 4-point scale (1 = severe, unacceptable; 2 = moderate, partially impaired diagnostic confidence; 3 = mild, mostly acceptable; and 4 = absent). In this session, readers were informed about which image was reconstructed with or without SEMAR. The scoring was performed separately for each section level of high convexity, corona radiata, basal ganglia, and posterior fossa. Figure 1 shows a typical cranial radiographic image of patients implanted with bilateral DBS devices (left) and corresponding axial non-SEMAR images at the section levels for the evaluation of a new artifacts (right). Interreader disagreement was resolved by consensus during a joint reading to determine the final score. The mean and SD values of each final score among 34 patients were calculated for SEMAR and non-SEMAR images.

Table 2: Quantitative analysis

<table>
<thead>
<tr>
<th>Severity of metallic artifacts</th>
<th>Non-SEMAR</th>
<th>SEMAR</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD around DBS electrodes (HU)</td>
<td>28.3 ± 9.1</td>
<td>9.8 ± 3.2</td>
<td><.01</td>
</tr>
<tr>
<td>Artifact index (HU)</td>
<td>28.0 ± 9.2</td>
<td>9.0 ± 3.5</td>
<td><.01</td>
</tr>
<tr>
<td>Background image quality</td>
<td>11.7 ± 2.7</td>
<td>11.6 ± 2.4</td>
<td>.35</td>
</tr>
<tr>
<td>GM-WM contrast (HU)</td>
<td>3.8 ± 0.7</td>
<td>3.7 ± 0.7</td>
<td>.17</td>
</tr>
<tr>
<td>Image noise (HU)</td>
<td>3.2 ± 1.0</td>
<td>3.2 ± 0.8</td>
<td>.65</td>
</tr>
</tbody>
</table>

Table 3: Qualitative image analysis

<table>
<thead>
<tr>
<th>The severity of metallic artifacts</th>
<th>Non-SEMAR</th>
<th>SEMAR</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode localization</td>
<td>1.2 ± 0.4</td>
<td>2.9 ± 0.2</td>
<td><.01</td>
</tr>
<tr>
<td>Basal ganglia</td>
<td>1.5 ± 0.6</td>
<td>3.5 ± 0.5</td>
<td><.01</td>
</tr>
<tr>
<td>Thalamus</td>
<td>1.2 ± 0.4</td>
<td>3.0 ± 0.4</td>
<td><.01</td>
</tr>
<tr>
<td>Cortico-medullary junction</td>
<td>1.1 ± 0.3</td>
<td>2.8 ± 0.5</td>
<td><.01</td>
</tr>
<tr>
<td>Sylvian fissure</td>
<td>1.8 ± 0.3</td>
<td>3.4 ± 0.3</td>
<td><.01</td>
</tr>
<tr>
<td>Lateral ventricle</td>
<td>2.1 ± 0.7</td>
<td>3.7 ± 0.5</td>
<td><.01</td>
</tr>
<tr>
<td>Third ventricle</td>
<td>2.0 ± 0.5</td>
<td>3.8 ± 0.4</td>
<td><.01</td>
</tr>
<tr>
<td>Background image quality</td>
<td>1.6 ± 0.5</td>
<td>3.2 ± 0.7</td>
<td><.01</td>
</tr>
<tr>
<td>GM-WM contrast</td>
<td>3.2 ± 0.6</td>
<td>3.3 ± 0.6</td>
<td>.11</td>
</tr>
<tr>
<td>Image noise</td>
<td>3.2 ± 0.4</td>
<td>3.2 ± 0.4</td>
<td>.32</td>
</tr>
<tr>
<td>Overall diagnostic confidence</td>
<td>1.4 ± 0.5</td>
<td>3.1 ± 0.4</td>
<td><.01</td>
</tr>
</tbody>
</table>

Note: CNR indicates contrast-to-noise ratio; HU, Hounsfield unit.

Statistical Analysis
Statistical analyses were performed using a statistical software package (R statistical and computing software, Version 3.2.2; www.r-project.org/). All numeric values are expressed as mean ± SD, whereas categoric variables are expressed as proportions (percentage). The quantitative measurements between the SEMAR and non-SEMAR images were compared using the paired t test after the normality of the distribution was confirmed using the Kolmogorov-Smirnov test. The subjective scores were compared using the Wilcoxon signed rank test. The interobserver agreement was assessed with the κ values ($\leq 0.20 = \text{poor}, 0.21–0.40 = \text{fair}, 0.41–0.60 = \text{moderate}, 0.61–0.80 = \text{substantial}, \text{and } 0.81–1.00 = \text{perfect}$). $P < .05$ was considered significant.

RESULTS

Quantitative Analysis
Table 2 summarizes the results of quantitative image analysis. The mean and SD around DBS electrodes and artifact index values for SEMAR images were significantly lower than those for non-SEMAR images ($P < .01$). For the brain segments not affected by metal artifacts, no significant differences in GM-WM contrast, image noise, and contrast-to-noise ratio were observed between both images ($P = .17–.65$).

Qualitative Analysis
Table 3 shows the qualitative image-analysis results. SEMAR images provided significantly fewer metal artifacts and improved visibility of electrode localization and surrounding anatomic structures compared with non-SEMAR images ($P < .01$). Subjective scores for GM-WM contrast ($P = .11$) and image noise ($P = .32$) at the region not affected by metal artifacts were not significantly different between SEMAR and non-SEMAR images. The overall diagnostic confidence was significantly higher in SEMAR compared with non-SEMAR images ($P < .01$). Interobserver agreement was moderate to substantial ($\kappa = 0.51–0.72$) for all evaluation criteria. Before the consensus reading, the score disagreement between readers in the visibility of structures, background of image quality, and overall diagnostic confidence ranged from 2/34 to 8/34 cases (5.9% –23.5%) and 1/34 to 9/34 cases (2.9% –26.5%) of non-SEMAR and SEMAR image series, respectively.

*Data are means. Parentheses show the number of cases for which the subjective score before consensus reading was disputed by both readers. Scale for subjective score: 1 = undiagnostic, 2 = suboptimal, 3 = acceptable, 4 = fully diagnostic.
New Artifacts Induced by the SEMAR Algorithm
During simultaneous comparisons, new artifacts created by SEMAR, such as smudged fuzzy high-attenuation areas, were prominently observed at the section level of higher convexity in patients implanted with bilateral DBS devices, whereas they were scantily observed at other section levels and in patients implanted with unilateral DBS devices (Table 4). These new artifacts were mainly derived from looped DBS leads placed under the parietal scalp, degrading the depiction of some intracranial structures such as the sulcus and cortico-medullary junction that could be more clearly visualized in non-SEMAR images (Fig 3). Interobserver agreement for assessing new artifacts was moderate to substantial ($\kappa = 0.52-0.67$).

DISCUSSION
This study demonstrates that SEMAR could improve the visibility of numerous intracranial anatomic landmarks and the diagnostic confidence of head CT for patients with DBS by reducing the metal artifacts from electrodes. Additionally, we confirmed that subjective and objective background image quality (ie, GM-WM contrast and image noise) was identical between SEMAR and non-SEMAR images. In contrast, despite the substantial improvement in the overall diagnostic confidence, the SEMAR algorithm was found to potentially introduce new artifacts, particularly at the area with higher convexity in patients with bilateral DBS.

The usefulness of SEMAR has been noted for patients with several types of metallic implants, while only 2 studies have addressed its feasibility for cranial CT. Pan et al demonstrated that SEMAR could reduce the artifacts from neurosurgical clips or endovascular coils without affecting the quantitative perfusion parameters compared with non-SEMAR images. Katsura et al also revealed that SEMAR substantially reduced the artifacts from platinum endovascular coils while preserving the arterial iodine contrast by analyzing 20 patients who underwent postinterventional cerebral CT angiography. Despite these suggestive findings, no prior study has applied the SEMAR for non-contrast head CT performed for patients with bilateral DBS.

The physical effects causing metal artifacts are primarily dependent on the geometry and composition of the metallic devices. The effects of MAR algorithms on the image quality should be analyzed for individual clinical situations. In this context, our study
revealed that SEMAR could be an effective and suitable technique for evaluating intracranial abnormalities around the DBS electrodes, providing the evidence for an additional clinical applicability of this algorithm. As shown in Figs 2 and 3, some findings hidden under severe streaks in non-SEMAR images could be clearly depicted after SEMAR application, possibly yielding improved diagnostic values and optimal patient management while eliminating the necessity for additional MR imaging.

The reconstruction of higher kilovolt electron volt virtual monoeneregetic imaging from dual-energy CT is another established technique to reduce metal artifacts.6,7 This approach is beneficial for suppressing beam-hardening induced by small and low atomic number metals but requires specific dual-energy CT scanners that are less available than the conventional single-energy CT and may be insufficient for removing bright and dark streaks caused by photon starvation from metals with a large mass or higher atomic number such as DBS electrodes.6,9,10,17,18 Furthermore, increasing the x-ray energy decreases the soft-tissue contrast (e.g., GM-WM contrast) in head CT images due to the reduced photoelectric effect.10,19–22 Such a deterioration of low-contrast resolution may obscure relevant anatomic structures and certain intracranial abnormalities.21 In contrast, the SEMAR algorithm was primarily developed to mitigate the photon starvation induced by metals on conventional single-energy CT, and it only works on pixels segmented as metal on the original image data based on the attenuation threshold. In line with a few reports showing that the iodine contrast enhancement could be preserved in SEMAR images,15,17 we also confirmed that SEMAR could maintain the more subtle attenuation difference of GM-WM contrast (approximately 10 HU) while drastically reducing metal artifacts. The other important advantage of SEMAR relative to the dual-energy CT technique is that artifact reduction can be retrospectively achieved without prospective patient selection, optimizing scan parameters before image acquisition and increasing the radiation dose.

Other than SEMAR, dedicated MAR algorithms have been developed and investigated for patients with DBS.10,23 Aissa et al23 demonstrated that Iterative Metal Artifact Reduction (iMAR; Siemens, Erlangen, Germany) could reduce metal artifacts near DBS electrodes compared with the filtered back-projection algorithm by analyzing 17 patients who underwent head CT after DBS implantation. Furthermore, Große Hokamp et al10 revealed that O-MAR (Philips Healthcare, Best, the Netherlands) could effectively reduce the artifacts from DBS electrodes compared with the conventional iterative reconstruction or high-kiloelectron volt virtual monoeneregetic imaging. Our results were mostly concordant with these preliminary findings despite the substantial differences in imaging properties of each MAR algorithm.9,18,24,25

Previous studies have demonstrated that “new artifacts” could be generated around metallic devices by applying MAR algorithms.5,9,18,24 However, their effect on the image quality has not been assessed in SEMAR images in patients implanted with DBS devices.10,23 New artifacts from SEMAR were prominently observed in the slices with high convexity levels in patients with bilateral DBS, whereas they were scantily observed at the other section levels and in patients with unilateral DBS. The potential explanation of this observation is that the image data at high convexity include multiple thin metal fragments (e.g., looped excess DBS leads placed under the parietal scalp) in-plane.26 Because SEMAR uses a Hounsfield unit threshold for metal segmentation, these conditions might cause a missed metal segmentation and inaccurate interpolation due to metal-induced scattering, partial volume, and beam-hardening artifacts, particularly in patients with bilateral DBS, thus, introducing new artifacts in final SEMAR images.5,6 Although these artifacts could affect only limited anatomic areas and overall diagnostic confidence was substantially improved on SEMAR images, non-SEMAR images should be simultaneously reviewed to avoid misinterpretation.

The past several years have seen an increase in the use of artificial intelligence, such as deep learning in medical imaging, and its feasibility has been exploited for mitigating CT metal artifacts.27,28 For instance, convolutional neural networks have been applied to correct the sinogram data corrupted by metals. Preliminary results have suggested that such a deep learning–based MAR approach outperforms existing MAR algorithms in terms of metal artifact suppression and preservation of the boundary between the implanted metal and surrounding tissue, which is usually difficult to correctly recover in commercially available MAR.27,28 Validating deep learning based MAR algorithms clinical utility and comparison with existing MAR algorithms for DBS settings may be interesting research subjects in the future.

This study has several limitations. First, this is a retrospective single-center study that includes a relatively small number of patients with DBS. Although our sample size was larger than that of recent studies focusing on MAR in head CT,10,15,23 further studies are required to confirm our results. Second, we could not compare the diagnostic performance of SEMAR and non-SEMAR images because of the lack of a sufficient reference standard in most cases. We focused on evaluating subjective and objective image quality to reveal the potential values and limitations of SEMAR as a standard-of-care head CT for DBS settings. Further investigations should be performed to clarify whether the additive use of SEMAR could improve the diagnostic accuracy, patient management, and clinical consequences. Third, in qualitative analysis, the interrater agreement for some variables was relatively limited, possibly due to the inherent nature of subjective assessment. Nevertheless, subsequently performed consensus reading could mitigate the individual assessment bias and make our results generalizable. Last, our results were limited to images obtained with vendor-specific algorithms and our standard-of-care 320–detector row CT protocol and may not be directly transposable to images obtained with other MAR algorithms and different acquisition protocols.9,18,24 Because we could not directly compare the performance of SEMAR with that of different MAR techniques, further investigations are warranted to clarify the most effective MAR for handling the artifacts from DBS devices, particularly for institutions equipped with multiple CT scanners.

CONCLUSIONS

The application of the SEMAR algorithm in patients implanted with DBS devices substantially reduces metal artifacts from
electrodes and improves visualization of numerous anatomic landmarks and the diagnostic confidence of head CT. Given that the new artifacts could be introduced by SEMAR, particularly at the high-convexity levels in patients with bilateral DBS, the combined review of SEMAR and non-SEMAR images might be recommended for more accurate image interpretation.

REFERENCES

Spiral T1 Spin-Echo for Routine Postcontrast Brain MRI Exams: A Multicenter Multireader Clinical Evaluation

ABSTRACT

BACKGROUND AND PURPOSE: Spiral MR imaging has several advantages compared with Cartesian MR imaging that can be leveraged for added clinical value. A multicenter multireader study was designed to compare spiral with standard-of-care Cartesian postcontrast structural brain MR imaging on the basis of relative performance in 10 metrics of image quality, artifact prevalence, and diagnostic benefit.

MATERIALS AND METHODS: Seven clinical sites acquired 88 total subjects. For each subject, sites acquired 2 postcontrast MR imaging scans: a spiral 2D T1 spin-echo, and 1 of 4 routine Cartesian 2D T1 spin-echo/TSE scans (fully sampled spin-echo at 3T, 1.5T, partial Fourier, TSE). The spiral acquisition matched the Cartesian scan for scan time, geometry, and contrast. Nine neuroradiologists independently reviewed each subject, with the matching pair of spiral and Cartesian scans compared side-by-side, and scored on 10 image-quality metrics (5-point Likert scale) focused on intracranial assessment. The Wilcoxon signed rank test evaluated relative performance of spiral versus Cartesian, while the Kruskal-Wallis test assessed interprotocol differences.

RESULTS: Spiral was superior to Cartesian in 7 of 10 metrics (flow artifact mitigation, SNR, GM/WM contrast, lesion conspicuity, preference for diagnosing abnormal enhancement, and overall intracranial image quality), comparable in 1 of 10 metrics (motion artifacts), and inferior in 2 of 10 metrics (susceptibility artifacts, overall extracranial image quality) related to magnetic susceptibility ($P < 0.05$). Interprotocol comparison confirmed relatively higher SNR and GM/WM contrast for partial Fourier and TSE protocol groups, respectively ($P < 0.05$).

CONCLUSIONS: Spiral 2D T1 spin-echo for routine structural brain MR imaging is feasible in the clinic with conventional scanners and was preferred by neuroradiologists for overall postcontrast intracranial evaluation.

ABBREVIATIONS: Cart = Cartesian; IQ = image quality; NA = not applicable; SE = spin-echo; TSE = turbo spin-echo

Structural T1-weighted sequences are a fundamental component of routine postcontrast brain MR imaging examinations. These contrast-enhanced images are used for the diagnostic detection and evaluation of abnormal enhancement, including tumors, infections, and inflammatory diseases. Cartesian 2D T1 spin-echo (SE) is widely used as the standard-of-care, though it is relatively slow due to its single phase-encode per shot k-space coverage, and is not compatible with parallel imaging due to strong free-induction-decay artifacts from the refocusing radiofrequency pulse. Two routine speed-up options include Cartesian 2D T1-SE with partial-Fourier k-space coverage, but at the cost of reduced SNR; alternatively, Cartesian 2D T1 turbo spin-echo...
(TSE) uses an echo-train to cover multiple k-space lines per shot, but at the cost of reduced T1 contrast. A challenge common to all Cartesian methods is flow artifacts originating from CSF/blood flow, which manifest in images as a classic coherent ringing in the phase-encoding direction. These artifacts can obscure lesions and lower overall diagnostic confidence. Flow artifacts are further exacerbated in contrast-enhanced scans due to the hyperintense vascular signal.

Spiral MR imaging, a non-Cartesian technique that uses a spiral k-space trajectory, provides several advantages over routine Cartesian MR imaging. A primary benefit is scan efficiency due to the longer acquisition duration (τ) per shot, which enables a concurrent decrease in scan time and/or an increase in SNR. Spiral MR imaging has demonstrated advantages across a wide range of applications, including diffusion, perfusion, fMRI, and real-time speech. These and previous studies were predominantly performed in research settings, on healthy volunteers, required specialized hardware/reconstruction approaches that are not practical in a high-throughput clinical environment, and/or otherwise described functional (rather than structural) applications with lower image-resolution requirements. Despite its benefits, spiral MR imaging has therefore not gained widespread clinical adoption due to its greater demand on system fidelity (eg, B0 homogeneity, gradient accuracy/precision) and reconstruction complexity.

We present here a multicenter clinical evaluation of spiral MR imaging as an alternative to Cartesian MR imaging for routine structural brain examinations, based on previous sequence optimization efforts and earlier clinical feasibility results. Spiral 2D T1-SE is compared with Cartesian 2D T1-SE/TSE protocols that are representative of standard-of-care postcontrast brain MR imaging. A multireader study assessed relative performance based on 10 metrics of image quality, artifact prevalence, and diagnostic benefit.

MATERIALS AND METHODS

Industrial Support

Patient Population

This prospective multicenter study was approved by the institutional review board at each site and was Health Insurance Portability and Accountability Act–compliant. Subjects were scanned at 7 clinical sites from April 2018 to November 2018, and informed consent was obtained from each subject (4 sites) or waived (3 sites) as a minimum-risk study to add the proposed sequence at the end of a routine brain MR imaging examination.

Patients undergoing clinically indicated postcontrast routine brain MR imaging examinations were eligible for study inclusion. One hundred subjects were initially imaged. Of these, 12 subjects were excluded due to technical factors, protocol deviations that invalidated scan comparisons, and severe bulk motion. Thus, 88 subjects met the inclusion criteria (54 women, 34 men; mean age, 45 ± 22 years) and were subsequently analyzed.

Imaging Methods

The study was performed on five 3T and three 1.5T MR imaging scanners (Ingenia; Philips Healthcare, Best, the Netherlands) with a standard hardware configuration, using a 15- or 32-channel head coil as per the routine of each site. The spiral 2D T1-SE (spiral-SE) sequence consisted of conventional 90°–180° radiofrequency pulses, followed by a fully sampled spiral-out readout with acquisition duration τ ~ 12/22 ms for 3T/1.5T. Crusher gradients around the 180° refocusing radiofrequency pulse provided additional flow signal suppression and black-blood contrast.

The spiral implementation is Dixon-based by design, with samples acquired at 2 or 3 unique TEs to encode chemical-shift information, in order to account for the different blurring properties of water/fat. On-line reconstruction (~ 1 second/slice) was performed using a conjugate gradient algorithm for joint off-resonance deblurring and Dixon-based water/fat separation, resulting in the intrinsic generation of separate water and fat (along with in-phase, out-of-phase) image series. A B0 prescan (~30 seconds) was acquired before the spiral scan for use in reconstruction.

Spiral-SE was evaluated against 4 different Cartesian 2D T1-SE (Cart-SE) based protocols, which reflected the standard-of-care of each site. These 4 protocol comparison groups (G1–G4) were G1, fully sampled Cart-SE at 3T, and G2, at 1.5T; alternatively, as speed-up options, sites used G3, Cart-SE with half scan for partial k-space coverage, and G4, Cartesian 2D T1-TSE with an echo-train to cover multiple k-space lines per shot. Spiral-SE protocols were designed to match each group of G1–G4 for scan time, geometry, and contrast-related parameters as closely as possible, given the constraints of each sequence. Typical parameters for the matching pairs of spiral-versus-Cartesian scans in G1–G4 are shown in the On-line Table.

For each subject, one of the G1–G4 protocols was acquired, resulting in a matching pair of postcontrast spiral-versus-Cartesian scans for subsequent evaluation. The pair of scans was alternately acquired in forward/reverse order (i.e. spiral followed by Cartesian, or Cartesian followed by spiral) to minimize bias related to delayed enhancement, and added to the end of the routine brain examination to minimize disruption to the clinical routine.

Radiologic Assessment

Nine neuroradiologists, representing the participating sites, each performed an independent review of all 88 subjects. For each subject, the matching pair of spiral and Cartesian scans was compared side-by-side and scored relative to one another on 10 image quality (IQ) metrics (M1–M10): M1, flow artifact
mitigation; M2, subjective SNR; M3, GM/WM contrast; M4, image sharpness or delineation of brain structures; M5, individual lesion conspicuity, marked not applicable (NA) if no visible lesions; M6, diagnostic preference for detecting abnormal enhancement, which is the clinical use case of the sequence, in which only diagnostically relevant differences should be considered; M7, overall IQ, intracranial compartment only; M8, motion artifact mitigation; M9, susceptibility artifact mitigation; and M10, overall IQ, extracranial compartment only.

M1–M9 were evaluated in the intracranial compartment only, defined as the brain parenchyma, meninges, and blood vessels. M10 was evaluated in the extracranial compartment only, defined as the skull base and below, as well as the nasal cavity, paranasal sinuses, temporal bone, and orbits. This evaluation was performed to align with the primary clinical use case of the T1-SE/TSE protocol for intracranial compartment evaluation, while providing a summary metric for extracranial compartment assessment. Each metric was scored on an ordinal 5-point Likert scale: 1 = Cartesian is much better; 2 = Cartesian is better; 3 = Cartesian is comparable with spiral; 4 = spiral is better; 5 = spiral is much better. Cartesian and spiral scans were anonymized as “method A” and “method B,” though for the spiral scans, both water-only and water-fat Dixon image series were provided for review.

Statistical Analysis
Statistical analysis was performed in R statistical and computing software (Version 3.5.1; http://www.r-project.org/), and data preparation/plotting, in Python (Version 3.6.7; https://www.python.org/downloads/release/python-367/), with the consultation of a biostatistician (M.T.). Nonparametric statistics were used due to the ordinal scoring data. The one-sample Wilcoxon signed rank test was used to evaluate the relative performance of spiral versus Cartesian. Here, we tested the null hypothesis H_0: $\Delta = 3$ versus H_1: $\Delta \neq 3$, where Δ is the median score over the subject population for a given IQ metric; because a score of 3 = Cartesian is comparable with spiral, null hypothesis rejection H_1 suggests that the scoring distribution is not symmetric about 3 but is in favor of either spiral ($\Delta > 3$) or Cartesian ($\Delta < 3$). The Kruskal-Wallis test was used to assess intergroup similarity (H_0) or difference (H_1) between the distributions of G1–G4, followed by post hoc analysis with the Dunn test for multiple pair-wise comparisons to determine the relative performances within G1–G4. Wilcoxon and Kruskal-Wallis tests were evaluated for each IQ metric MI–M10 using the populations over all subjects ($n = 88$) and also separated by protocol group (G1–G4, $n = 42, 20, 13, 13$, respectively). The median reviewer score was used for a given subject. A P value $< .05$ was chosen for statistical significance (H_1). To control for increased type I error incurred by multiple tests, we adjusted all P values for false discovery rate using the Benjamini-Hochberg procedure. Inter-reviewer agreement was assessed by the k statistic.

RESULTS
Figures 1–4 show images representative of the multireader scoring results for all 10 metrics. Most images are from G1, which is the most direct comparison of fully-sampled single phase-encoded spiral versus Cartesian and the largest sample size; images from other protocol groups are shown when appropriate. On-line Figures 1–4 contain histograms of all scores for each of M1–M10. Images in Figs 1–4 were selected to reflect the histogram trends in On-line Figs 1–4, respectively, and provide complementary information when viewed together as described below.

Figure 1 and On-line Fig 1 illustrate flow artifact mitigation (M1). The most prominent flow artifacts, either due to CSF or blood flow, are often observed in the posterior cranial fossa (Fig 1). These artifacts severely corrupt Cartesian images (bottom row), manifesting as coherent ringing artifacts in the left-right phase-encoding direction, most commonly around the brain stem, transverse sinuses, sagittal sinuses, carotid arteries, and their branches. Matching spirals (top row) demonstrate significant/consistent flow artifact reduction in these areas. This benefit also extends to the middle cranial fossa (On-line Fig 1A). On-line Fig 1B provides a histogram of all M1 scores and is described in more detail in the legend.

Figure 2 and On-line Fig 2 summarize metrics related to general image attributes: subjective SNR (M2), GM/WM contrast (M3), and image sharpness (M4). Histogram distributions (On-line Fig 2) are right-skewed and qualitatively favorable for spiral across all 3 metrics. Subjective SNR (On-line Fig 2A) shows an elevated bar for G3 with a score of 5, corresponding to a higher relative benefit for spiral-versus-Cartesian SE with half scan, compared with protocols G1, G2, G4. Similarly, GM/WM contrast (On-line Fig 2B) shows an elevated bar for G4 with a score of 5, corresponding to a higher relative benefit for spiral-versus-Cartesian TSE, compared with protocols G1, G2, G3. Figure 2 highlights these benefits for protocol groups G1 (fully-sampled reference), G3 (elevated SNR), and G4 (elevated contrast).

Figure 3 and On-line Fig 3 demonstrate spiral improvement for clinically related metrics: individual lesion conspicuity (M5) and diagnostic preference for detecting abnormal enhancement (M6), together with a summary score for overall intracranial IQ (M7). Histograms (On-line Fig 3) show right-skewness in favor of spiral across all 3 metrics. Figure 3 highlights the increased diagnostic confidence for spiral in areas with pathologies, including areas with superior suppression of strong flow-ringing artifacts (column 1), removal of more subtle vascular artifacts that may otherwise be confounded with enhancing lesions (columns 2 and 3), and improved lesion visualization due to overall higher SNR (columns 4–6).

Figure 4 and On-line Fig 4 show metrics for motion artifacts (M8), susceptibility artifacts (M9), and overall extracranial IQ (M10). Histograms (On-line Fig 4) show spiral performed comparable with (M8) or poorer than Cartesian (M9, M10). Figure 4A shows increased susceptibility artifacts for spiral around areas of artificially/naturally occurring magnetic susceptibility, which can manifest as signal loss and residual blurring. Similar susceptibility artifacts are observed in the extracranial space for spiral, as reflected in the M10 scores in favor of Cartesian (On-line Fig 4C). Further inspection of On-line Fig 4C shows that ~15% of all cases were given a score of 4, predominantly by 2 reviewers (orange, green). These 2 reviewers commented that despite the
FIG 1. Images illustrating metrics: flow artifact mitigation (M1). See Online Fig 1 for corresponding histogram of scores. Spirals demonstrate significant and consistent flow artifact mitigation in the inferior slices. All images are taken from G1. Columns 1-2. Strong flow artifacts around the brain stem and sagittal sinus (brace) in Cartesian are effectively suppressed in spirals, where the previously obscured brain stem and cerebellum are now clearly visualized. Column 3-5. Cartesians exhibit severe flow-ringing artifacts in the phase-encoding direction (left-right) originating from the transverse sinuses and carotid arteries. Spirals produce significantly cleaner images, making visible the cerebellum, anterior temporal lobe, and trigeminal nerves (white arrows); residual flow artifacts in spiral manifest as faint circular ripples emanating from the flow source (black arrows). Column 6. Flow signal in the branches of the carotid, vertebral arteries, and the straight sinus (brace) is well-suppressed in spiral, providing finer structural details of the frontal basal area and cerebellum (star). In Figs 1-4, all spiral images are water-only for brevity.

Generally better extracranial IQ of Cartesian, spiral was preferred on a case-by-case basis due to its intrinsic Dixon capability. Figure 4B highlights this advantage, in which spiral water-only images are beneficial for delineating pathologies in/around fat tissue.

Figure 5 summarizes the statistical analysis. The Wilcoxon signed rank test showed that spiral performs better than Cartesian (green) in 7/10 metrics, M1-M7, across all protocol groups; spiral is comparable with Cartesian (blue) in 1/10 metric, M8, across all protocol groups; spiral performs poorer than Cartesian (red) in 2/10 metrics, M9-M10, across all protocol groups, with the exception of M9, G4 (blue). The Kruskal-Wallis with Dunn post hoc analysis provides statistical confirmation of the interprotocol trends observed in the histograms. M2, G3 showed relatively better performance than all other protocols, consistent with the elevated bar in On-line Fig 2A. Similarly, M3, G4 performed better relative to all other protocols, matching the elevated bar in On-line Fig 2B. Inter-reviewer agreement scores based on the original 5-point scale (κ_{5cat}) are "slight" to "fair." To further investigate inter-reviewer agreement, all scores were aggregated to a 3-point scale, as either Cartesian is much better or better (scores = 1, 2, respectively), Cartesian is comparable with spiral (score = 3, unchanged), or spiral is better or much better (scores = 4, 5, respectively). Inter-reviewer agreement scores based on this 3-point scale (κ_{3cat}) improved to "moderate" or "substantial" for some metrics, suggesting that a source of inter-reviewer difference is due to assessing "better" versus "much better" conditions rather than an entirely different preference between spiral or Cartesian. The Wilcoxon signed rank test was repeated with scores based on the 3-point scale (On-line Figure 5), which did not change the overall conclusions of Figure 5.

DISCUSSION

This multicenter clinical evaluation of spiral MR imaging was conducted at sites that represent a variety of MR imaging expert levels, from luminary research institutions to hospitals with limited research support. Furthermore, spiral acquisition and reconstruction were performed on both 3T and 1.5T scanners with standard hardware configurations. To the best of our knowledge, this multicenter study is the first of its scale and kind to demonstrate the clinical feasibility of spiral MR imaging for routine structural imaging.

Spirals were superior to standard-of-care Cartesian in 7 of 10 assessed metrics. From M1 to M5, the strongest consensus benefit of spiral was flow artifact mitigation, followed by subjective SNR and GM/WM contrast. These cumulative benefits enabled clearer visualization of brain structures and lesions, resulting in better scores in M6-M7 for overall diagnostic preference and intracranial image quality, respectively. The most prominent areas of benefit included the middle cranial fossa, deep gray matter, and posterior cranial fossa. In the middle cranial fossa, reduced flow artifacts around the carotid arteries, in particular, increased diagnostic confidence for temporal lobe pathologies. In deep gray matter, increased SNR, contrast, and lack of flow from the third ventricle and small vessels improved demarcation of the basal ganglia and adjacent white matter tracts. In the posterior cranial fossa, significant flow artifact mitigation from the vertebrobasilar arteries, venous sinuses, fourth ventricle, and foramen magnum dramatically improved image quality of the brain stem, cerebellum, and cranial nerves. Improved anatomic visualization...
benefits brain imaging in general and, specifically, applications requiring precise anatomic localization such as presurgical planning and image-based morphology. Also, pathologies adjacent to fat tissue were better depicted, exploiting the intrinsic Dixon, suggesting potential utility in head and neck imaging.

The higher scan efficiency of spirals can be leveraged for faster scans and/or increased SNR. In this study, spirals were scan time–matched to Cartesian, resulting in an SNR benefit (M2). With protocol G1 as an example, spirals achieved ~150% higher SNR versus Cartesian. If speed is prioritized, a fully-sampled spiral is approximately 4 times faster (scan time = 54 seconds) with ~75% SNR versus Cartesian. If it is SNR-matched, spiral is approximately 2.3 times faster (scan time = 94 seconds). Two current speed-up options for routine Cart-SE–based protocols come with trade-offs: reduced SNR due to partial k-space coverage (G3) and reduced GM/WM contrast due to the longer echo-train (G4). In both cases, a fully sampled, scan time–matched spiral was acquired without these trade-offs. Interprotocol histogram and Kruskal-Wallis analysis confirm this advantage, with spirals in G3 and G4 demonstrating relatively higher scores for subjective SNR (M2) and GM/WM contrast (M3), respectively, compared with the other protocols. Spirals prioritizing speed may benefit fast screening, and emergency department protocols.

Vascular applications are an area where the scan efficiency, flow suppression, and intrinsic Dixon of the spiral may be leveraged for added clinical value. Vessel wall imaging using current 2D techniques is slow due to high spatial resolution and requires CSF/blood signal suppression and fat suppression for vessels near the scalp—attributes that have been addressed with the proposed spiral 2D T1-SE. Flow suppression also benefits tumor imaging by separating vascular components in tissue, enabling more precise tumor-size assessment and differentiation of thrombosed/flowing components in vascular tumors. Promising early results have also been demonstrated with spiral TOF-MRA. For structural T1-weighted sequences, many protocols prefer 3D over 2D scans; a high-resolution isotropic spiral 3D sequence, with the detailed advantages, will be a competitive alternative to current Cartesian 3D sequences and could eliminate the need for additional fat-suppressed scans as demonstrated for orbit examinations.

Spirals were comparable with Cartesian in 1 of 10 metrics, motion artifacts. The spiral k-space trajectory itself is less sensitive to motion. However, a confounding factor is spatial misregistration between the B0 prescan and the spiral scan due to bulk head motion, which would result in residual blurring. Further study is required to separate these effects, which may also be mitigated with concurrent motion-tracking/B0 mapping or self-B0 techniques.

FIG 2. Images for metrics: subjective SNR (M2), GM/WM contrast (M3), and image sharpness (M4). See On-line Fig 2 for corresponding histograms of scores. Column 1, Spiral has higher SNR and GM/WM contrast as demonstrated by the sharper demarcation of the putamen (P) and globus pallidus (G) from surrounding WM tracts. The internal capsule, claustrum, external capsule, and extreme capsule are clearly distinguishable on spiral (white and black arrows), with sharper margins and higher contrast compared with Cartesian. The cortex and subcortical WM show higher contrast as well. Column 2, Grade II isocitrate dehydrogenase (IDH) mutant astrocytoma following radiation therapy is seen in the right hemisphere, showing a more detailed appearance on the spiral (black arrow). The higher spiral SNR also enables confident detection of an enhancing metastasis in the left parietal lobe (white arrow); this lesion is only faintly visible on the Cartesian. Column 3, Spiral shows better defined borders of the vasogenic edema (white arrows) surrounding the contrast-enhancing metastasis. The overall appearance of the lesion is the same on the 2 sequences. Column 4, Spiral demonstrates higher GM/WM contrast, particularly conspicuous by comparing details of the basal ganglia and delineation of the caudate head (C), lateral borders of the anterior putamen (black arrow), and claustrum (white arrow). The cerebral cortex and subcortical WM are better distinguished (star). Column 5, Meningitis (white arrow) and early cerebritis. The extent of the vasogenic edema is easier to assess on spiral due to the higher contrast and sharper boundary with the WM (black arrows). The contrast between WM and deep GM structures (BG) and the cortex (star) is again higher with spiral. Column 6, Spiral GM/WM contrast is generally higher, while Cartesian has less distinguishable GM/WM boundaries. Internal structure of the intraventricular meningioma shows more details, evident by smaller areas of increased enhancement (black arrows) and vascular structures (white arrows) due to spiral flow compensation.
FIG 3. Images for metrics: individual lesion conspicuity (M5), diagnostic preference for detecting abnormal enhancement (M6), and overall intracranial IQ (M7). See On-line Fig 3 for corresponding histograms of scores. All images are taken from G1. Column 1, Enhancing lesion (white arrow) and surrounding area are better evaluated due to spiral flow artifact reduction. Columns 2 and 3, Misleading hyperintense vascular artifacts (black arrows) are removed in spiral, along with flow-ringing artifacts (braces). Column 4, Cavernous hemangioma in the right basal ganglia (white arrow). The peripheral vascular component is well-separated from the central, contrast-enhancing part by spiral flow suppression. Column 5, An enhancing demyelinating lesion (white arrow) is better depicted on spiral. The spiral was acquired before the Cartesian in this case; thus, the difference is not a result of delayed enhancement. Better delineation of the cortex and higher GM/WM contrast are seen again (circle), along with removal of flow ringing (brace). Column 6, Postsurgical residual enhancement (white arrow) has higher signal and better delineation in spiral, which increases diagnostic confidence.

FIG 4. Images for metrics: motion artifacts (M8), susceptibility artifacts (M9), and overall extracranial IQ (M10). See On-line Fig 4 for corresponding histograms of scores. A, More pronounced susceptibility artifacts in spirals, appearing as signal voids and residual blurring. These occur in areas where the B_0 field changes rapidly, such as around metallic implants, surgical clips, and resections (black arrows), as well as air/tissue interfaces in the nasal cavity and sinuses (white arrows). Spiral benefits can be seen in the more detailed internal structure of the enhancing area and flow artifact suppression (braces). B, Extracranial examples that benefit from the intrinsic Dixon water/fat separation of the spiral. Column 4, Spiral shows increased conspicuity of left periorbital inflammatory stranding (dashed circle). Column 5, Sinus and soft-tissue pathology, where spiral increases the visibility of asymmetric inflammatory stranding in the left masticator space (star), though susceptibility artifacts limit visualization of the left maxillary sinus retention cyst (white arrow), while the right maxillary sinus fluid is seen with both techniques. Column 6, Left glomus jugulare tumor (white circle), where spiral highlights the enhancing tumor and separates it from the adjacent fat, while also mitigating posterior fossa flow artifacts (brace).
Spiral performed poorer than Cartesian in 2 of 10 metrics, both related to magnetic susceptibility in areas where the B₀ map changes rapidly or is not well-defined. Signal voids and residual blurring can occur in these areas; while these susceptibility artifacts were readily recognizable and did not mimic pathology, diagnostic confidence in artifactual regions may be reduced. Imaging in areas of large magnetic susceptibility is a technical challenge for spiral due to its longer acquisition duration τ, which increases the sensitivity of the technique to off-resonances. Shortening τ, especially when imaging near metal implants, is one solution, though at the cost of scan efficiency. For maintaining a longer τ while mitigating susceptibility artifacts, solutions include improved system characterization and alternative deblurring/autofocusing algorithms.

There were several limitations to our study. While the reviewers were blinded to the spiral and Cartesian scan names for scoring, the images themselves contained potentially distinguishable characteristics such as flow artifacts that manifested as swirls in spiral-versus-ri ming in Cartesian due to their inherently different k-space trajectories. Such features could make each method identifiable to a trained neuroradiologist. Furthermore, spiral images included additional features such as Dixon (water/fat separation) and crusher gradients (flow signal suppression), which could represent a source of sequence identification and/or potential bias.

Regarding Dixon, we elected to distinguish this as an intrinsic benefit of our spiral design and so provided both spiral water-only and water+fat Dixon image series for review. An alternative approach would be acquisition of Cartesian Dixon with matching Dixon image series. However, this approach would have required changing the standard-of-care for the Cartesian approach, and the added duration would have been impractical for the clinical workflows in this multicenter study. For example, a protocol G1 Cartesian scan time of 3:35 minutes would have doubled to 7 minutes with 2-TE Dixon; paired with a spiral scan time matched to 7 minutes, the result is an additional 14 minutes per subject.

Regarding crusher gradients, this option is not commercially available with the vendor’s Cart-SE. The spiral-SE uses a spiral-out readout, which enables the insertion of crusher gradients with a minimum increase in TE. On the other hand, insertion of crusher gradients into the Cart-SE would further increase TE (and TR), resulting in reduced SNR and GMWM contrast. To avoid these trade-offs and to compare with standard-of-care, we therefore did not add crusher gradients to the Cart-SE.

To control for these differences, this study was therefore designed to achieve a fair comparison between spiral and Cartesian protocols by closely matching scan time, geometry (FOV, voxel volume), and contrast-related parameters (TR, TE, flip angle). Standard-of-care Cart-SE/TSE parameters were used as a fixed reference. Spiral SE protocols were then optimized, given these parameter constraints, including the addition of Dixon and crusher gradients within the same scan time, and so forth. Such parameter matching was performed across all protocols and scanners in this multicenter evaluation.

CONCLUSIONS

Spiral 2D T1-SE for routine structural brain MR imaging is feasible in a clinical population, can be performed at both 3T/1.5T with conventional scanner hardware, and provides several added-value benefits compared with standard-of-care Cartesian 2D T1-SE/TSE. Spiral was superior to Cartesian in 7 of 10 assessed metrics—with strong consensus benefits to flow artifact mitigation,
subjective SNR, and GM/WM contrast—and was preferred by neuroradiologists for overall postcontrast intracranial evaluation (M6, M7). Spiral was comparable with Cartesian in 1 of 10 metrics and inferior in 2 of 10 metrics, most notably related to magnetic susceptibility. Ongoing methods development aims to improve the robustness of spiral MR imaging in these areas, while also exploring new clinical applications.

ACKNOWLEDGMENTS

We thank the following MR imaging technologists for preliminary sequence testing to support protocol optimization: Michael McGranor, Amber Pokorney, Aaron Coofer, Efrem Acosta, Soorena Rejaey, Stacey Sullivan Richard, and Noah Briller. We also thank Philips Healthcare for technical support and helpful discussions: Jan Groen, Miha Fuderer, Ad Moerland, Gerald van Ensberg, Wim Prins, Johan van den Brink, Ashwin Krishnakumar, Kim van de Ven, Liesbeth Geerts-OSsevoort, Patrick Gross, Elizabeth Moore, Jonathan Chia, Marc Van Cauteren, Peter Martin, and Paul Folkers.

REFERENCES

MR Diffusional Kurtosis Imaging–Based Assessment of Brain Microstructural Changes in Patients with Moyamoya Disease before and after Revascularization

P.-G. Qiao, X. Cheng, G.-J. Li, P. Song, C. Han, and Z.-H. Yang

ABSTRACT

BACKGROUND AND PURPOSE: Conventional imaging examinations are insufficient to accurately assess brain damage in patients with Moyamoya disease. Our aim was to observe brain microstructural changes in patients with Moyamoya disease by diffusional kurtosis imaging and provide support data for application of this technique in individualized assessment of disease severity and surgical outcome among patients with Moyamoya disease.

MATERIALS AND METHODS: A total of 64 patients with Moyamoya disease and 15 healthy volunteers underwent diffusional kurtosis imaging, and a second scanning was offered to surgical patients 3–4 months after revascularization. The diffusional kurtosis imaging parameter maps were obtained for mean kurtosis, axial kurtosis, radial kurtosis, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. The parameter values were measured in sensory pathway–related regions for all subjects. Differences in diffusional kurtosis imaging parameters of these brain regions were examined for healthy volunteers, patients without acroparesthesia, and asymptomatic and symptomatic sides of patients with acroparesthesia. Changes in diffusional kurtosis imaging parameters of patients with Moyamoya disease before and after revascularization were compared.

RESULTS: Compared with healthy volunteers, patients with Moyamoya disease showed decreased mean kurtosis, axial kurtosis, radial kurtosis, and fractional anisotropy in the corona radiata. Similarly, mean kurtosis, radial kurtosis, and fractional anisotropy decreased in the posterior limb of the internal capsule, whereas axial kurtosis decreased and radial kurtosis increased in the thalamus of patients with Moyamoya disease compared with healthy volunteers. Compared with the asymptomatic contralateral hemisphere, the symptomatic group showed increased mean kurtosis in the contralateral primary somatosensory cortex, increased fractional anisotropy in the contralateral corona radiata and posterior limb of the internal capsule, and decreased axial kurtosis in the contralateral thalamus. Among patients with Moyamoya disease with acroparesthesia, mean kurtosis decreased in the primary somatosensory cortex on the operated side following revascularization.

CONCLUSIONS: The diffusional kurtosis imaging technique is applicable to patients with Moyamoya disease for detecting brain microstructural changes in white and gray matter before and after revascularization; this feature is useful in the assessment of disease severity and surgical outcome.

ABBREVIATIONS: AD = axial diffusivity; AK = axial kurtosis; DKI = diffusional kurtosis imaging; EDAS = encephaloduroarteriosynangiosis; FA = fractional anisotropy; MD = mean diffusivity; MK = mean kurtosis; MMD = Moyamoya disease; RK = radial kurtosis; RD = radial diffusivity; SI = primary somatosensory cortex; TTP = time-to-peak

Moyamoya disease (MMD) is a chronic occlusive cerebrovascular disease characterized by stenosis and occlusion of the terminal portion of the bilateral internal carotid arteries

Please address correspondence to Zheng-Han Yang, MD, Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 YongAn Rd, Beijing, 100050, P.R. China; e-mail: cjr.yangzhenghan@vip.163.com

 Indicates open access to non-subscribers at www.ajnr.org

http://dx.doi.org/10.3174/ajnr.A6392
Still unclear, and its clinical manifestations vary among patients. Even patients in the same Suzuki stage may manifest different clinical features. In addition, the detection rate of asymptomatic MMD has been growing year by year, which further perplexes MMD treatment. In a multicenter study conducted in Japan, 75% of the affected hemispheres in asymptomatic patients with MMD were classified into Suzuki stages III–IV, and ~45% of the affected hemispheres had decreased cerebral vascular reactivity or cerebral blood flow, whereas 20.8% of the affected hemispheres had cerebral infarction lesions. Patients with MMD may have different clinical manifestations in long-term chronic ischemic conditions even if the Suzuki stage is identical and no changes in brain parenchyma are detected by conventional MR imaging. Therefore, conventional imaging examinations are insufficient to accurately assess brain damage in patients with MMD.

DWI-based DTI and diffusional kurtosis imaging (DKI) can illustrate fine changes in the microstructure of the central nervous system and quantitatively assess the damage to brain tissue. On the basis of a Gaussian distribution model, DTI can reflect microstructural changes in cerebral white matter and detect its integrity because DTI parameter changes are sensitive indicators for structural changes in axons, myelin, and organelles. This technique can be used to detect changes in early ischemic damage for patients with MMD, among whom such early damage may be associated with neurologic impairment. However, DTI is not sensitive to changes in cerebral gray matter due to the distribution and diffusion isotropy. On the basis of a non-Gaussian distribution model, DKI can sensitively reflect microstructural changes in gray matter areas, neurodegenerative diseases, tumor microenvironment, and postraumatic brain tissue. The use of DKI enables the detection of more extensive brain damage in patients with MMD, especially early damage to the intersection of white matter fibers.

Despite early detection of white matter microstructural damage in patients with MMD by DTI and DKI, the association between such damage and neurologic impairment in these patients remains unclear. While a handful of studies have suggested an association between this damage and cognitive impairment, its relationship with MMD and other common sensory, motor, verbal, and visual impairments is yet to be reported. In addition, there is a dearth of studies on early damage to white matter and patient prognosis, as well as the associated changes following revascularization. Moreover, DKI allows detection of gray matter microstructural changes, yet such changes have received far less investigation in patients with MMD.

In this study, we used DKI to detect microstructural changes in sensory pathway–related regions of brain tissue among patients with MMD with acroparesthesia and clarified whether such changes would improve in these patients following revascularization. The results could provide support for the application of DKI in individualized assessment of disease severity and surgical outcome among patients with MMD.

MATERIALS AND METHODS

Subjects

Sixty-four patients with MMD (27 men and 37 women) were recruited from July 2015 to April 2016. The patients had a median age of 35 years (range, 16–45 years). Thirty-three patients presented with unilateral paroxysmal numbness or hypoesthesia, 15 of whom underwent encephaloduroarteriosynangiosis (EDAS). Acroparesthesia was absent in the remaining 31 patients, 14 of whom underwent EDAS.

The inclusion criteria were as follows: 1) The patient was diagnosed and staged by digital subtraction angiography; 2) the patient remained in a stable condition, had no cerebral hemorrhage before scanning, presented with no cerebral infarction in the bilateral primary somatosensory cortex (SI) by conventional MR imaging, and cooperated with the examination; 3) the patient reported no other neurologic or psychiatric diseases; and 4) the patient was right-handed.

In addition, 15 healthy age- and sex-matched volunteers were selected. All subjects were provided with details of the examination and the necessary precautions. Signed informed consent was obtained from each subject before the examination. The ethics committee of the Affiliated Hospital of Academy of Military Medical Sciences approved the study.

MR Imaging

The MR imaging was performed on a 3T Skyra MR imager (Siemens, Erlangen, Germany) using a 32-channel standard head coil. All subjects underwent DKI, whereas patients with MMD also underwent contrast-enhanced DSC MR imaging. MR imaging was performed for all patients within 1 week before and after digital subtraction angiography, and a second MR imaging was offered to 29 surgical patients 3–4 months following EDAS.

DKI scans were acquired by axial echo-planar imaging using the following parameters: TR = 5600 ms; TE = 92 ms; FOV = 228 mm; matrix = 384 × 384 mm²; section thickness = 3 mm; b-value = 0, 1000, and 2000 s/mm²; direction of diffusion-sensitive gradient field applied = 30°; and scanning time = 7 minutes 2 seconds.

DSC-MR imaging was performed by echo-planar imaging using the following parameters: TR = 1870 ms; TE = 30 ms; FOV = 220 mm; matrix = 128 × 128 mm²; section thickness = 4 mm; section spacing = 1.2 mm; section number = 24; and acquisition time phase = 60 seconds. After the start of the scan, a high-pressure syringe was used to inject a gadolinium-based contrast agent (0.2 mL/kg; gadopentetate dimeglumine, Magnevist; Bayer HealthCare Pharmaceuticals, Wayne, New Jersey) at the rate of 4–5 mL/s in the sixth time phase.

DKI Analysis

Data were exported from the workstation and converted to the NIfTI data format using "dcm2niigui" in MRicron (Version 6; https://www.nitrc.org/projects/mricron/). The converted data were imported into the Diffusional Kurtosis Estimator (Version 2.5.1; Medical University of South Carolina Center for Biomedical Imaging, Charleston, South Carolina) for preprocessing, namely spatial smoothing (full width at half maximum = 3.75), median filtering, linear trend removal, and denoise processing.

Seven DKI parameters were extracted (Fig 1): mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). The parameter values were
measured in the bilateral SI, corona radiata, posterior limb of the internal capsule, and thalamus of all subjects using the ROI method by a radiologist who had >10 years of experience in neuroimaging. Three circular ROIs (5 mm in diameter) were selected at random from different layers of each brain region. The ROIs were not selected from the infarct region. Finally, the mean of the ROIs was taken as the quantitative DKI parameter value in each region.

DSC-MR Image Analysis

The DSC-MR images were imported into the syngo via 20 postprocessing workstation (Siemens). Four hemodynamic parameter maps were obtained using the arterial input function model: relative cerebral blood volume, relative cerebral blood flow, relative mean transit time, and time-to-peak (TTP). In clinical practice, we found that TTP is more sensitive than the other 3 parameters in detecting hemodynamic impairment in patients with Moyamoya disease and their hemodynamic improvement after vascular reconstruction. In a study by Wityk et al, TTP was also used to evaluate hemodynamic changes in patients with Moyamoya disease after vascular reconstruction. Therefore, we selected TTP to evaluate hemodynamic changes in patients with Moyamoya disease.

Statistical Analysis

A preliminary comparison revealed no obvious differences in DKI parameters of the bilateral SI, corona radiata, posterior limb of the internal capsule, and thalamus among healthy volunteers. Hence, data from the left and right sides of healthy volunteers were combined to compose the control group. In addition, data from the left and right sides of patients with MMD without acroparesthesia were combined to form the group without acroparesthesia, and data from the symptomatic and asymptomatic sides of patients with unilateral acroparesthesia were combined to form the symptomatic and asymptomatic groups, respectively. All statistical analyses were performed using SAS (Version 9.3; SAS Institute, Cary, North Carolina). The Kruskal-Wallis test was used to determine differences in DKI parameters among the 4 groups. The paired-samples t test or signed rank test was used to compare DKI parameters between the symptomatic and asymptomatic groups of patients with MMD with acroparesthesia, as well as to compare DKI parameters and ΔTTP on the operated side of surgical patients before and 3–4 months after EDAS. A P value < .05 was considered statistically significant.

RESULTS

Differences in DKI Parameters of Sensory Pathway–Related Brain Regions in Patients with MMD

Comparison of DKI parameters among the 4 groups revealed no significant changes in the SI of patients with MMD compared with healthy volunteers (Fig 2). However, patients with MMD had decreased MK, AK, RK, and FA values and increased MD, AD, and RD values in the corona radiata (Fig 3). In addition, the MK, RK, and FA decreased, whereas the MD and RD values increased in the posterior limb of the internal capsule among patients with MMD.
patients with MMD (Fig 4). Decreased AK and increased RK, AD, and RD values were noted in the thalami of patients with MMD (Fig 5).

Self-paired comparison of patients with MMD with acroparesthesia revealed that compared with parameter values of the asymptomatic contralateral hemisphere, the MK value was increased and the ΔTTP was prolonged in the symptomatic contralateral SI (Fig 2). In addition, increased FA values and prolonged ΔTTP were observed in the symptomatic contralateral corona radiata (Fig 3) and posterior limb of the internal capsule (Fig 4). The AK decreased whereas the MD and AD values increased in the symptomatic contralateral thalamus, but no significant change was found in the ΔTTP (Fig 5).

Changes in DKI Parameters of Sensory Pathway–Related Brain Regions in Patients with MMD following EDAS

Among the 15 surgical patients with acroparesthesia, limb symptoms disappeared in 9 patients and were markedly mitigated in the other 6 patients 3–4 months after EDAS. Compared with before the operation, the ΔTTP was shortened and the MK value decreased, whereas the MD, AD, and RD values increased in the SI of the operated side (Table 1).
However, no significant changes in DKI parameters were observed in the corona radiata, posterior limb of the internal capsule, or thalamus on the operated side.

The preoperative symptoms of the 14 surgical patients without acroparesthesia were dizziness, headache, blurred vision, or inarticulateness. These symptoms were mitigated or disappeared 3–4 months after EDAS. Compared with before the operation, the ΔTTP was shortened and the MK decreased in the SI on the operated side (Table 2), whereas the ΔTTP was shortened, the FA decreased, and the RD increased in the corona radiata on the operated side (Table 3). The DKI parameters did not change significantly in the posterior limb of the internal capsule or thalamus before and after the operation.

DISCUSSION

This study shows that DKI can detect microstructural changes in brain tissue among patients with MMD before the detection of brain parenchymal changes by conventional MR imaging. The white matter microstructure may change in patients with MMD during long-term chronic ischemia, even in those with normal-appearing white matter. On the basis of DTI, Jeong et al found...
a decrease in the FA values but an increase in the ADC values in the bilateral corona radiata of patients with MMD. Using DKI, Kazumata et al.16 found that the MK value decreased in the white matter on the right forehead; the white matter in the occipital subcortex; and the frontoparietal white matter in the superior longitudinal fasciculus branches, corona radiata, corpus callosum, and bilateral thalamus of patients with MMD. However, these 2 studies did not report microstructural changes in relevant brain regions among patients with MMD with specific clinical symptoms. In other words, the changes observed in the white matter of patients with MMD may occur commonly in long-term chronic ischemic conditions. Therefore, such changes cannot explain the diversity of clinical symptoms in patients with MMD.

Here, we observed the changes in DKI parameters of sensory pathway–related brain regions among patients with MMD with unilateral acroparesthesia. Compared with healthy volunteers, the patients with MMD presented similar changes in sensory pathway–related white matter regions, including the posterior limb of the internal capsule and corona radiata. This result is in agreement with the observations of Jeong et al.10 and

*FIG 4. Comparison of DKI parameters in the contralateral posterior limb of the internal capsule among healthy volunteers (controls), patients with MMD without acroparesthesia, the asymptomatic side of patients with MMD with acroparesthesia, and the symptomatic side of patients with MMD with acroparesthesia. Group means were compared using the Kruskal-Wallis test. Different letters on the column indicate significant differences by pair-wise comparison ($P < .05$). The asterisk represents a significant difference between the symptomatic and asymptomatic sides of patients with acroparesthesia by self-paired comparison (signed rank test, $P < .05$). Error bars represent standard errors. IC indicates internal capsule.
Kazumata et al. Among the DKI parameters reflecting white matter changes, a decrease of RK is associated with demyelination, whereas a change of AK reflects axonal degeneration. An increase of RD is linked to myelin degeneration or increased extracellular fluid around the ventricle, and an increase of AD is related to axonal degeneration. Therefore, dynamic changes in DKI parameters of the white matter among patients with MMD represent degenerative changes in brain tissue during long-term chronic ischemia.

On the basis of paired comparison of sensory pathway–related brain regions between the symptomatic and asymptomatic groups of patients with MMD with acroparesthesia, we observed increased MK values in the contralateral SI, increased FA in the contralateral corona radiata, increased FA values in the contralateral posterior limb of the internal capsule, and increased TTP in the corresponding region of the symptomatic contralateral hemisphere. In an ischemic state, the increase of MK may represent acute brain damage related to axon beading, microglia upregulation, or other microstructural changes. The increase of FA in white matter can occur in the case of insufficient brain perfusion (but not infarction). This change of FA, which also represents acute brain damage, may be related to cytotoxic
and the MK value was decreased in the SI on the operated side. Among the patients with MMD undergoing revascularization, the symptoms in patients with MMD. Among the patients with edema without a significant change in structural coherence. All such brain damage may be the main cause of the clinical symptoms in patients with MMD. Among the patients with MMD undergoing revascularization, the ΔTTP was shortened and the MK value was decreased in the SI on the operated side. In addition, the ΔTTP was shortened, and the FA value decreased in the corona radiata on the operated side. All these postoperative changes were associated with improved clinical symptoms in the surgical patients. These results suggest that the observed changes in the SI and white matter regions are reversible along with the improvement of cerebral blood perfusion.

This study was the first to investigate changes in DKI parameters of sensory pathway–related brain regions among patients with MMD with acroparesthesia. In the case of long-term chronic ischemia, the microstructure of brain tissue may be altered and the DKI parameters likely undergo changes (a decrease in kurtosis, a decrease in FA, and an increase in diffusivity) in patients with MMD. When the hemodynamic state is stable, these parameters are also in a relatively stable or pseudonormal state; on further hemodynamic damage, some acute or specific changes may occur in the microstructure of the brain, causing DKI parameter changes (an increase in the MK of the gray matter and an increase in the FA of the white matter). These changes would return to a pseudonormal state during hemodynamic improvement after revascularization.

During the follow-up of MMD, DSC-MR imaging is an important technique for the assessment of cerebral blood perfusion; however, there is no clear standard to assess the severity of the disease. Our results indicate that DKI enables timely detection of changes in brain tissue microstructure of patients with MMD with reduced cerebral blood perfusion, which is helpful to assess the disease severity and the surgical outcome.

Our study has some limitations. First, the patients had re-examination results for only 3–4 months after the operation and lacked a long-term follow-up record. Because indirect revascularization was used as the surgical approach for all patients, a longer follow-up period could facilitate the study of changes in DKI parameters during hemodynamic improvement. Second, due to the small sample size, especially of postoperative samples, it was impossible to effectively determine changes in DKI parameters for patients with different symptom improvements after the operation. Third, functional imaging techniques that can quantitatively reflect cerebral blood flow changes, such as PET and SPECT, were not used for the hemodynamic assessment.

CONCLUSIONS

The DKI technique can detect microstructural changes in the cerebral white and gray matter of patients with MMD before and after revascularization in a timely manner. It is a sensitive

Table 1: Comparison of DKI parameters in the primary somatosensory cortex of the operated side in patients with MMD with unilateral acroparesthesia before and after encephaloduroarteriosynangiosis

<table>
<thead>
<tr>
<th>DKI Parameter</th>
<th>Before EDAS</th>
<th>After EDAS</th>
<th>Statistic</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td>0.80 ± 0.09</td>
<td>0.75 ± 0.09</td>
<td>t = −2.5012</td>
<td>0.02</td>
</tr>
<tr>
<td>AK</td>
<td>0.72 ± 0.07</td>
<td>0.68 ± 0.07</td>
<td>t = −2.1028</td>
<td>0.06</td>
</tr>
<tr>
<td>RK</td>
<td>0.91 ± 0.15</td>
<td>0.86 ± 0.16</td>
<td>t = −1.6657</td>
<td>0.12</td>
</tr>
<tr>
<td>FA</td>
<td>0.18 ± 0.07</td>
<td>0.18 ± 0.11</td>
<td>S = −3.5</td>
<td>0.30</td>
</tr>
<tr>
<td>MD</td>
<td>1.32 ± 0.23</td>
<td>1.49 ± 0.35</td>
<td>t = 2.5373</td>
<td>0.02</td>
</tr>
<tr>
<td>AD</td>
<td>1.53 ± 0.20</td>
<td>1.68 ± 0.33</td>
<td>t = 2.4626</td>
<td>0.03</td>
</tr>
<tr>
<td>RD</td>
<td>1.22 ± 0.24</td>
<td>1.38 ± 0.36</td>
<td>t = 2.4966</td>
<td>0.02</td>
</tr>
<tr>
<td>ΔTTP (sec)</td>
<td>2.55 ± 2.14</td>
<td>1.07 ± 0.92</td>
<td>S = 46</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Note: S indicates the Rank Statistic of signed rank sum test.

Table 2: Comparison of DKI parameters in the primary somatosensory cortex of the operated side in patients with MMD without acroparesthesia before and after encephaloduroarteriosynangiosis

<table>
<thead>
<tr>
<th>DKI Parameter</th>
<th>Before EDAS</th>
<th>After EDAS</th>
<th>Statistic</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td>0.81 ± 0.11</td>
<td>0.75 ± 0.11</td>
<td>t = −2.3113</td>
<td>0.04</td>
</tr>
<tr>
<td>AK</td>
<td>0.73 ± 0.10</td>
<td>0.70 ± 0.09</td>
<td>t = −1.1748</td>
<td>0.26</td>
</tr>
<tr>
<td>RK</td>
<td>0.92 ± 0.17</td>
<td>0.83 ± 0.19</td>
<td>t = −2.186</td>
<td>0.05</td>
</tr>
<tr>
<td>FA</td>
<td>0.18 ± 0.07</td>
<td>0.15 ± 0.07</td>
<td>t = −2.009</td>
<td>0.06</td>
</tr>
<tr>
<td>MD</td>
<td>1.31 ± 0.30</td>
<td>1.43 ± 0.40</td>
<td>S = 18</td>
<td>0.32</td>
</tr>
<tr>
<td>AD</td>
<td>1.50 ± 0.29</td>
<td>1.61 ± 0.39</td>
<td>S = 18.5</td>
<td>0.36</td>
</tr>
<tr>
<td>RD</td>
<td>1.17 ± 0.29</td>
<td>1.33 ± 0.41</td>
<td>S = 22.5</td>
<td>0.21</td>
</tr>
<tr>
<td>ΔTTP (sec)</td>
<td>2.67 ± 1.52</td>
<td>0.93 ± 0.76</td>
<td>S = −51.5</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Note: S indicates the Rank Statistic of signed rank sum test.

Table 3: Comparison of DKI parameters in the corona radiata of the operated side in patients with MMD without acroparesthesia before and after encephaloduroarteriosynangiosis

<table>
<thead>
<tr>
<th>DKI Parameter</th>
<th>Before EDAS</th>
<th>After EDAS</th>
<th>Statistic</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td>1.11 ± 0.09</td>
<td>1.06 ± 0.12</td>
<td>t = −1.41963</td>
<td>0.17</td>
</tr>
<tr>
<td>AK</td>
<td>0.84 ± 0.06</td>
<td>0.83 ± 0.05</td>
<td>t = −1.20239</td>
<td>0.25</td>
</tr>
<tr>
<td>RK</td>
<td>1.54 ± 0.25</td>
<td>1.37 ± 0.21</td>
<td>t = −1.97407</td>
<td>0.07</td>
</tr>
<tr>
<td>FA</td>
<td>0.42 ± 0.09</td>
<td>0.35 ± 0.07</td>
<td>S = −39</td>
<td>0.04</td>
</tr>
<tr>
<td>MD</td>
<td>0.91 ± 0.08</td>
<td>0.95 ± 0.09</td>
<td>S = 31</td>
<td>0.08</td>
</tr>
<tr>
<td>AD</td>
<td>1.35 ± 0.11</td>
<td>1.30 ± 0.09</td>
<td>t = 1.7969</td>
<td>0.09</td>
</tr>
<tr>
<td>RD</td>
<td>0.70 ± 0.11</td>
<td>0.77 ± 0.10</td>
<td>S = 43</td>
<td>0.04</td>
</tr>
<tr>
<td>ΔTTP (s)</td>
<td>2.13 ± 1.29</td>
<td>1.73 ± 1.23</td>
<td>S = 48</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Note: S indicates the Rank Statistic of signed rank sum test.

EDAS: n = 15, x ± s. Statistical analysis was performed by a self-paired t test or signed rank sum test.
method for use in the follow-up of patients with MMD, which supports the assessment of disease severity and surgical outcome.

Disclosures: Peng-Gang Qiao—RELATED: Grant: National Natural Science Foundation of China, Comments: grant No. 81703663. Money paid to the institution.

REFERENCES

Effects of Susceptibility Artifacts on Perfusion MRI in Patients with Primary Brain Tumor: A Comparison of Arterial Spin-Labeling versus DSC

H. Maral, E. Ertekin, O. Tunçyürek, and Y. Özsunar

ABSTRACT

BACKGROUND AND PURPOSE: Our aim was to investigate the effects of intratumoral hemorrhage, calcification, and postoperative changes on the sensitivity of arterial spin-labeling and DSC perfusion MR imaging in patients with primary brain tumors.

MATERIALS AND METHODS: Eighty-six brain tumor lesions were examined with single-phase and multiphase arterial spin-labeling and DSC perfusion MR imaging. The lesions that had no intratumoral bleeding/calciﬁcations and history of surgery were assigned to group 1 (n = 38), and the lesions that had these that were assigned to group 2 (n = 48). The relative regional cerebral blood flow was calculated in both perfusion methods, and relative regional cerebral blood volume was calculated in DSC. Imaging results were correlated with histopathology or follow-up.

RESULTS: In the quantitative evaluation, the sensitivity and speciﬁcity of relative regional cerebral blood ﬂow in multiphase arterial spin-labeling perfusion were 94.4% and 80% in group 1 and 78.3% and 88% in group 2, respectively. The sensitivity and speciﬁcity of relative regional cerebral blood ﬂow in DSC perfusion were 88.9% and 75% in group 1 and 78.3% and 84% in group 2, respectively. The sensitivity and speciﬁcity of relative regional cerebral blood volume in DSC perfusion were 66.7% and 100% in group 1 and 69.6% and 96% in group 2, respectively. In the qualitative evaluation, the sensitivities for single-phase and multiphase arterial spin-labeling were 48.2% and 79.3%, respectively, with 100% speciﬁcity for both.

CONCLUSIONS: The sensitivity and speciﬁcity of multiphase arterial spin-labeling were similar to those of DSC perfusion irrespective of bleeding and calcification in primary brain tumors. Thus, we suggest that noncontrast multiphase arterial spin-labeling can be used instead of DSC perfusion MR imaging in the diagnosis and follow-up of intracranial tumors.

ABBREVIATIONS: ASL = arterial spin-labeling; mpASL = multiphase ASL; PI = perfusion imaging; rCBF = relative CBF; ROC = receiver operating characteristic; rrCBF = relative regional CBF; rrCBV = relative regional CBV; spASL = single-phase ASL

Perfusion MR imaging is a technique that provides information on angiogenesis at the microscopic level. DSC MR imaging is a widely used and generally accepted MR imaging perfusion method for brain tumor diagnosis and staging. Arterial spin-labeling (ASL) is a promising perfusion MR imaging method, which is repeatable, low-cost, and noninvasive and does not require the administration of exogenous contrast.

Brain tumors are often heterogeneous lesions and may include bleeding and calcification. In addition, bleeding residues such as hemosiderin are frequently seen in patients postoperatively. It is known that the content of hemorrhage residues and calcium disturb the inhomogeneity of the magnetic ﬁeld, reducing the sensitivity of perfusion by causing susceptibility artifacts. Some studies have reported that DSC perfusion imaging (PI) is more commonly affected by susceptibility artifacts compared with ASL-PI. However, there are no large case series studies investigating this issue systematically. The primary purpose of our study was to investigate how these artifacts affect the sensitivity of both perfusion techniques in distinguishing malignant from benign brain tumors. The second aim was to compare the sensitivity of single- and multiphase ASL (spASL and mpASL) methods in distinguishing malignant from benign brain tumors. In addition, we compared the relative regional CBV (rrCBV) and relative regional CBF (rrCBF) values used in the literature to determine which method was more useful.

MATERIALS AND METHODS

Approval of the local ethics committee was obtained for the study.
Table 1: Perfusion MR imaging parameters

<table>
<thead>
<tr>
<th>Sequence Parameters</th>
<th>spASL</th>
<th>mpASL</th>
<th>DSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquired orientation</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
</tr>
<tr>
<td>TR (ms)</td>
<td>4000</td>
<td>250</td>
<td>1800</td>
</tr>
<tr>
<td>TE (ms)</td>
<td>25</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Flip angle</td>
<td>70°</td>
<td>35°</td>
<td>75°</td>
</tr>
<tr>
<td>FOV (mm²)</td>
<td>240</td>
<td>240</td>
<td>224</td>
</tr>
<tr>
<td>Matrix (pixel)</td>
<td>68 × 68</td>
<td>68 × 68</td>
<td>88 × 88</td>
</tr>
<tr>
<td>Thickness/gap (mm)</td>
<td>6/0.6</td>
<td>6/0.6</td>
<td>5/0</td>
</tr>
<tr>
<td>Pulse delay times (ms)</td>
<td>1200</td>
<td>300, 550, 800, 1050, 1300, 1550, 1800, 2050</td>
<td>–</td>
</tr>
<tr>
<td>Label thickness/gap (mm)</td>
<td>100/20</td>
<td>130/20</td>
<td>–</td>
</tr>
<tr>
<td>Acquisition time</td>
<td>4 min 8 sec</td>
<td>4 min 8 sec</td>
<td>1 min 40 sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: —— indicates “no labelling” and “no pulse delay time”; DSC, dynamic susceptibility contrast; FOV, field-of-view; mpASL, multi phase arterial spin-labeling; spASL, single phase arterial spin-labeling; TE, echo time; TR, repetition time.

Patient Selection

Records of all lesions were retrospectively reviewed for patients who were diagnosed with an intracranial mass and who had undergone perfusion MR imaging at Adnan Menderes University, Department of Radiology, with both ASL-PI and DSC-PI methods between January 2011 and February 2017. In total, we investigated 133 patients. A total of 54 lesions were excluded from the study, consisting of 7 lesions with an extra-axial mass, 8 lesions that were thought to be benign but were lost to follow-up, 5 lesions in patients who died of nontumor causes, 9 lesions without primary brain tumor, and 25 lesions with unverified diagnosis. A total of 86 lesions from 79 patients were included in the study.

The diagnosis of the lesions was confirmed either histopathologically or by performing follow-up MR imaging for at least 11 months. In the follow-up period, the lesions were considered benign when they did not appear different in terms of size, appearance, and enhancement compared with the previous images. The lesions were considered malignant when progression was observed in the images during the follow-up period. Samples for histopathologic examination were obtained by an operation or stereotactic biopsy.

The grading of tumors was performed on the basis of the pathologic criteria of the World Health Organization (2016) (grades I, II, III, IV). Grade I and II tumors were considered low-grade (benign), whereas grade III and IV tumors were considered high-grade (malignant).

Imaging Protocol

MR imaging was performed at 1.5T (Achieva; Philips Healthcare, Best, the Netherlands). T1-weighted axial, T2-weighted axial, FLAIR axial, and T2-weighted sagittal MR images were obtained during conventional brain MR imaging. The T2* sequence was used to determine intralesional bleeding or calcifications. The separation of calcium and blood from each other cannot be done using only the T2* sequence. We did not make such a distinction. The ASL perfusion sequence was performed before administering the MR imaging contrast agent. The pulsed ASL technique was used for spASL and mpASL. Afterward, a DSC sequence was performed using an automatic injector. Gadoterate meglumine was administered as the contrast agent via the antecubital vein at a dose of 0.1 mmol/kg (1 mmol = 0.5 mL) using an 18-ga IV catheter at a rate of 10 mL/s automatically (Spectris Solaris EP MR Injection System; MedRad, Indianapolis, Pennsylvania). This was followed by 20 mL of physiologic saline solution injection at almost the same rate. Parameters of the conventional brain MR imaging sequence were the following: T1-weighted, matrix = 212 × 168 (T2-weighted = 232 × 168); FOV = 210 mm; TR = 460 ms (T2-weighted = 5700 ms); TE = 10 ms (T2-weighted = 110 ms); flip angle = 69° (T2-weighted = 90°); thickness = 5 mm with 1-mm interslice gaps; number of slices = 23; acquisition time = 90 seconds.

Multiphase ASL was capable of multisection image acquisition at multiple TI (inversion time) points and was based on the pulsed ASL technique. Image acquisition was performed at 8 TIs. For the mpASL for the first section, the minimum TI was 300 ms and subsequent TIs were increased by 250 ms, label thickness was 130 mm, and label gap was 20 mm. A total of 2880 images, including 1440 labeled and 1440 control images, were obtained. For the spASL, the pulse delay time was 1200 ms, label thickness was 100 mm, and label gap was 20 mm. In both spASL and mpASL, the labeling slab was positioned at the level of upper cervical region. Other features of the perfusion sequences are shown in the Table 1.

Data Processing

Image analysis was performed in an imaging workspace (Extended MR WorkSpace, Version 2.6.3.5; Philips Healthcare) with the special application tools, namely “neuro perfusion” and “Image Algebra” for DSC-PI and ASL-PI, respectively. DSC and ASL perfusion maps were evaluated by 2 radiologists with 4 and 20 years of neuroradiology experience (H.M. and Y.Ö.). Images were first evaluated by a radiologist (H.M.) with 4 years of neuroradiology experience. In cases where the first radiologist (H. M.) doubts, both radiologists evaluated the images together and arrived at the final decision. In addition, in the quantitative evaluation, the interrater agreement was evaluated using measurements from the ASL and DSC maps in another session. The same cutoff values were used in terms of benign-malignant distinction for a more objective evaluation. For the quantitative analysis, the lesions that had not previously undergone an operation and had no bleeding or calcification within the mass were classified as group 1. The lesions that had previous surgical treatment or had bleeding and/or calcifications within the mass were classified as group 2. In another session, lesions with both single- and multiphase ASL examinations were assessed by a qualitative analysis for malignancy detection.

Evaluation of ASL Perfusion

In the ASL data processing, subtraction images of the labeled and control images were obtained. The technique of generating
pulsed single- and multiphase ASL perfusion maps is described elsewhere. Typically, the spASL measurements were obtained at a single TI between labeling and image acquisition. In the mpASL mapping, for the first slice, minimum inversion time was 300 ms, and subsequent inversion times were increased by 250 ms, and 48 subtraction images of the labeled and control images were obtained. The tumors were evaluated in the image in which delineation was best observed.

For the quantitative analysis in mpASL, a manually drawn elliptic ROI was placed on the solid and brightest portion of tumor seen in the subtraction images, which was assumed to have a high rate of perfusion. On average, 3 ROIs were placed on the basis of the lesion size, and the highest rCBF values were chosen. To normalize the values obtained, we drew an ROI of a size equal to the white matter in the contralateral hemisphere, which was the mirror symmetry of the tumor localization. A large ROI from the contralateral centrum semiovale was placed for patients in whom the ROI in the contralateral white matter could be small or problematic. The value of the maximum relative CBF (rCBF) of the tumor divided by the rCBF of the contralateral normal WM provided the value of the rrCBF (Fig 1). We used conventional sequences to place the ROI on the solid part of the tumor on the perfusion map. In particular, we used the T2-weighted images.

In the qualitative evaluation, the scoring was performed on a scale from 0 to 3. A zero score indicated that the lesion was hypointense compared with the white matter. A score of 1 indicated an isointense lesion compared with the white matter, and a score of 2 indicated a hyperintense lesion compared with the white matter. A score of 3 indicated that the lesion was remarkably hyperintense. The lesions with scores of 0 and 1 were considered benign, whereas the lesions with scores of 2 and 3 were considered malignant.

Evaluation of DSC Perfusion

For the quantitative evaluation, the arterial input function was determined after selecting the anterior cerebral artery or the middle cerebral artery on draft images to create DSC perfusion maps, marking the contrast plateau on signal intensity–time curves, and finally creating the color maps. The contrast agent (gadolinium) that is extravasated due to the impaired blood-brain barrier causes permanent signal loss on T2-weighted sequences due to residual effect. Permanent signal loss influences first-passage images and subsequent recirculated images. To prevent the occurrence of leaking artifacts, software and correction algorithms were used (Extended MR WorkSpace, Version 2.6.3.5). The lesion was detected on the color DSC perfusion map, and relative regional CBF and CBV values were calculated by repeating the above-mentioned procedures with the ASL technique (Fig 1).

Statistical Analysis

The SPSS 23.0 program (IBM, Armonk, New York) was used for the statistical analyses. Receiver operating characteristic (ROC) curve analysis was used for determining the respective cutoff values. Comparison of ROC curves was performed by MedCalc, Version 18.11.0 (MedCalc Software, Mariakerke, Belgium). Normality tests were used for determining the distribution of continuous data (Kolmogorov-Smirnov), and nonparametric tests were used. The correlation between the perfusion parameters was assessed using the Spearman correlation analysis. The k test was used for interrater agreement. $P < .05$ was considered significant.

RESULTS

A total of 86 lesions in 79 patients were evaluated. Of the included lesions, 48 (55.8%) were in men and 38 (44.2%) were in women, with a mean age of 48.9 ± 18.6 years. The diagnosis was made histopathologically in 38 (44.2%) lesions. The remaining 48 (55.8%) lesions were diagnosed during the follow-up period. Of the lesions in which the diagnosis was made histopathologically, 14 were glioblastomas, 7 were diffuse astrocytomas, 7 were anaplastic astrocytomas, 2 were WHO grade II oligodendrogliomas, 2 were anaplastic oligodendrogliomas, 2 were gliosarcomas, 2

FIG 1. ROIs were located in the tumor and white matter of the contralateral hemisphere, and the measurements are seen on mpASL (A) and DSC (B) perfusion maps.
There were 38 lesions in group 1 (patients underwent no previous operations and had no findings of intratumoral hemorrhage/calcification) (Fig 2). Lesions with intratumoral hemorrhages and/or calcifications and lesions having undergone an operation previously for brain tumors (48 cases total) were recorded as group 2 (Fig 3).

The mean rrCBF and rrCBV values were approximately 2.3–2.7 times higher in the lesions with malignant primary tumors compared with the lesions with benign primary tumors, using the combination of histopathology or 11-month stability. There was a significant difference between the malignant and benign groups in terms of the both rrCBF and rrCBV values ($P < .001$ for both values and technique) (Table 3).

In the ROC analysis performed for evaluating the perfusion characteristics, the areas under the curve for rrCBF in the mpASL and DSC were found to be 0.879 and 0.886, respectively (Fig 4). On the basis of equal misclassification rates, cutoff values of 1.4 and 1.5, respectively, for the mpASL rrCBF and DSC rrCBF ratios, were the best in discriminating benign from malignant tumors (Table 3). For the quantitative evaluation, rrCBV measurements were also performed with the DSC-PI. In the ROC analysis, the area under the curve for perfusion evaluation of the rrCBV was calculated to be 0.902 (Fig 4). A cutoff value of 2.2 was accepted for the rrCBV value in DSC-PI (Table 3). No statistically significant difference was found in the comparison of ROC curves in group 1, in group 2, and in all lesions (P values between .214 and .821).

The interrater agreement was good for ASL map ($\kappa = 0.766$) and very good for CBF and CBV on the DSC map ($\kappa = 0.907$ and $\kappa = 0.923$, respectively). The correlation analyses among the perfusion parameters revealed a strong correlation between the mpASL rrCBF and the DSC rrCBF ($r = 0.713$, $P < .001$). There was also a strong correlation between the mpASL rrCBF and the DSC rrCBV ($r = 0.675$, $P < .001$). Furthermore, there was a very strong correlation between the DSC rrCBF and the DSC rrCBV ($r = 0.907$, $P < .001$).

There were 55 lesions (26 benign and 29 malignant lesions) that had undergone both single and multiphase ASL-PI. In the qualitative evaluation of the mpASL-PI map, 23 of 29 malignant lesions were diagnosed correctly and all 26 benign lesions were diagnosed correctly (mpASL-PI, sensitivity = 79.3%, specificity = 100%). On the qualitative evaluation of the spASL-PI map, 14 of 29 malignant lesions were diagnosed correctly and all 26 benign lesions were diagnosed correctly (spASL-PI: sensitivity = 48.2%, specificity = 100%). Although there was a perfusion increase in the mpASL in 9 malignant cases, there was no increase in perfusion was observed in the spASL imaging (Fig 5).

DISCUSSION

In our study, we found that the rrCBF values in both mpASL and DSC perfusion MR imaging were more sensitive than the rrCBV values in DSC perfusion MR imaging in identifying the tumor tissue in the lesions with susceptibility artifacts due to bleeding and/or calcifications. When the mpASL and DSC perfusion MR imaging were compared, the sensitivity and accuracy of ASL perfusion was higher but the difference was not statistically significant. These findings are consistent with the literature. Previously, the
superiority of mpASL to spASL was shown in healthy patients.16,17 In our study, we also showed that mpASL was significantly superior in patients with primary brain tumors.

In the literature, there are many studies comparing the functional and conventional MR imaging techniques, showing that rrCBV is the most sensitive marker in differentiating benign from malignant lesions and in evaluating whether a brain tumor is recurrent or residual.14,18-21 However, most of these studies did not use ASL-PI.3,4 In most studies using ASL-PI, only spASL was evaluated,18-20 and some studies reported that spASL had a higher sensitivity.14 Ozsunar et al14 showed that the sensitivity of ASL was high (94%), but its specificity was low (50%) in a study comparing spASL with DSC-PI in distinguishing tumor recurrence from radiation necrosis. Cebeci et al21 conducted a study and compared mpASL and DSC perfusion techniques, reporting that the specificity of ASL was higher than that obtained in DSC perfusion (92.3% versus 76.9%). When ASL and DSC perfusion were used in combination, all malignant lesions were diagnosed accurately. In our study, we found that the rrCBF value derived from mpASL perfusion had a higher sensitivity and accuracy compared with the DSC perfusion parameters, rrCBF and rrCBV, in discriminating benign and malignant tumors. However, this difference was not statistically significant. Although the specificity of rrCBF values in DSC perfusion was slightly lower, the sensitivity and accuracy rates were higher than those of rrCBV.

In the literature, it has been reported that intratumoral calcifications and/or bleeding or postoperative changes cause susceptibility artifacts more commonly in DSC compared with ASL.9-11 In pathologies in which the blood-brain barrier is severely impaired (such as in glioblastomas and meningiomas), the leakage of the contrast medium into the extravascular area is one of the reasons for incorrect calculations in DSC-PI.22 However, the studies in this field are limited and not systematic. In the current study, which examined 2 groups of lesions (with native tumors and with tumors that might contain artifacts), we found that susceptibility artifacts resulted in a decrease in the diagnostic sensitivity in both the mpASL-PI and DSC-PI methods at similar rates (in group 2, both ASL and DSC sensitivity was 80%). This situation may be related to the susceptibility artifacts in the lesions.

FIG 3. A 49-year-old male patient who underwent an operation and received chemoradiotherapy due to a glioblastoma in the temporoparietal region 1 year ago. T1-weighted (A) and T2-weighted (C) MR images show postoperative changes and alterations in the signal intensities in the right temporoparietal region. The postcontrast image (B) shows wide-scale enhancement in the site of the operation. The T2*-weighted image (D) shows hypointensities secondary to old bleeding residues (black arrow). The DSC perfusion map (E) shows a large perfusion signal loss caused by leakage artifacts in the contrasted areas (DSC rrCBF = 1.3). In the mpASL perfusion map (F), there is a significant increase in perfusion at the site of the operation (white arrows) (ASL rrCBF = 3.5). The patient was diagnosed with a recurrent glioblastoma after the second operation.

| Table 3: Perfusion parameters of benign and malignant tumors on the quantitative evaluation |
|---------------------------------|---------------------------------|-----------------|-----------------|-----------------|
| | Benign Tumors | Malignant Tumors | \(P^a\) | Sensitivity (%) | Specificity (%) | Accuracy (%) |
| All lesions (\(n = 86\))^b | | | | | | |
| mpASL rrCBF | 1.19 (0.59) | 2.84 (1.44) | <.001 | 85.4 | 84.4 | 84.9 |
| DSC rrCBF | 1.19 (0.69) | 2.93 (1.57) | <.001 | 82.9 | 80.0 | 81.45 |
| DSC rrCBV | 1.20 (0.62) | 3.07 (1.43) | <.001 | 68.3 | 97.8 | 83.05 |
| Group 1 (\(n = 38\))^c | | | | | | |
| mpASL rrCBF | 1.24 (0.47) | 3.06 (1.45) | <.001 | 94.4 | 80.0 | 87.2 |
| DSC rrCBF | 1.33 (0.83) | 3.13 (1.80) | <.001 | 88.9 | 75.0 | 81.95 |
| DSC rrCBV | 1.32 (0.67) | 3.22 (1.43) | <.001 | 66.7 | 100 | 83.35 |
| Group 2 (\(n = 48\))^d | | | | | | |
| mpASL rrCBF | 1.16 (0.68) | 2.67 (1.45) | <.001 | 78.3 | 88.0 | 83.15 |
| DSC rrCBF | 1.08 (0.54) | 2.77 (1.39) | <.001 | 78.3 | 84.0 | 81.15 |
| DSC rrCBV | 1.10 (0.58) | 2.96 (1.45) | <.001 | 69.6 | 96.0 | 82.8 |

\(^a\)Mann-Whitney \(U\) test.

\(^b\)Benign (\(n = 45\)), malignant (\(n = 41\)).

\(^c\)Benign (\(n = 20\)), malignant (\(n = 18\)).

\(^d\)Benign (\(n = 25\)), malignant (\(n = 23\)).
However, the specificity was higher in group 2 (82.6% and 78.3% in group 1, 88.5% and 84.6% in group 2, respectively for mpASL and DSC). Signal loss due to hypoperfusion, microhemorrhages, and old bleeding residues secondary to an operation and radiation therapy may explain the lower false-positive values in group 2.23

The disadvantages of the ASL perfusion technique are that only CBF mapping can be performed and CBF values can be measured. DSC perfusion can provide other parameters as well. Not obtaining other parameters, primarily the CBV, is an important limitation of the ASL technique. Although there are studies of the measurement of CBV by the ASL technique, the evaluation of ASL with CBV has not yet been used in clinical practice.24 Moreover, geometric resolution of ASL perfusion maps obtained without contrast agent administration is lower than in the DSC perfusion maps, and low SNR is the other disadvantage of the ASL-PI. This problem may be overcome by the 3D pseudocontinuous method. The problem is less for examinations with high magnetic field strength. In our study, we used the pulsed ASL method on a 1.5T device. The ASL technique needs multiple repetitions for higher SNR, which causes longer imaging times. ASL image acquisition at multiple sections at multiple time points was also an advantage of this study.

There are many options in using the ASL technique, namely the single-phase and multiphase, pulsed, and continuous or pseudocontinuous methods.23 There is no consensus on the clinical usefulness and diagnostic sensitivity of these methods in the literature. The spASL measurements are conducted at a single TI between labeling and image acquisition. The effects of the arterial arrival time or arterial transit time on CBF estimation make it difficult to get the best enhancement of the signal and evaluation. This problem can cause misinterpretation and errors in interpreting the qualitative and quantitative analyses of perfusion characteristics. Performing multiple ASL acquisitions at various TIs between the labeling and image acquisition can be used for solving this transit time problem. In our study, 63 lesions were qualitatively evaluated with multiphase and single-phase ASL techniques. In the qualitative evaluation with the mpASL-PI, while 27 of 34 malignant lesions were diagnosed correctly (sensitivity = 79.4%), only 17 malignant lesions were diagnosed correctly on the spASL-PI (sensitivity = 50%). As far as we know, there are no available studies comparing these 3 ASL methods in patients with brain tumors. However, in some studies, it has been shown that mpASL can give better SNR and more accurate CBF values in healthy subjects.16,17 We used the pulsed ASL at 1.5T in our study. However, these studies use the pseudocontinuous ASL at 3T.16,17 Therefore, it is not possible to make a complete comparison between the results of pseudocontinuous ASL and pulsed ASL studies. On the basis of our findings and the data in the literature, we concluded that it would be more appropriate to use mpASL instead of spASL in terms of diagnostic reliability in the evaluation of patients with intracranial tumors.

Limitations of our study are the retrospective nature of the study design and the lack of availability of histopathologic diagnoses in all lesions. The use of a 1.5T device in the study might
have an unfavorable effect on sensitivity. Optimum pulse-labeling duration differs in different age groups, and this might affect the signal. mpASL can be used to overcome this potential pitfall. Vendors suggest the use of low-resolution mpASL to choose the optimum higher resolution spASL. We used this method as suggested at the beginning, but unfortunately, we could not apply it to all patients because we had a large number of patients and heavy workload. Therefore, we preferred to evaluate the 2 ASL methods separately in our study. This is one of the limitations of our methodology.

CONCLUSIONS
The sensitivity and specificity of mpASL are similar to those of DSC perfusion, irrespective of bleeding and calcification in primary brain tumors. Other advantages of ASL include it being a contrast-free method, repeatable, and less costly. Therefore, we believe that noncontrast multiphase ASL can be used instead of DSC MR perfusion in the diagnosis and follow-up of primary intracranial tumors.

REFERENCES
How Do Physicians Approach Intravenous Alteplase Treatment in Patients with Acute Ischemic Stroke Who Are Eligible for Intravenous Alteplase and Endovascular Therapy? Insights from UNMASK-EVT

ABSTRACT

BACKGROUND AND PURPOSE: With increasing use of endovascular therapy, physicians' attitudes toward intravenous alteplase in endovascular therapy–eligible patients may be changing. We explored current intravenous alteplase treatment practices of physicians in endovascular therapy– and alteplase-eligible patients with acute stroke using prespecified case scenarios and compared how their current local treatment practices differ compared with an assumed ideal environment.

MATERIALS AND METHODS: In an international multidisciplinary survey, 607 physicians involved in acute stroke care were randomly assigned 10 of 22 case scenarios, among them 14 with guideline-based alteplase recommendations (9 with level 1A and 5 with level 2B recommendation) and were asked how they would treat the patient: A) under their current local resources, and B) under assumed ideal conditions. Answer options were the following: 1) anticoagulation/antiplatelet therapy, 2) endovascular therapy, 3) endovascular therapy plus intravenous alteplase, and 4) intravenous alteplase. Decision rates were calculated, and multivariable regression analysis was performed to determine variables associated with the decision to abandon intravenous alteplase.

RESULTS: In cases with guideline recommendations for alteplase, physicians favored alteplase in 82.0% under current local resources and in 79.3% under assumed ideal conditions (P < .001). Under assumed ideal conditions, interventional neuroradiologists would refrain from intravenous alteplase most often (6.28%, OR = 2.40; 95% CI, 1.01–5.71). When physicians' current and ideal decisions differed, most would like to add endovascular therapy to intravenous alteplase in an ideal setting (196/3861 responses, 5.1%).

CONCLUSIONS: In patients eligible for endovascular therapy and intravenous alteplase, we observed a slightly lower decision rate in favor of intravenous alteplase under assumed ideal conditions compared with the decision rate under current local resources.

ABBREVIATIONS: EVT = endovascular therapy; LVO = large-vessel occlusion

Since 2015, endovascular therapy (EVT) and intravenous alteplase as a combined treatment have been standard of care in patients with acute ischemic stroke with large-vessel occlusion (LVO) eligible for intravenous alteplase.1 When the 5 major EVT trials were conducted, intravenous alteplase was the only approved treatment for acute ischemic stroke.2 Hence, the only acceptable trial design from an ethical standpoint was to test EVT in combination with intravenous alteplase against standard medical treatment.

A new question now arises: Does intravenous alteplase provide additional value in the setting of acute ischemic stroke due to LVO when EVT is going to be performed anyway? This question will be answered by 3 ongoing randomized controlled trials (Bridging Thrombolyisis Versus Direct Mechanical Thrombectomy in Acute Ischemic Stroke [SWIFT-DIRECT], NCT03192332; Intravenous Thrombolysis Versus Direct Mechanical Thrombectomy in Acute Ischemic Stroke [SWIFT-ACT], NCT03123224; and Direct Intra-Arterial Thrombectomy in Order to Revascularize AIS Patients With Large Vessel Occlusion Efficiently in Chinese Tertiary Hospitals [DIRECT-
Current understanding suggests that there is likely modest incremental benefit only and that the benefit may mainly accrue to those who reperfuse before the planned EVT procedure. Early reperfusion in the setting of proximal LVO occurs only in relatively few patients: In the Identifying New Approaches to Optimize Thrombus Characterization for Predicting Early Recanalization and Reperfusion With IV Alteplase and Other Treatments Using Serial CT Angiography (INTERReCT) study, 10% of distal ICAs and 21% of proximal M1s recanalized on follow-up CTA. In the Tenecteplase Versus Alteplase Before Endovascular Therapy for Ischemic Stroke (EXTEND-IA TNK) study, recanalization before EVT in proximal vessel occlusion was 10% with alteplase and 20% with tenecteplase during the time of transfer to the EVT hospital. The proportion may be lower if the time to EVT is fast. In the Endovascular Treatment for Small Core and Anterior Circulation Proximal Occlusion With Emphasis on Minimizing In-hospital LVO occurs only in relatively few patients: In the Clinical Case Scenarios

Twenty-two case scenarios were designed with different guideline recommendations for intravenous alteplase (9 with level 1A and 5 with level 2B recommendations, 2 without recommendations, and 6 with contraindications for intravenous alteplase) and EVT (8 with level 1A and 11 with level 2B recommendations, and 3 without recommendations for EVT). In the following analysis, only those 14 scenarios were included in which intravenous alteplase is recommended according to current American Heart Association/American Stroke Association guidelines (9 with level 1A and 5 with level 2B recommendations). Of note, the survey participants were presented with only the case vignettes; the evidence levels for EVT and alteplase treatment were not provided to them. For detailed descriptions of the case scenarios and corresponding evidence levels see On-line Table 1.

Statistical Analysis

Survey data were analyzed using descriptive statistics. Differences between categoric variables were assessed with the χ² test. Multivariable logistic regression with responses clustered within the respondent was used to estimate the association between patient and physician baseline characteristics and the decision to abandon intravenous alteplase when switching from current local resources to assumed ideal conditions. Models included patient and physician baseline characteristics, namely physician age and practice experience in years; personal annual EVT and stroke treatment volume; annual center intravenous alteplase and EVT volume; geographic region; specialty and hospital setting; presentation time; baseline ASPECTS; time since symptom onset; patient age; site of occlusion; and baseline functional status. Continuous variables were converted into deciles.

Table 1: Participants’ demographic baseline characteristics (n = 607)

<table>
<thead>
<tr>
<th>Demographics</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialty</td>
<td>326 (53.7)</td>
</tr>
<tr>
<td>Neuroradiology</td>
<td>173 (28.5)</td>
</tr>
<tr>
<td>Neurosurgery</td>
<td>81 (13.3)</td>
</tr>
<tr>
<td>Others</td>
<td>27 (4.2)</td>
</tr>
<tr>
<td>Hospital setting</td>
<td>551 (90.8)</td>
</tr>
<tr>
<td>Academic</td>
<td>56 (9.2)</td>
</tr>
<tr>
<td>Nonacademic</td>
<td>44 (39–50)</td>
</tr>
<tr>
<td>Age (median)</td>
<td>13 (8–20)</td>
</tr>
<tr>
<td>Experience</td>
<td>100 (50–250)</td>
</tr>
<tr>
<td>Annual personal stroke volume (median)</td>
<td>30 (15–50)</td>
</tr>
<tr>
<td>Annual EVT volume (median)</td>
<td>100 (50–170)</td>
</tr>
<tr>
<td>Annual center tPA volume (median)</td>
<td>65 (30–120)</td>
</tr>
</tbody>
</table>

Note: IQR indicates interquartile range; yr, years.

Survey Participants

We invited 1330 stroke physicians (neurologists, interventional neuroradiologists, endovascular neurosurgeons, and other physicians, mostly internists and geriatricians, directly involved in acute stroke care) from 38 countries to participate in the survey. No restrictions regarding hospital setting, case volume, or experience levels were applied. Before answering the case scenarios, participants provided personal data (age, sex, years of experience in stroke treatment, estimated number of stroke patients treated per year, number of thrombectomies performed per year, geographic region, subspecialty, and hospital setting).

Materials and Methods

Survey Design

An international cross-sectional Web-based survey (UNMASK-EVT) was conducted among stroke physicians to explore their current treatment practices in acute ischemic stroke. Participants were assigned to 10 of 22 case scenarios and asked how they would treat the patient in the given scenario: A) under their current local resources, and B) under assumed ideal conditions, with no resource restraints of any kind. In this context, current local resources could reflect monetary and infrastructural limitations (lacking access to endovascular treatment facilities), staff resources (lacking availability of technicians/nurses), and local/institutional policies (such as hospital-specific rules regarding very old patients, and so forth). Answer options were the following: 1) anticoagulation/antiplatelet therapy, 2) EVT, 3) EVT plus intravenous alteplase, and 4) intravenous alteplase. Response data were obtained from November 26, 2017, to March 27, 2018. The study was approved by the local ethics board of the University of Calgary.
All tests were 2-sided, and conventional levels of significance ($\alpha = .05$) were used for interpretation. Data analyses were performed in STATA 15.1 (StataCorp, College Station, Texas). Figures were created with Power BI desktop 2016 and the Mapbox Visual Plugin (Microsoft, Redmond, Washington).

RESULTS
Response Rate and Participants’ Demographic Characteristics
A total of 607 physicians of different subspecialties from 38 countries completed the survey (response rate, 45.6%). Table 1 provides an overview about participants’ demographic baseline characteristics. A total of 6070 responses were obtained for the 22 case scenarios, among them 3861 for the 14 scenarios with the guideline-based alteplase recommendation. Only the latter ones were included in the following analysis. The number of responses, evidence level, and alteplase decision rates for each single case scenario can be found in the On-line Table 2.

Current and Ideal Decision Rates in Favor of Intravenous Alteplase
Table 2 shows the overall and evidence level–specific intravenous alteplase decision rates under current local resources and assumed ideal conditions. Overall, slightly fewer physicians would treat with intravenous alteplase under assumed ideal conditions (79.3%) compared with their decision under current local resources (82.0%; risk difference, 2.7%; $P < .001$; Table 2). This decision held true for neurologists, who constituted the largest group among all specialties, as well (85.7 versus 87.7%, $P < .001$). Only in case scenarios with level 2B evidence for intravenous alteplase and without guideline-based EVT recommendations would

Table 2: Current and ideal decision rates in favor of intravenous alteplase overall and by evidence level

<table>
<thead>
<tr>
<th>EVT Level 1A</th>
<th>EVT Level 2B</th>
<th>EVT NG</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>tPA level 1A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>85.1 (1408)</td>
<td>85.0 (703)</td>
<td>85.0 (2111)</td>
</tr>
<tr>
<td>Ideal</td>
<td>82.1 (1359)</td>
<td>83.0 (687)</td>
<td>82.4 (2046)</td>
</tr>
<tr>
<td>tPA level 2B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>77.5 (214)</td>
<td>84.3 (697)</td>
<td>52.0 (443)</td>
</tr>
<tr>
<td>Ideal</td>
<td>75.0 (207)</td>
<td>80.5 (666)</td>
<td>52.0 (443)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>84.0 (1622)</td>
<td>84.6 (1400)</td>
<td>52.0 (443)</td>
</tr>
<tr>
<td>Ideal</td>
<td>81.1 (1566)</td>
<td>81.8 (1353)</td>
<td>52.0 (443)</td>
</tr>
</tbody>
</table>

Note:—NG indicates no guideline coverage; –, no responses in this category.

a Case scenarios with guideline-based alteplase recommendation only. Data are (%) (No.).
participants proceed equally often with EVT under assumed ideal conditions and current local resources (52.0%, Table 2). Fig 1 illustrates the resources gap (ideal minus current intravenous alteplase decision rates) by country. In most countries, current intravenous alteplase decision rates are higher than the ideal rates.

Changes in Treatment Decision from Current Local Resources to Assumed Ideal Conditions

Fig 2 illustrates how physicians’ decision-making changed between current local resources and assumed ideal conditions. Overall, patients in most case scenarios would have received the same treatment under current local resources and assumed ideal conditions. Among those physicians who changed their treatment approach under assumed ideal conditions, most of them would have liked to add EVT to intravenous alteplase (dark green stream in Fig 2; 196/3861 responses, 5.1%). The second-largest change occurred from alteplase plus EVT to EVT alone (dark blue stream in Fig 2; 133/3861 responses, 3.4%). Overall, alteplase would have been added in 84/3861 (2.2%) scenarios under assumed ideal conditions, while it would have been removed in 187/3861 (4.8%) scenarios.

Physician and Patient Characteristics Associated with the Decision to Abandon Intravenous Alteplase under Assumed Ideal Conditions

Multivariable logistic regression analysis revealed that of all physician characteristics, only the specialty of interventional neuroradiology was significantly associated with the decision to abandon intravenous alteplase (OR = 2.40; 95% CI, 1.01–5.71; reference category neurology) when switching from current local resources to assumed ideal conditions. Fig 3 shows the percentage of physicians who would drop and add intravenous alteplase when switching from current local resources to assumed ideal conditions. In an ideal environment, all specialties would drop intravenous alteplase more often than they would add it, and this choice was most pronounced in interventional neuroradiologists and neurosurgeons. Other physician factors (age, practice experience in years, personal annual EVT and stroke treatment volume, annual center intravenous alteplase and EVT volume, geographic region, hospital setting) and patient factors (presentation time, baseline ASPECTS, time since symptom onset, patient age, site of occlusion, baseline functional status) were not significantly associated with the decision to abandon intravenous alteplase.
than for distal occlusions (5 mic min stroke, and although recanalization rates for LVO are lower in fact, the 2 treatments may be synergistic. While intravenous alteplase is highly time-dependent, and difficulties in determining intravenous alteplase eligibility and initial transfer to a primary stroke center for its administration can substantially delay EVT, thereby reducing EVT efficacy and ultimately worsen patient outcome.13-16 Moreover, the absolute rate of major hemorrhage is slightly higher when alteplase is used, though it is not statistically significant.17,18 Both EVT and intravenous alteplase may cause thrombus fragmentation and distal embolization, but when alteplase is used primarily, it may convert a relatively straightforward M1 embolectomy into a more difficult procedure, involving ≥2 middle cerebral artery branch occlusions. This feature potentially increases treatment costs without improving outcomes.19 These considerations could potentially explain why ideal alteplase rates were significantly lower (both in the overall group of participants as well as among neurologists, who constituted the largest specialty subgroup) than ideal rates, despite formal evidence for alteplase treatment. The difference was statistically significant but small and of unclear clinical significance. However, depending on the results of MR CLEAN NO IV, DIRECT-MT, and SWIFT-DIRECT, this gap might grow further in the future. The specialty of interventional neuroradiology reported a significantly increased probability of dropping intravenous alteplase when switching from current local resources to assumed ideal conditions. This is likely due to treatment familiarity, but it could also potentially reflect a bias of binary thinking in treatment decision-making. The differences between current and ideal intravenous alteplase treatment rates in different countries, and particularly between North America and Europe (Fig 1), are most likely multifactorial and related to infrastructure and local policies. While the North American and European guidelines mostly agree in their alteplase and EVT treatment recommendations, local/institutional policies might differ across countries. Because neurologists were the largest group in almost all countries, physician specialty is probably not the main reason for these discrepancies. The exact reasons for the observed differences can, however, not be determined in this study and should be made subject to further research. Particularly in developing countries, many of which were not captured in this survey, access to EVT is still lacking and intravenous alteplase remains the mainstay of acute stroke therapy.

Our study has several limitations that deserve comment. The overall response rate of this survey was modest at 45.6%. Although the difference between current and ideal intravenous alteplase decision rates was statistically significant, the overall difference was small and the clinical significance of these discrepancies remains to be clarified. Enrollment was based on institutional networks and collaborations, potentially leading to a selection bias. Neurosurgeons and interventional neuroradiologists, who made up 42% of the participants, do not decide about alteplase treatment in most practice settings. We tried to design case scenarios that reflect clinical routine as realistically as possible, but a case-based survey cannot fully capture real-life decision-making. We did not obtain any information about the specific nature of external limitations that cause the resource gaps observed in our study. Furthermore, it is possible that lack of access to EVT in participants’ current local setting, as is the case in many countries that were represented in this survey, also influences their treatment decisions under assumed ideal conditions. Physicians who do not have access to EVT might not be familiar with this treatment and might, thus, not feel comfortable offering it even if

DISCUSSION

In this multidisciplinary survey, we evaluated how physicians around the world approach intravenous alteplase treatment in patients eligible for EVT and alteplase treatment and how they would like to change their treatment practice when assuming ideal conditions (ie, in the absence of any external limitations). We found slightly lower reported intravenous alteplase decision rates under assumed ideal conditions compared with decision rates under current local resources (2.7% risk difference, Table 2). This finding mostly held true within individual countries as well (Fig 1). We suspect that under ideal conditions, EVT would be more readily available and that this reduction in reported alteplase treatment rates shows physicians’ demands for a single method of reperfusion that has a high success rate. This behavior may reflect binary thinking: One solution is preferred when, in fact, the 2 treatments may be synergistic. While intravenous alteplase has been proven to be an effective treatment in acute ischemic stroke, and although recanalization rates for LVO are lower than for distal occlusions (5–10%),9,10 concurrent administration of alteplase and the use of EVT afford the possibility of early recanalization, even in patients with LVO.10 Furthermore, medical thrombolysis may facilitate EVT11 through a reduction in a thrombus-endothelial interaction, leading to more effective first-pass reperfusion and by causing thrombolysis of distal emboli (whether such emboli are iatrogenic or due to the original stroke event).6,12 Indeed, our results show that among those physicians who changed their treatment decision when switching from current local resources to assumed ideal conditions, most of them would opt for a combined approach and add EVT to intravenous alteplase (Fig 2). This increase in EVT rates probably occurred because access to EVT is currently limited in many hospital settings.

In contrast, there are potential negative attributes of treatment with alteplase. The efficacy of both EVT and medical thrombolysis with alteplase is highly time-dependent, and difficulties in determining intravenous alteplase eligibility and initial transfer to a primary stroke center for its administration can substantially delay EVT, thereby reducing EVT efficacy and ultimately worsening patient outcome.1,3-6 Moreover, the absolute rate of major hemorrhage is slightly higher when alteplase is used, though it is not statistically significant.17,18 Both EVT and intravenous alteplase may cause thrombus fragmentation and distal embolization, but when alteplase is used primarily, it may convert a relatively straightforward M1 embolectomy into a more difficult procedure, involving ≥2 middle cerebral artery branch occlusions. This feature potentially increases treatment costs without improving outcomes.19 These considerations could potentially explain why ideal alteplase rates were significantly lower (both in the overall group of participants as well as among neurologists, who constituted the largest specialty subgroup) than ideal rates, despite formal evidence for alteplase treatment. The difference was statistically significant but small and of unclear clinical significance. However, depending on the results of MR CLEAN NO IV, DIRECT-MT, and SWIFT-DIRECT, this gap might grow further in the future. The specialty of interventional neuroradiology reported a significantly increased probability of dropping intravenous alteplase when switching from current local resources to assumed ideal conditions. This is likely due to treatment familiarity, but it could also potentially reflect a bias of binary thinking in treatment decision-making. The differences between current and ideal intravenous alteplase treatment rates in different countries, and particularly between North America and Europe (Fig 1), are most likely multifactorial and related to infrastructure and local policies. While the North American and European guidelines mostly agree in their alteplase and EVT treatment recommendations, local/institutional policies might differ across countries. Because neurologists were the largest group in almost all countries, physician specialty is probably not the main reason for these discrepancies. The exact reasons for the observed differences can, however, not be determined in this study and should be made subject to further research. Particularly in developing countries, many of which were not captured in this survey, access to EVT is still lacking and intravenous alteplase remains the mainstay of acute stroke therapy.

Our study has several limitations that deserve comment. The overall response rate of this survey was modest at 45.6%. Although the difference between current and ideal intravenous alteplase decision rates was statistically significant, the overall difference was small and the clinical significance of these discrepancies remains to be clarified. Enrollment was based on institutional networks and collaborations, potentially leading to a selection bias. Neurosurgeons and interventional neuroradiologists, who made up 42% of the participants, do not decide about alteplase treatment in most practice settings. We tried to design case scenarios that reflect clinical routine as realistically as possible, but a case-based survey cannot fully capture real-life decision-making. We did not obtain any information about the specific nature of external limitations that cause the resource gaps observed in our study. Furthermore, it is possible that lack of access to EVT in participants’ current local setting, as is the case in many countries that were represented in this survey, also influences their treatment decisions under assumed ideal conditions. Physicians who do not have access to EVT might not be familiar with this treatment and might, thus, not feel comfortable offering it even if
they could. Last, the results of this survey are a snapshot in time, whereas clinical decision-making is a dynamic construct; it is possible, for instance, that more liberal EVT treatment practices in the future will cause further reactive changes in intravenous alteplase treatment practice. Despite its limitations, this study helps to explore how intravenous alteplase treatment in patients with acute ischemic stroke is currently approached across a broad international, multidisciplinary spectrum and provides a helpful context for the 3 ongoing randomized trials.

CONCLUSIONS

Participants of this survey stated that they would treat slightly more patients with intravenous alteplase in their current local setting than they would in an ideal environment. These differences, though statistically significant, were, however, small, and their clinical significance remains unclear at the moment. Physicians who changed their decisions under assumed ideal conditions mostly wanted to add EVT in addition to intravenous alteplase.

ACKNOWLEDGMENTS

The authors are most grateful to all physicians participating in the study.

REFERENCES

Impact of Aortic Arch Anatomy on Technical Performance and Clinical Outcomes in Patients with Acute Ischemic Stroke

ABSTRACT

BACKGROUND AND PURPOSE: Arterial access is a technical consideration of mechanical thrombectomy that may affect procedural time, but few studies exist detailing the relationship of anatomy to procedural times and patient outcomes. We sought to investigate the respective impact of aortic arch and carotid artery anatomy on endovascular procedural times in patients with large-vessel occlusion.

MATERIALS AND METHODS: We retrospectively reviewed imaging and medical records of 207 patients from 2 academic institutions who underwent mechanical thrombectomy for anterior circulation large-vessel occlusion from January 2015 to July 2018. Preintervention CTAs were assessed to measure features of the aortic arch and ipsilateral great vessel anatomy. These included the cranial-to-caudal distance from the origin of the innominate artery to the top of the aortic arch and the takeoff angle of the respective great vessel from the arch. mRS scores were calculated from rehabilitation and other outpatient documentation. We performed bootstrap, stepwise regressions to model groin puncture to reperfusion time and binary mRS outcomes (good outcome, mRS ≤ 2).

RESULTS: From our linear regression for groin puncture to reperfusion time, we found a significant association of the great vessel takeoff angle (P = .002) and caudal distance from the origin of the innominate artery to the top of the aortic arch (P = .05). Regression analysis for the binary mRS revealed a significant association with groin puncture to reperfusion time (P < .001).

CONCLUSIONS: These results demonstrate that patients with larger takeoff angles and extreme aortic arches have an association with longer procedural times as approached from transfemoral access routes.

ABBREVIATIONS: CCA = common carotid artery; CCIA = the cranial-to-caudal distance from the origin of the innominate artery to the top of the aortic arch; GPRT = groin puncture to reperfusion time; HTN = hypertension; LVO = large-vessel occlusion

Ischemic stroke is the fifth leading cause of death and the leading cause of long-term disability in the United States. Recent studies have established mechanical thrombectomy as the criterion standard of care for large-vessel occlusion over tPA alone. These and other studies have demonstrated that reduced time between the onset of symptoms and reperfusion leads to better clinical outcomes. That time interval comprises prehospital and in-house elements, but physicians can largely affect only the latter. The interplay of minimizing the time from a patient’s symptom onset to reperfusion with the degree of reperfusion itself is at the core of current practice for the treatment of large-vessel occlusion (LVO).

While challenging arterial anatomy can lead to longer procedural times, scant literature exists detailing the impact of arch and carotid anatomy on procedural times. Ribo et al demonstrated that patients with difficult access have lower rates of recanalization and that carotid artery tortuosity can contribute to difficult access, but the aortic arch and carotid anatomy were not measured in this analysis. Kaymaz et al found a significant correlation between internal carotid access time and vessel anatomy, specifically the takeoff angle of the left common carotid artery (CCA)/innominate artery and CCA tortuosity. While these studies demonstrate that carotid tortuosity may extend the time to reperfusion, the impact of aortic arch anatomy on operative times has not been demonstrated. Additionally, no studies have looked...
at the impact of the aortic arch and carotid artery tortuosity on clinical outcomes in LVO.

The purpose of this study was to investigate the respective impact of the aortic arch and carotid artery anatomy on endovascular procedural times in patients with LVO and to build a multivariable model that may be prospectively applied to better direct arterial access approaches during LVO intervention.

MATERIALS AND METHODS

Patient Selection

This study was institutional review board–approved at both the University of California San Francisco and the University of Utah, and no informed consent was required. A total of 207 consecutive patients who underwent mechanical thrombectomy for anterior circulation LVO from January 2015 to July 2018 were included in this study. We had patient cohorts from 3 separate sites at 3 separate academic centers, which are staffed by fellowship-trained neurinterventional surgeons. We excluded patients who had an aborted endovascular intervention and acute ischemic stroke in the posterior circulation. Reasons for aborted interventions ranged from collateral filling seen during the intervention to rapid patient decompensation.

Patient and procedural data were collected retrospectively from the electronic medical record. Data points collected included the following: demographics (age at time of thrombectomy, sex, ethnicity), medical history (eg, hypertension [HTN], hyperlipidemia, diabetes mellitus, coronary artery disease/peripheral artery disease, atrial fibrillation, prior stroke), acute ischemic stroke episode details (eg, baseline mRS and NIHSS, last seen healthy to endovascular procedure start time, clot size, clot location, ASPECTS), and procedural intervention details (eg, exchange wire used, Simmons catheter use, stent placement, angioplasty, procedural time). Ethnicity data was collected due to the well-established differences in stroke rates amongst our studied ethnic groups. See Table 1 for basic demographic information on our study cohort.

Our primary outcome measures included groin puncture to reperfusion time (GPRT) and mRS, which were recorded from the medical record at discharge, 30 days, and 90 days.10

Procedure

Surgical procedures were performed by 9 different neurinterventional surgeons, each having at least 5 years of experience in endovascular stroke treatment at quaternary centers. All procedures were performed with the patient under moderate sedation or monitored anesthesia care, with general endotracheal anesthesia used only when necessary. Case selection was as prescribed by the 2015 and later 2018 American Heart Association/American Stroke Association guidelines. Equipment choice and technical details were case-specific as directed by the attending interventionalist at each site. Each procedure was performed according to the purview of the attending surgeon, the details of which were dictated by the clinical condition, though a stent retriever in tandem with catheter aspiration was the most frequently used thrombectomy technique.

Anatomic Measurement Protocol

CTA images were independently reviewed by 3 board-certified neuroradiologists and 1 trained medical student. Preprocedural CTA images were reviewed in the axial, coronal, and sagittal planes to generate anatomic metrics. Imaging analyses for the parameters of the aortic arch and carotid artery were similar to those described in the literature.9,11 Carotid and aortic length and angulation were directly calculated in the sagittal and coronal planes. Carotid and aortic length were defined as the curvilinear distance between the vessel origin and end. We limited our measurements to those that could be quickly generated from a CTA, including aortic arch variables (aortic arch types I–3, medial-to-lateral span, anterior-to-posterior span, and the cranial-to-caudal distance from the origin of the innominate artery to the top of the aortic arch [CCIA]) and carotid artery variables (CCA/innominate takeoff angle, medial-to-lateral span of the CCA, and anterior-to-posterior span of the CCA). For anatomic spans, measurements were made with the caliper extending from the specific dimensional extreme at the margin of the target vessel to the edge of the film as a reference, allowing measurement across multiple cuts. For the takeoff angle, the angle between vessels was defined as the angle of the vessel off the aortic arch in reference to a straight line down the curve of the spine. For right-sided strokes, the innominate angle was calculated, and for left-sided strokes, the CCA angle was calculated. For arch type (I, II, or III), classifications were made as previously described.12 Figure 1 gives detailed examples of these measurements and calculations.

Statistical Analysis

Statistical analyses were performed in R, Version 3.5 (http://www.r-project.org/).13 Before regression analysis, univariate analysis (logistic for mRS binary outcome and linear for reperfusion time) was used to determine which variables were independently associated with each outcome. The variables with P values < .1 were included in subsequent stepwise regression modeling. Because the most recent mRS score was limited (90-day follow-up), a composite variable was created, representing the most recent mRS score available for each patient. A binary mRS variable was created using the most recent mRS postprocedural metric, which stratified patients into either those with an mRS score of ≤2 or those with an mRS score of >2.

Table 1: Demographic variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean or %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>69.4 [range, 21–98]</td>
</tr>
<tr>
<td>Sex (male)</td>
<td>45.4%</td>
</tr>
<tr>
<td>Side (left)</td>
<td>54.6%</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>56.9%</td>
</tr>
<tr>
<td>Asian</td>
<td>21.6%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>13.7%</td>
</tr>
<tr>
<td>African American</td>
<td>7.4%</td>
</tr>
<tr>
<td>Pacific Islander</td>
<td>0.5%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>68.1%</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>44.4%</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>24.2%</td>
</tr>
<tr>
<td>Coronary/peripheral artery disease</td>
<td>24.2%</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>44.9%</td>
</tr>
<tr>
<td>Prior stroke</td>
<td>14.0%</td>
</tr>
</tbody>
</table>

The mean medial-lateral span and anterior-posterior span of the aorta were 61.6 ± 15.5 mm and 101.0 ± 17 mm, respectively. The mean medial-lateral span and anterior-posterior span of the carotid arteries on the affected side were 36.5 ± 12.4 mm and 28.2 ± 14.4 mm, respectively. The mean takeoff angle of either the innominate artery or carotid artery on the affected side was 20.3° ± 16.6°.

Procedural Outcomes

The mean GPRT was 55.6 ± 35.2 minutes with an interquartile range of 30–68 minutes. TICI 2b–3 recanalization was achieved in 159 cases (76.8%), while 12 cases resulted in TICI 0. One hundred nineteen clots were in M1 (57.5%), 48 (23.2%) were in the ICA, 39 (18.8%) were in M2, and 1 case (0.5%) was in the CCA. Tandem lesions occurred in 21 cases.

RESULTS

Anatomic Measurements

All except 7 patients (3.3%) had a complete series of images allowing accurate measurement of all anatomic variables. The most common reason for measurements not being obtained was the inferior aspect of images not including the aortic arch. The mean cranial-caudal span of the aorta was 10.9 ± 8.9 mm. The mean medial-lateral span and anterior-posterior span of the aorta were 10.9 ± 8.9 mm. The mean medial-lateral span of the right carotid artery was 36.5 ± 12.4 mm and the anterior-posterior span was 28.2 ± 14.4 mm. The mean takeoff angle of either the innominate artery or carotid artery on the affected side was 20.3° ± 16.6°.

Procedural Outcomes

The mean GPRT was 55.6 ± 35.2 minutes with an interquartile range of 30–68 minutes. TICI 2b–3 recanalization was achieved in 159 cases (76.8%), while 12 cases resulted in TICI 0. One hundred nineteen clots were in M1 (57.5%), 48 (23.2%) were in the ICA, 39 (18.8%) were in M2, and 1 case (0.5%) was in the CCA. Tandem lesions occurred in 21 cases.

RESULTS

Anatomic Measurements

All except 7 patients (3.3%) had a complete series of images allowing accurate measurement of all anatomic variables. The most common reason for measurements not being obtained was the inferior aspect of images not including the aortic arch. The mean cranial-caudal span of the aorta was 10.9 ± 8.9 mm. The mean medial-lateral span and anterior-posterior span of the aorta were 61.6 ± 15.5 mm and 101.0 ± 17 mm, respectively. The mean medial-lateral span and anterior-posterior span of the carotid arteries on the affected side were 36.5 ± 12.4 mm and 28.2 ± 14.4 mm, respectively. The mean takeoff angle of either the innominate artery or carotid artery on the affected side was 20.3° ± 16.6°.

Procedural Outcomes

The mean GPRT was 55.6 ± 35.2 minutes with an interquartile range of 30–68 minutes. TICI 2b–3 recanalization was achieved in 159 cases (76.8%), while 12 cases resulted in TICI 0. One hundred nineteen clots were in M1 (57.5%), 48 (23.2%) were in the ICA, 39 (18.8%) were in M2, and 1 case (0.5%) was in the CCA. Tandem lesions occurred in 21 cases.

RESULTS

Anatomic Measurements

All except 7 patients (3.3%) had a complete series of images allowing accurate measurement of all anatomic variables. The most common reason for measurements not being obtained was the inferior aspect of images not including the aortic arch. The mean cranial-caudal span of the aorta was 10.9 ± 8.9 mm. The mean medial-lateral span and anterior-posterior span of the aorta were 61.6 ± 15.5 mm and 101.0 ± 17 mm, respectively. The mean medial-lateral span and anterior-posterior span of the carotid arteries on the affected side were 36.5 ± 12.4 mm and 28.2 ± 14.4 mm, respectively. The mean takeoff angle of either the innominate artery or carotid artery on the affected side was 20.3° ± 16.6°.

Procedural Outcomes

The mean GPRT was 55.6 ± 35.2 minutes with an interquartile range of 30–68 minutes. TICI 2b–3 recanalization was achieved in 159 cases (76.8%), while 12 cases resulted in TICI 0. One hundred nineteen clots were in M1 (57.5%), 48 (23.2%) were in the ICA, 39 (18.8%) were in M2, and 1 case (0.5%) was in the CCA. Tandem lesions occurred in 21 cases.

RESULTS

Anatomic Measurements

All except 7 patients (3.3%) had a complete series of images allowing accurate measurement of all anatomic variables. The most common reason for measurements not being obtained was the inferior aspect of images not including the aortic arch. The mean cranial-caudal span of the aorta was 10.9 ± 8.9 mm. The mean medial-lateral span and anterior-posterior span of the aorta were 61.6 ± 15.5 mm and 101.0 ± 17 mm, respectively. The mean medial-lateral span and anterior-posterior span of the carotid arteries on the affected side were 36.5 ± 12.4 mm and 28.2 ± 14.4 mm, respectively. The mean takeoff angle of either the innominate artery or carotid artery on the affected side was 20.3° ± 16.6°.

Procedural Outcomes

The mean GPRT was 55.6 ± 35.2 minutes with an interquartile range of 30–68 minutes. TICI 2b–3 recanalization was achieved in 159 cases (76.8%), while 12 cases resulted in TICI 0. One hundred nineteen clots were in M1 (57.5%), 48 (23.2%) were in the ICA, 39 (18.8%) were in M2, and 1 case (0.5%) was in the CCA. Tandem lesions occurred in 21 cases.

RESULTS

Anatomic Measurements

All except 7 patients (3.3%) had a complete series of images allowing accurate measurement of all anatomic variables. The most common reason for measurements not being obtained was the inferior aspect of images not including the aortic arch. The mean cranial-caudal span of the aorta was 10.9 ± 8.9 mm. The mean medial-lateral span and anterior-posterior span of the aorta were 61.6 ± 15.5 mm and 101.0 ± 17 mm, respectively. The mean medial-lateral span and anterior-posterior span of the carotid arteries on the affected side were 36.5 ± 12.4 mm and 28.2 ± 14.4 mm, respectively. The mean takeoff angle of either the innominate artery or carotid artery on the affected side was 20.3° ± 16.6°.

Procedural Outcomes

The mean GPRT was 55.6 ± 35.2 minutes with an interquartile range of 30–68 minutes. TICI 2b–3 recanalization was achieved in 159 cases (76.8%), while 12 cases resulted in TICI 0. One hundred nineteen clots were in M1 (57.5%), 48 (23.2%) were in the ICA, 39 (18.8%) were in M2, and 1 case (0.5%) was in the CCA. Tandem lesions occurred in 21 cases.
the takeoff angle was associated with a 9 minute 13 second increase in the groin puncture to reperfusion time, all while holding age at an mean value.

Clinical Outcomes

The mean last seen healthy to reperfusion time was 434.5 ± 321 minutes, with an interquartile range of 230–509 minutes. The mean preprocedural and postprocedural NIHSS scores were 16.8 ± 6.6 and 10.6 ± 9.1, respectively, with 131 (63.3%) patients having a recorded postprocedural NIHSS. Two-hundred patients (96.6%) had a recorded preprocedural mRS, and 187 patients (90.3%) had an mRS score recorded at discharge. Only 103 (49.8%) and 97 (46.9%) patients had 30-day mRS scores and 90-day mRS scores, respectively. One hundred twenty-five patients (60.3%) had either a 30-day or 90-day mRS score available. When patients were dichotomized into mRS ≤ 2 or > 2 by the most recent score, 73.8% were in the higher mRS group, indicating a poor outcome.

Table 3 summarizes the results of the final model determined by bootstrap, stepwise logistic regression for binary mRS outcomes. Statistically significant independent predictors of more severe disability (mRS > 2) included the mRS type (compared with the mRS score recorded at discharge, mRS at 30 days had a reduced risk of severe mRS score, OR = 0.16, P = .004, and similarly for mRS recorded at 90 days, OR = 0.13, P < .001), preprocedural mRS (a 1-unit increase in the preprocedural mRS was associated with a 359% higher odds of a severe postsurgical score, OR = 3.59, P < .001), hypertension (having hypertension increased the odds of a severe mRS score by 3.08-fold, OR = 3.08, P = .04), and GPRT (a 15-minute increase in the GPRT resulted in a 1.93-times increase of a severe mRS score, OR = 1.93, P < .001). A borderline significant variable was the use of an exchange wire (2.98-time increase in a severe mRS score, P = .05), and a 1-unit increase in the ASPECTS was associated with reduced risk (OR = 0.77, P = .05). When applying this model to the test set, we found an accuracy of 80.63.

DISCUSSION

Patient demographic data, outcomes, and procedural results in our cohort were comparable with the populations and results of large-scale mechanical thrombectomy studies. Notably, our cohort had higher rates of atrial fibrillation at 45%. In addition, despite the higher last seen healthy to reperfusion time of our cohort compared with other studies, our outcome data are similar, with 73% of patients in the mRS > 2 group for the most recent mRS score. The longer last seen healthy to reperfusion time is likely because we did not include a temporal cutoff from stroke onset to presentation as previous studies did.
From the measured anatomic variables, we found that the takeoff angle and CCIA were significant independent predictors of procedural time. Although the CCIA has never been specifically shown to have an influence on procedural times in mechanical thrombectomy, unfavorable arch types (type II or III) have been associated with more ischemic events and longer procedural times in patients undergoing carotid stent placement. However, most of these studies found subjective associations primarily with arch type or, in 1 study, a composite “B.A.D score” based on bovine variation, aortic arch type, and INA dolichoarteriopathy. The 1 study to directly measure angulation did not use groin puncture to reperfusion time or clinical status as outcome measures but rather fluoroscopy time. In addition, all of these studies were from a single institution, with only 1 study including both procedural time measures and clinical outcomes. While we did not find arch type itself to be predictive of procedural time as in prior studies, the CCIA can be seen as a linear variable transformation of the ordinal variable arch type. Among the 2 anatomic predictors of procedural time, the takeoff angle was more statistically significant and had a larger range of values. One prior study on mechanical thrombectomy found the takeoff angle of the CCA and the innominate artery as well as the tortuosity of the CCA to have the most significant influence in internal carotid artery access time, in agreement with our results. Collectively, these results confirm the notion that the takeoff angle of the innominate artery or left CCA is the first and possibly most difficult hurdle in ICA access from a femoral approach. Notably, our study examined overall procedural time and included a multivariate analysis compared with examination of internal carotid access time by univariate analysis of the prior study. The anatomic factors that we examined were chosen on the basis of calculations that could be standardized and quickly performed on preprocedural CTAs; thus, tortuosity was not included as a variable due to its more involved measurement criteria. The measurement of the takeoff angle in reference to the spine can likely be accomplished in <30 seconds by an experienced user, emphasizing the relative brevity of selected measurements in an emergency LVO.

When examining the effects of age and hypertension on the takeoff angle and procedural times through triple-interaction modeling, we found age to be a modifier of the effect of the takeoff angle on procedural times in patients without hypertension. The tortuosity of the carotid arteries seen in older patients appears to be influenced by long-standing hypertension and atherosclerosis. Older patients without hypertension appear to be the most difficult cohort to access from our analysis, suggesting another etiology to the apparent tortuosity in the patient population, such as atherosclerosis. Thus, the presence or absence of HTN as a function of age conveys properties about the rigidity of the vessel wall, a dimension we have less success in capturing through conventional imaging alone. Overall, our results suggest that an operator with a few pieces of information such as the takeoff angle, HTN status, and age may be able to make better judgments around a case with the ultimate goal of shrinking time to reperfusion.

From our clinical outcome analysis, we found that faster procedural times and last seen healthy to reperfusion times were associated with better outcomes, in agreement with prior studies. Procedural times did significantly vary by site, but this was controlled for in our logistic regression. We did not find last seen healthy to reperfusion time to be significantly associated with more severe disability; however, it trended toward significance. This trend is likely due to the subjective nature of this variable, in addition to limitations of data collection from our county hospital site. We also did not find the ASPECTS to be a significant predictor of more severe disability, but this finding was likely due to the relative distribution of our ASPECTS with >90% being ≥6.

On the basis of the results, operators may consider the use of a Simmons catheter at case start for instances with a carotid takeoff angle of >10° and/or an innominate origin of 5 mm caudal to the aortic apex. Furthermore, if a Simmons catheter is ineffective after 10 minutes of effort, operators should consider an alternative access approach (eg, carotid or radial), depending on their level of comfort and the particular clinical scenario. If a transcervical approach is used, general anesthesia is recommended; thus, mean arterial pressures must be maintained during induction and throughout the anesthesia period. In these cases, at our institution, arterial closure is performed by vascular or neurologic surgery, though other methods (eg, manual compression, closure device) have been described. The authors have no experience with transradial approaches for stroke, though we are aware of series describing success in both the anterior and posterior circulations. Prospective study of patients with anatomy that may prove more difficult to access via a transfemoral route using such alternative methods would benefit the community.

The retrospective nature of this study is a limitation. In addition, a certain amount of error should be taken into account for the measurement of takeoff angles, because this is the most subjective of our anatomic variables. For our clinical outcome analysis, we did not have access to longitudinal outcome data for half of our patients and thus had to create a composite mRS score for all patients. We did control for the time point in our logistic regression analysis to try to overcome this limitation. Finally, because this was a multi-institutional study, there were likely unstudied technical differences among institutions.

CONCLUSIONS

There was a strong association between larger takeoff angles and higher aortic arches and longer procedural times, especially in older patients without hypertension. This study presents a unique, comprehensive analysis of objective measurements of aortic arch anatomic factors, examining their effect on both procedural times and clinical outcomes. A nonfemoral access method such as direct carotid puncture should be considered when one is presented with these difficult patient and anatomic factors, to minimize procedural duration.

ACKNOWLEDGMENTS

We would like to thank Jacquelyn Withers for helping design our figures.

Disclosures: Joseph A. Knox—RELATED: Grant: National Institutes of Health TL1 TR001871. Comments: I received a National Institutes of Health TL1 research grant to perform yearlong research at the University of California,
REFERENCES

25. Schmitz ML, Yeatts SD, Tomnick TA, et al. Recanalization and angiographic reperfusion are both associated with a favorable clinical outcome in the IMS III trial. Interv Neurol 2016;5:118–12 CrossRef Medline

Stroke is one of the leading causes of mortality and disability worldwide. In recent years, multiple randomized controlled trials have shown that endovascular treatment improves functional outcome in patients with a proximal occlusion of the anterior circulation, with an efficacy unmatched by any previous therapy for stroke management, given a number needed to treat of <3 to achieve improved functional outcome. Endovascular treatment with or without intravenous alteplase yields a high recanalization rate of up to 90% and is therefore a validated, effective, and safe treatment now recommended for these patients. Current stroke guidelines are based on data from these randomized controlled trials including highly selected patients. Their encouraging results led to more widespread use of endovascular treatment; therefore, broader criteria than those recommended are now used in current practice to treat, for example, elderly patients, patients with minimal stroke symptoms, or patients in late time windows up to 24 hours after stroke onset. On the other hand, the Highly Effective Reperfusion using Multiple Endovascular Devices (HERMES) meta-analysis of the main trials also highlighted that half of all patients have poor clinical outcomes despite successful technical revascularization.

Because the reasons for poor clinical outcome after thrombectomy are not clearly understood and given that in clinical practice, patients are often of advanced age and present with high stroke severity or a large ischemic volume, patient selection for thrombectomy warrants improvement. Multiple individual poor prognostic factors may be involved simultaneously. Several prognostic tools have, therefore, been proposed based on clinical and radiologic pretreatment criteria to predict the risk of disability after thrombectomy: Mainly advanced age, a high baseline NIHSS score, and a low baseline ASPECTS on noncontrast CT have been identified as reliable predictors of prognosis. However, these studies were conducted before the latest trials and were mainly based on CT but rarely on MR imaging to triage patients. Yet DWI was shown to be more accurate than noncontrast CT for estimating the ischemic core and was more accurate than perfusion CT for predicting final infarct volume. These findings suggest that DWI would be a better imaging...
parameter than CT for predicting futile outcomes. A recent meta-analysis from the HERMES group\(^{16}\) showed that core infarct volume correlated with 3-month clinical outcome and that patients selected by MR imaging, though accounting for only 18% of cases, had superior outcomes relative to patients selected by CT and CT perfusion estimates of core infarction. The recent THRombectomie des Artères Cérébrales (THRACE) trial used DWI for pretreatment imaging in 70% of patients, identifying DWI volume as an independent factor predictive of poor outcome and showing the benefit of thrombectomy decreasing with an increase in lesion volume.\(^{17}\)

The purpose of our study was to develop a hierarchic algorithm based on MR imaging and clinical data to better identify patients who may not benefit from thrombectomy, given the risk of disability.

MATERIALS AND METHODS

Study Design and Patients

This was a retrospective, observational study including all consecutive patients admitted directly to Rennes University Hospital or referred from 3 other general hospitals (Vannes, Saint-Brieuc and Saint-Malo hospitals) between January 2015 and May 2017. The local ethics review board found the research to conform to generally accepted scientific principles and ethical standards (committee decision No. 17.71, December 18, 2017). According to French legislation, no informed consent was required in view of the observational and retrospective nature of this study, and all patients were informed of its purpose and the procedures involved and of their right to refuse use of their data.

Inclusion criteria were the following: patients 18 years of age or older, presenting with acute ischemic stroke with proximal arterial occlusion of the anterior circulation confirmed on 1.5 or 3T MR imaging, admitted to our center within 6 hours of symptom onset, and undergoing endovascular treatment with or without intravenous alteplase. Exclusion criteria were the following: posterior circulation stroke on MR imaging, prestroke mRS \(>2\) and no available prethrombectomy MR imaging or modified mRS at 3 months after stroke onset (accepted limit, 120 days).

Intravenous thrombolysis was performed within 4.5 hours of stroke onset by intravenous administration of 0.9 mg/kg of alteplase (maximum, 90 mg) with an initial bolus of 10% of the total dose followed by an infusion of the remaining dose during 60 minutes. Endovascular thrombectomy was performed by neurointerventionalists with \(>5\) years’ experience. At the beginning of the procedure, an intravenous heparin bolus (1500–2000 IU) was administered to patients who did not receive intravenous alteplase. With the patient under conscious sedation or general anesthesia (as determined by the medical team), endovascular treatment was performed using a coaxial (6F or 8F guiding catheter) or triaxial system (long introducer sheath or 8F guiding catheter with an intermediate aspiration catheter) and a combined approach with a microcatheter-delivered stent retriever and manual aspiration during stent retrieval (up to 5 passes if necessary).

Clinical and Imaging Data Collection

The following data were collected at baseline: demographic characteristics (age and sex); history of treated diabetes mellitus, hypertension and/or atrial fibrillation, and history of ischemic stroke and transient ischemic attack; blood glucose level; systolic blood pressure; and NIHSS range of 0–42, with higher scores indicating more severe neurologic deficits.

The ischemic infarct lesion volume on pretreatment MR imaging was calculated from the ADC of DWI using a semiautomatic segmentation method with an AW Server 3.2 (2106; GE Healthcare, Milwaukee, Wisconsin). The ASPECTS (DWI-ASPECTS) was determined by a senior neuroradiologist (with \(>5\) years’ experience). Intracranial occlusion location and infarct side were indicated on MR imaging. We also collected stroke treatment details: intravenous alteplase administration, time from stroke onset to groin puncture, anesthesia type (general anesthesia or conscious sedation), and post-thrombectomy angiographic results according to the TICI grading system, with a score of 2b or 3 corresponding to reperfusion of at least 50% of the affected arterial territory. Symptomatic intracranial hemorrhage at 24 hours was defined as bleeding visible on CT plus an increase in the NIHSS score of at least 4 points.\(^{3}\)

Statistical Analysis

Statistical analysis was performed using SAS software 9.4 (SAS Institute, Cary, North Carolina). For continuous variables, the mean \(\pm\) SD is reported, and for categoric variables, the number of patients in each category and the corresponding percentage are given. Patients were divided into 2 groups according to the mRS at 3 months (poor prognosis, mRS \(>2\); and good prognosis, mRS \(\leq 2\)). The characteristics of the 2 groups were compared using the Student \(t\) test or Wilcoxon rank sum test when appropriate for continuous variables, and the \(\chi^2\) or Fisher exact test when appropriate for categoric variables. To identify risk factors independently associated with poor prognosis, we entered variables found to be significantly different (\(P < .20\)) between the 2 groups into a forward stepwise logistic regression model. Each variable used in this logistic regression analysis was binary. Cutoff values were those with the best sensitivity and specificity found on the receiver operating characteristic curves for each variable. A predictive hierarchic algorithm showing the likelihood of poor prognosis at 3 months was also constructed using the variables in the logistic model at the \(P < .01\) level. For all analyses, \(P < .05\) was considered statistically significant.

RESULTS

During the study period, 289 patients underwent endovascular treatment for acute anterior circulation stroke secondary to large intracranial arterial occlusion, and finally a total of 149 patients were included in the analysis (Fig 1).

Population Characteristics

Table 1 shows baseline characteristics in the 2 groups. A total of 80 patients (53.7%; 95% CI, 45.3%–61.9%) had a poor prognosis at 3 months (20 with mRS = 3, seventeen with mRS = 4, five with mRS = 5, and 38 with mRS = 6). Compared with patients with good prognoses, patients with poor prognoses at 3 months were older; had a more frequent history of hypertension and atrial fibrillation; and had higher blood glucose levels, a higher NIHSS score at baseline, a higher DWI lesion volume and DWI-
ASPECTS, and more terminal internal carotid artery occlusions. Stroke treatment details showed that compared with patients with good prognoses, patients with poor prognoses at 3 months were less often treated with intravenous alteplase, had general anesthesia more often, and had a longer time from stroke onset to groin puncture and a higher rate of recanalization failure. Successful recanalization (as assessed by a TICI score of 2b or 3) was achieved in 122 patients (81.9%; 95% CI, 74.7%–87.7%). Symptomatic intracranial hemorrhage was observed in 5 patients (4.3%) of a total 117 patients with available data.

Prognostic Factors

Multivariate logistic regression analysis identified 4 independent risk factors of poor prognosis at 3 months, which were in decreasing importance: DWI lesion volume >80 mL, baseline NIHSS score >14, age older than 75 years, and time from stroke onset to groin puncture of >4 hours (Table 2). The predictive quality of the logistic model was high, as illustrated by an area under the receiver operating characteristic curve of 0.87 with a 95% CI, 0.81–0.93 (Fig 2). DWI volume of 80 mL had the best sensitivity and specificity with an area under the receiver operating characteristics curve of 0.71 (a patient with a DWI lesion of >80 mL had 96.8% of risk of poor outcome, and a patient with a DWI lesion of <80 mL had a 61.8% of chance of good outcome). For DWI-ASPECTS, the area under the receiver operating characteristics curve was 0.73, and a patient with a score of <5 had 84.8% of risk of poor outcome, whereas a patient with an ASPECTS of ≥ 5 had a 60.2% of chance of good outcome. A close relationship was observed between DWI-ASPECTS and DWI lesion volume with a correlation coefficient of 0.87 (plot in On-line Figure). Only DWI volume was a significant predictor with a relative difference in means between the good and poor prognosis groups of 61% (31% for DWI-ASPECTS).

We developed a hierarchic algorithm, with the variables entered in the model at the $P < 0.01$ level showing the proportion of poor prognoses at 3 months predicted with the model and the corresponding number of patients with poor prognoses observed in our population (Fig 3). The percentage of poor prognoses was

![Image](https://example.com/image.png)

FIG 1. Flow chart.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (n = 149)</th>
<th>Good Prognosis: mRS at 3 Months ≤ 2 (n = 69)</th>
<th>Poor Prognosis: mRS at 3 Months >2 (n = 80)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>68.7 ± 14.3</td>
<td>65.8 ± 15.1</td>
<td>71.2 ± 13.2</td>
<td>.022</td>
</tr>
<tr>
<td>Sex ratio (female/male)</td>
<td></td>
<td>32:37</td>
<td>39:41</td>
<td>.772</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>15 (10.1%)</td>
<td>4 (5.8%)</td>
<td>11 (13.8%)</td>
<td>.108</td>
</tr>
<tr>
<td>Arterial hypertension</td>
<td>88 (59.1%)</td>
<td>33 (47.8%)</td>
<td>55 (68.8%)</td>
<td>.010</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>37 (24.8%)</td>
<td>10 (14.5%)</td>
<td>27 (33.8%)</td>
<td>.007</td>
</tr>
<tr>
<td>History of stroke or transient ischemic attack</td>
<td>25 (16.8%)</td>
<td>8 (11.6%)</td>
<td>17 (21.3%)</td>
<td>.116</td>
</tr>
<tr>
<td>Prestroke mRS</td>
<td></td>
<td></td>
<td></td>
<td>.670</td>
</tr>
<tr>
<td>0</td>
<td>137 (91.9%)</td>
<td>65 (94.2%)</td>
<td>72 (90.0%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 (6.7%)</td>
<td>3 (4.3%)</td>
<td>7 (8.8%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 (1.3%)</td>
<td>1 (1.4%)</td>
<td>1 (1.3%)</td>
<td></td>
</tr>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td>153.4 ± 27.6</td>
<td>155.7 ± 28.3</td>
<td>151.3 ± 27.0</td>
<td>.372</td>
</tr>
<tr>
<td>Blood glucose level (mmol/L)</td>
<td>6.9 ± 2.2</td>
<td>6.3 ± 1.3</td>
<td>7.4 ± 2.6</td>
<td>.001</td>
</tr>
<tr>
<td>Baseline NIHSS score</td>
<td>16.3 ± 5.4</td>
<td>13.8 ± 5.6</td>
<td>18.5 ± 4.2</td>
<td><.001</td>
</tr>
<tr>
<td>DWI-ASPECTS</td>
<td>5.9 ± 2.7</td>
<td>7.1 ± 2.1</td>
<td>4.9 ± 2.7</td>
<td><.001</td>
</tr>
<tr>
<td>DWI volume (mL)</td>
<td>53.3 ± 64.8</td>
<td>23.8 ± 18.7</td>
<td>81.1 ± 79.2</td>
<td><.001</td>
</tr>
<tr>
<td>Occlusion location</td>
<td></td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>M1</td>
<td>95 (63.8%)</td>
<td>45 (65.2%)</td>
<td>50 (62.5%)</td>
<td>.008</td>
</tr>
<tr>
<td>M2</td>
<td>21 (14.1%)</td>
<td>18 (26.1%)</td>
<td>3 (4.8%)</td>
<td>.304</td>
</tr>
<tr>
<td>Terminal ICA</td>
<td>33 (22.1%)</td>
<td>6 (8.7%)</td>
<td>27 (33.8%)</td>
<td>.001</td>
</tr>
<tr>
<td>Intravenous alteplase</td>
<td>115 (77.2%)</td>
<td>60 (87.0%)</td>
<td>55 (68.8%)</td>
<td>.008</td>
</tr>
<tr>
<td>Stroke side</td>
<td></td>
<td></td>
<td></td>
<td>.340</td>
</tr>
<tr>
<td>Left</td>
<td>65 (43.6%)</td>
<td>27 (39.1%)</td>
<td>38 (47.5%)</td>
<td>.002</td>
</tr>
<tr>
<td>Right</td>
<td>84 (56.4%)</td>
<td>42 (60.9%)</td>
<td>42 (52.5%)</td>
<td>.019</td>
</tr>
<tr>
<td>Time from stroke onset to groin puncture (hr)</td>
<td>3.9 ± 1.3</td>
<td>3.6 ± 1.2</td>
<td>4.2 ± 1.3</td>
<td>.032</td>
</tr>
<tr>
<td>Recanalization score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TICI 2b/3</td>
<td>122 (81.9%)</td>
<td>62 (89.9%)</td>
<td>60 (75.0%)</td>
<td>.019</td>
</tr>
<tr>
<td>TICI 0/1/2a</td>
<td>27 (18.1%)</td>
<td>7 (10.1%)</td>
<td>20 (25.0%)</td>
<td>.032</td>
</tr>
<tr>
<td>Anesthesia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conscious sedation</td>
<td>68 (45.6%)</td>
<td>38 (55.1%)</td>
<td>30 (37.5%)</td>
<td>.032</td>
</tr>
<tr>
<td>General anesthesia</td>
<td>81 (54.4%)</td>
<td>31 (44.9%)</td>
<td>50 (62.5%)</td>
<td>.032</td>
</tr>
</tbody>
</table>

*a Quantitative variables are expressed as means; qualitative variables are expressed as numbers (corresponding percentage).
51.4% for the entire population. The model predicted up to 100% poor prognosis in patients who had a DWI lesion volume of >80 mL and age older than 75 years, or DWI lesion volume of >80 mL and time to groin puncture of >4 hours. A baseline NIHSS score of >14 provided additional information when the DWI lesion volume was ≤80 mL, increasing prediction of poor prognosis from 19.1% to 56.3%. When age older than 75 years and time from stroke onset to groin puncture of >4 hours were added, it allowed prediction of 100% of poor prognosis cases.

DISCUSSION

Our study identified prethrombectomy DWI lesion volume as a crucial predictor of disability at 3 months. DWI lesion volume of >80 mL, baseline NIHSS score of >14, age older than 75 years, and time from stroke onset to groin puncture of >4 hours were 4 identified independent risk factors of decreasing importance associated with poor prognosis at 3 months after thrombectomy. On this basis, we developed a hierarchic predictive algorithm for the likelihood of disability with a high predictive value (area under the curve, 0.87). The importance of using this type of prediction tool in clinical practice was illustrated by the 53.7% of patients with disability we observed, in full agreement with literature data (54.0% in HERMES meta-analysis).

We present a novel tool combining DWI with clinical data for predicting the risk of disability after thrombectomy. Most published prognostic clinical decision tools for identifying patients who may or may not benefit from intra-arterial treatment involved CT and showed that a low CT-ASPECTS (<71) or ≤5) was associated with worse outcome. However, DWI proved to be more accurate than CT for predicting poor outcome because area under the curve scores for DWI-ASPECTS and lesion volume were higher (0.70) than those of noncontrast or postcontrast CT (0.55) and more accurate than perfusion CT for predicting good outcome (area under the curve, 0.58). Then studies increasingly focused on MR imaging to select patients. Then, an ancillary study of the THRACE trial reported that lesion volume was an independent predictor of disability because the number of patients needed to treat to achieve functional independence increased with lesion volume (10 patients for a volume of 80 mL, 15 for 135 mL), but no treatment-

Table 2: Variables independently associated with poor prognosis identified in logistic regression analysis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Odds Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWI lesion volume ≥80 mL</td>
<td>37.47 (4.62–303.63)</td>
<td>.0007</td>
</tr>
<tr>
<td>NIHSS score >14</td>
<td>5.84 (2.20–15.52)</td>
<td>.0004</td>
</tr>
<tr>
<td>Age older than 75 yr</td>
<td>6.15 (2.35–16.11)</td>
<td>.0002</td>
</tr>
<tr>
<td>Time from stroke onset to groin puncture (hr)</td>
<td>2.55 (1.02–6.39)</td>
<td>.0456</td>
</tr>
</tbody>
</table>

FIG 2. Receiver operating characteristic curve of the logistic model for prediction of poor prognosis: area under curve = 0.87.

FIG 3. Hierarchic algorithm based on the 4 independent variables from the multivariate analysis for predicting poor prognosis at 3 months after thrombectomy. The algorithm shows the percentage of poor prognoses (mRS > 2 at 3 months) predicted with the model and the corresponding number of cases observed in our population.
by-dichotomized volume interaction for functional independence was observed.17

Our statistical method extracted cutoff values from receiver operating characteristic curves and identified a volume of 80 mL as having the best sensitivity and specificity for predicting poor outcome. The DWI-ASPECTS was not identified in the multivariate analysis due to the close association with DWI lesion volume, but a threshold of <5 was identified from the receiver operating characteristic curve after univariate analysis as predicting poor outcome. Both of these threshold values are in line with the latest Society of Neurointerventional Surgery guidelines, considering thrombectomy for class I level of evidence A indications in patients with anterior circulation acute stroke within 6 hours and either MR imaging DWI-ASPECTS of ≥6 or a small DWI lesion of <50–70 mL.25 There is controversy in the literature about treating patients with large infarct core volumes. Recent studies showed up to 25%21 to 34%22 good outcomes in patients with a DWI-ASPECTS of ≤5, particularly in young patients.23 Our study corroborates the benefit of thrombectomy, given the 15.2% chance of good outcome in patients with a DWI-ASPECTS of ≤5. However, a patient with a DWI lesion of >80 mL has only a 3.2% chance of good outcome, suggesting that this variable is more efficient than DWI-ASPECTS for triage decisions.

We identified older age and a high baseline NIHSS score as the strongest predictive variables after DWI lesion volume. Most studies have illustrated the important role of both these predictors of poor outcome at 3 months.10,12,14,17,26,27 We considered an age threshold of older than 75 years as predictive of disability, which is in accordance with literature data that identified an age between 65 and 80 years.10,13,28 The previously published baseline NIHSS threshold is variable from >1026 to >20,27,28 which is also in accordance with our results (>14). Time delay from stroke onset to groin puncture was identified as the least significant predictor of poor outcome, ranking fourth in our model, but it allowed predicting 100% of poor outcomes for patients with a DWI lesion volume of >80 mL and age 75 years or younger, or for patients with DWI lesion volume of ≤80 mL, an NIHSS score of >14, and age older than 75 years. The literature is contradictory as to the prognostic value of a longer time to thrombectomy. It was shown to be a poor prognostic factor26,27 by some authors, while others highlighted its modest10 or insignificant association12,29 with prognosis. This difference questions the decision not to treat patients due to a longer time from stroke onset, especially with lesion volume of ≤80 mL and/or age 75 years or younger, especially in patients who need to be transferred to an intervention center,30 or for patients beyond a common therapeutic window6 or with an unknown stroke onset time.29

Our hierarchic algorithm did not retain as significant certain variables such as systolic blood pressure or history of ischemic stroke or diabetes mellitus, which were identified in previous studies but with different population characteristics.10 For example, our patients had a shorter time to groin puncture (234 versus 260 minutes26) and a higher percentage of effective recanalization (82% versus 59%). This high successful recanalization rate of 75% for the patient group with poor outcome may also explain why this variable did not emerge as a significant prognostic factor. Last, collaterals were not evaluated in our MR imaging–based algorithm due to a lack of well-validated scales. Yet collaters are a compensatory phenomenon, and their absence is presumed to be associated with larger core infarct volumes and poor prognosis.31

The proposed hierarchic algorithm is based on the DWI lesion volume and 3 clinical predictors with cutoff values and is very easy to use in clinical practice to predict the lack of clinical benefit of thrombectomy. Its predictive value is higher than in most previous scores proposed, with an area under the curve of 0.87, and 0.75 for the HIAT2 score13 and 0.79 for the Pittsburgh Response to Endovascular Therapy score.12 Again, this superior result may be explained by the use of MR imaging instead of CT, given that MR imaging is the most accurate and validated method for assessing acute stroke lesions. Other factors such as the use of newer thrombectomy devices and earlier time to recanalization may also explain this higher predictive value. The limitations of our study lie in its retrospective nature and relatively small sample size, especially for subgroups of patients combining >2 risk factors. Additionally, 61 patients were excluded due to missing 3-month mRS scores. Last, in the patient subgroup with DWI volumes of >80 mL, the addition of the NIHSS score, age, and time to groin puncture adds very little predictive value to the algorithm (96% compared with 100%). Further validation cohort studies are also needed to confirm the high predictive value.

CONCLUSIONS

Our study involved development of a hierarchic algorithm based on DWI lesion volume, age, baseline NIHSS score, and time to puncture for predicting disability at 3 months after thrombectomy with a high predictive value. This algorithm could help to design a clinical decision-making tool for better identification of patients for whom thrombectomy would be futile.

Disclosures: François Eugène—UNRELATED: Consultancy: BIOMODEX SAS. Sarah Evain—UNRELATED: Payment for development of educational presentations: CHEM, Comments: Private educational group for paramedical et medical formation; Travel/accommodations/meeting expenses unrelated to activities listed: SLICE group. Comments: SLICE meeting travel, accommodation, meeting, Thomas Ronziere—RELATED: Support for Travel to Meetings for the Study or Other Purposes: Shire, Genzyme.

REFERENCES

Endovascular Treatment Decisions in Patients with M2 Segment MCA Occlusions

ABSTRACT

BACKGROUND AND PURPOSE: Endovascular therapy in acute ischemic stroke is rapidly evolving. We explored physicians’ treatment attitudes and practice in patients with acute ischemic stroke due to M2 occlusion, given the absence of Level-1 guidelines.

MATERIALS AND METHODS: We conducted an international multidisciplinary survey among physicians involved in acute stroke care. Respondents were presented with 10 of 22 case scenarios (4 with proximal M2 occlusions and 1 with a small-branch M2 occlusion) and asked about their treatment approach under A) current local resources, and B) assumed ideal conditions (no monetary or infrastructural restraints). Overall treatment decisions were evaluated; subgroup analyses by physician and patient baseline characteristics were performed.

RESULTS: A total of 607 physicians participated. Most of the respondents decided in favor of endovascular therapy in M2 occlusions, both under current local resources and assumed ideal conditions (65.4% versus 69.6%; P = .017). Under current local resources, older patient age (P < .001), longer time since symptom onset (P < .001), high center endovascular therapy volume (P < .001), high personal endovascular therapy volume (P = .005), and neurosurgeons (P < .001) were more likely to favor endovascular therapy. European respondents were less likely to favor endovascular therapy (P = .001). Under assumed ideal conditions, older patient age (P < .001), longer time since symptom onset (P < .001), high center endovascular therapy volume (P = .041), high personal endovascular therapy volume (P = .002), and Asian respondents were more likely to favor endovascular therapy (P = .037). Respondents with more experience (P = .048) and high annual stroke thrombolysis treatment volume (P = .001) were less likely to favor endovascular therapy.

CONCLUSIONS: Patients with M2 occlusions are considered appropriate candidates for endovascular therapy by most respondents in this survey, especially by those performing endovascular therapy more often and those practicing in high-volume centers.

ABBREVIATIONS: EVT = endovascular therapy; IQR = interquartile range

A
cute ischemic stroke due to large arterial occlusions is a disabling condition with devastating consequences, unless timely reperfusion is achieved.1–3 Strokes caused by M2 segment MCA occlusions can present with severe symptoms and lead to large infarct volumes, with substantial morbidity and mortality.4 Recent endovascular stroke trials focused on patients likely to attain the greatest benefit from endovascular therapy (EVT). These trials mainly included patients with proximal (terminal internal carotid “ICA” and proximal middle cerebral artery “M1”) occlusions.5 Accordingly, current guidelines state that the benefit of EVT is uncertain in patients with M2 segment MCA occlusions; however, many operators believe that EVT is appropriate in these patients.6

Since the publication of the recent EVT trials5,7 in 2015, many studies have been published that report the safety and efficacy of EVT in patients with M2 segment MCA occlusions, including a patient-level meta-analysis from the Highly Effective Reperfusion evaluated in Multiple Endovascular Stroke trials Collaboration.8–11 Many operators now routinely perform EVT in patients with
ischemic stroke and with M2 segment MCA occlusions. However, EVT decision-making in these patients is variable due to a lack of clear guideline-based treatment recommendations. Until now, little was known about how physicians make treatment decisions with regard to EVT in patients with acute ischemic stroke and with M2 segment MCA occlusions and what factors guide this process. By using a worldwide survey, this study aims to explore how physicians from different subspecialties manage patients with acute ischemic stroke due to M2 segment MCA occlusions.

MATERIALS AND METHODS

Survey Design

An international cross-sectional Web-based survey (UNMASK-EVT) among stroke physicians and neurointerventionalists was conducted to understand the current treatment practice and decision-making with regard to EVT in patients with acute ischemic stroke and with M2 segment MCA occlusions and what factors guide this process. By using a worldwide survey, this study aims to explore how physicians from different subspecialties manage patients with acute ischemic stroke due to M2 segment MCA occlusions.

Statistical Analysis

Data are described by using standard descriptive statistics. Subgroup analyses used the \(\chi^2 \) test for differences in proportions and the nonparametric Wilcoxon rank sum test for differences in continuous data. Multivariable logistic regression with backward elimination was used to determine variables associated with an EVT decision among the 5 case scenarios with M2 segment MCA occlusions. All the models were adjusted for baseline ASPECTS, time from symptom onset to imaging, and patient age. Sensitivity analyses used mixed-effects logistic regression with "respondent" as a random-effects variable to account for hierarchical clustering of data within respondents. Two-sided \(p < .05 \) was considered statistically significant. All analyses were performed by using Stata version 15.1 (StatCorp, College Station, Texas).

RESULTS

Overall, 607 physicians (45.6%) responded to the survey request. Across the 22 survey scenarios, 74.2% of the physicians favored other physicians directly involved in acute stroke care) from 38 countries around the world were invited to participate in the survey by e-mail. No restrictions were applied with regard to years of experience or academic versus nonacademic background. Before accessing the case scenarios, the responding physicians provided personal and practice data, namely, age, sex, years of experience in stroke treatment, personal and center-specific estimated number of annual patients with stroke treated, geographic region, subspecialty, and hospital setting.

EVT decision rates for M2 segment MCA occlusion case scenarios

<table>
<thead>
<tr>
<th>Case Vignette</th>
<th>Evidence Level</th>
<th>Rate under Current Local Resources (%)</th>
<th>Rate under Assumed Ideal Conditions (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>An 88-year-old, right-handed man has arrived at your hospital at 10:00 AM with right hemiparesis and aphasia; symptom onset was 3 hours ago; his stroke severity measured by NIHSS is 14; ASPECTS on noncontrast CT is 7; baseline CTA reveals a proximal left M2 segment MCA occlusion</td>
<td>2B</td>
<td>81.6</td>
<td>85.9</td>
</tr>
<tr>
<td>A 45-year-old, left-handed man has arrived at your hospital at 1:00 PM with left hemiparesis and visual field defect; he was last seen as normal 12 hours ago; his stroke severity measured by NIHSS is 15; ASPECTS on noncontrast CT is 8; baseline CTA shows a proximal right M2 segment MCA occlusion</td>
<td>2B</td>
<td>68.7</td>
<td>75.3</td>
</tr>
<tr>
<td>A 94-year-old, left-handed woman has arrived at your hospital at 2:00 AM with right hemiparesis and aphasia; symptom onset was 3.5 hours ago; her stroke severity measured by NIHSS is 12; ASPECTS on noncontrast CT is 7; the baseline CTA shows a proximal left M2 segment MCA occlusion</td>
<td>2B</td>
<td>60.3%</td>
<td>67.2%</td>
</tr>
<tr>
<td>An 85-year-old, right-handed woman has arrived at your hospital at 11:00 PM with left hemiparesis; symptoms are 3 hours from onset; her stroke severity as measured by NIHSS is 9; ASPECTS on noncontrast CT is 6; baseline CTA shows a proximal right M2 segment MCA occlusion; she has a history of mild cognitive impairment</td>
<td>2B</td>
<td>62.3</td>
<td>63.4</td>
</tr>
<tr>
<td>A 56-year-old, right-handed man has arrived at your hospital at 3:00 PM with global aphasia; symptoms are 3 hours from onset; his stroke severity measured by NIHSS is 8; ASPECTS on noncontrast CT is 9; baseline CTA reveals a small-branch left M2 segment MCA occlusion</td>
<td>2B</td>
<td>53.8</td>
<td>56.4</td>
</tr>
</tbody>
</table>
using EVT (responses, 4586/6070) with current resources and 79.0% under assumed ideal conditions (responses, 4793/6070). The EVT decision rate for M2 segment MCA occlusions was also high, given the current resources (65.4%) and when assuming ideal conditions (69.6%) \((P = .017)\). Even in the scenario that describes a patient with a small-branch M2 segment MCA occlusion eligible for IV tPA, more than half of the respondents favored an EVT approach (53.8% under current resources and 56.4% when assuming ideal conditions). However, these responses were lower than those for more proximal occlusions (ICA–M1 segment MCA, 78.6% and 81.7% under current resources and assumed ideal conditions, respectively; \(P < .001\) for difference in proportions) (Fig 1A). An overview of EVT decision rates under current resources and assumed ideal conditions for the 5 M2 segment MCA occlusion scenarios is provided in the Table. EVT decision rates under current resources and assumed ideal conditions across all countries for the 5 M2 segment MCA occlusion scenarios are shown in Fig 2.

Responses under Current Local Resources

The EVT decision for M2 segment MCA occlusions differed significantly between regions under current local resources \((P < .001)\) (Fig 1B). Respondents from North America decided most often in favor of EVT (70.8%), whereas those from "other regions" ranked lowest (52.6%). The EVT decision also differed significantly across different specialties, with neurosurgeons ranking highest (78.3%) and neurologists ranking lowest (60.1%) \((P < .001)\) (Fig 1C). The EVT decision between academic centers (65.5%) and nonacademic centers (63.7%) did not differ significantly \((P = .119)\) (Fig 1D).

Respondents who favored EVT for M2 segment MCA occlusions under current local resources performed significantly more endovascular procedures per year (median, 30 procedures; [interquartile range [IQR], 30] versus 20 procedures [IQR, 30]; \(P < .001\)) and worked in centers with a significantly higher annual EVT volume (median, 80 cases annually [IQR, 100] versus 40 [IQR, 70]; \(P < .001\)) and annual IV tPA volume (median, 100 cases annually [IQR, 125] versus 80 [IQR, 110]; \(P < .001\)) than those who refrained from using EVT. Survey respondents were younger (median age, 43 years [IQR, 12 years] versus 45 years [IQR, 13 years]; \(P < .001\)) and had fewer years of practice experience (median, 12 years [IQR, 13 years] versus 14.5 years [IQR, 13 years]; \(P = .009\)) than their peers who refrained from EVT.

Multivariable Analyses

In the multivariable analysis (On-line Table), the odds for choosing EVT for patients with M2 segment MCA occlusion were higher with increasing patient age (per decile increase in age, OR 1.02 [95% CI, 1.01–1.02]; \(P < .001\)), time from symptom onset (per hour, OR 1.09 [95% CI, 1.04–1.14]; \(P < .001\)), if respondents had a neurosurgical background (versus neurologists, OR 2.60 [95% CI, 1.71–3.94]; \(P < .001\)), if the respondent’s center had higher annual EVT case volume (per decile increase in case volume, OR 1.21 [95% CI, 1.13–1.28]; \(P < .001\)), if the respondents performed more EVT cases per year (per decile increase in case volume, OR 1.08 [95% CI,
Responses from Europe were less likely to offer EVT (OR 0.68 [95% CI, 0.49–0.94]; \(P = .005 \)) when compared with the respondents from North America.

Responses under Assumed Ideal Conditions

The EVT decision for M2 segment MCA occlusions did not differ significantly between regions under assumed ideal conditions (\(P = .486 \)) (Fig 1B). Respondents from Australia decided most often in favor of EVT (73.5%), whereas those from “other regions” ranked lowest (62.9%). The EVT decision did not differ significantly across different specialties with “other specialties” ranking highest (80.0%) and neurologists lowest (67.3%) (\(P = .099 \)) (Fig 1C). The EVT decision between academic centers (69.9%) and nonacademic centers (66.9%) did not differ significantly (\(P = .812 \)) (Fig 1D).

Respondents who favored using EVT for M2 segment MCA occlusions under assumed ideal conditions performed significantly more endovascular procedures per year (median, 30 [IQR, 35] versus 24 [IQR, 28]; \(P < .001 \)) and worked in centers with a significantly higher annual EVT volume (median, 75 cases annually [IQR, 97] versus 50 [IQR, 80]; \(P < .001 \)) than those respondents who declined EVT. Survey respondents were younger (median age, 43 years [IQR, 11 years] versus 46 years [IQR, 13 years]; \(P < .001 \)) and had fewer years of practice experience (median, 12 years [IQR, 11 years] versus 15 years [IQR, 13 years]; \(P < .001 \)) than their peers who refrained from using EVT.

Multivariable Analyses

In the multivariable analyses (On-line Table), the odds for choosing EVT were higher with increasing patient age (per decile increase in age, OR 1.02 [95% CI, 1.01-1.03]; \(P < .001 \)), time from symptom onset (per hour, OR 1.12 [95% CI, 1.07–1.18]; \(P < .001 \)), for respondents practicing in Asia (versus North America, OR 1.55 [95% CI, 1.08–2.22]; \(P = .037 \)), if the respondent’s center had higher annual EVT case volume (per decile increase in case volume, OR 1.07 [95% CI, 1.00–1.13]; \(P = .041 \)), if the respondents performed more EVT cases per year (per decile increase in case volume, OR 1.09 [95% CI, 1.03–1.16]; \(P = .002 \)) were associated with higher odds of EVT use under assumed ideal conditions. The respondent’s years of experience (per decile increase, OR 0.91 [95% CI, 0.83–1.00]; \(P = .048 \)) and personal annual stroke thrombolysis cases (per 10 case increase, OR 0.93 [95% CI, 0.89–0.97]; \(P = .001 \)) were associated with lower odds to proceed with EVT in patients with M2 segment MCA occlusion. The results were similar in sensitivity analyses when using mixed-effects modeling that accounted for clustering of response data within survey respondents (results not shown).

DISCUSSION

EVT decision-making for patients with an acute ischemic stroke and M2 segment MCA occlusions has been subject to debate because these patients were generally excluded from the largest EVT trials. In our study, most of the physicians who participated in this survey reported that they favored EVT in patients with acute ischemic stroke with M2 segment MCA occlusion. This reflects confidence in EVT as a safe and effective treatment option, even beyond large-vessel occlusions. The small but significant gap between current and ideal treatment decisions indicates that, although the respondents believed that EVT should be performed, their environment did not yet allow them to do so. This might change in the future as more evidence for safety and
efficacy of EVT in M2 segment MCA occlusions becomes available.4,7-11

Survey respondents were more likely to predict that they would treat patients with ICA–M1 segment MCA occlusions with EVT than patients with M2 segment MCA occlusions. This most likely reflects current guidelines, which assign Class-1 Level-A evidence for EVT only in proximal (ICA–M1 segment MCA) occlusions.7 Analyses of the influence of baseline characteristics on physicians’ decision to offer EVT to patients with M2 segment MCA occlusions revealed that the time from symptom onset to treatment, the baseline NIHSS, and the baseline ASPECTS were significant. This confirms that clinical and imaging baseline characteristics play an important role in clinical decision-making; the same variables that determine EVT eligibility in proximal-vessel occlusions6 are the variables that physicians rely on for decision-making in patients with M2 segment MCA occlusions.

Neither current nor ideal treatment decisions differed between academic and nonacademic centers in this survey. Physicians’ treatment decisions, therefore, do not seem to be influenced by their institution’s academic profile. Physicians who favor EVT under current local resources and under assumed ideal conditions worked in high EVT volume centers and performed significantly more EVT cases per year than those refraining from EVT. This reflects that experience with endovascular treatment makes physicians more comfortable offering EVT to their patients with M2 segment MCA occlusions. Interestingly, physicians who opt to use EVT in patients with M2 segment MCA occlusions were younger and had been in practice for fewer years than those who decided against using EVT. It is possible that these younger physicians were trained during the advent of stent retrievers and small distal aspiration catheters, techniques that make recanalization of M2 segment MCA occlusions safely achievable.

Significant differences were observed in reported EVT treatment decisions among the different geographic regions under current local resources but not under assumed ideal conditions (Fig 1B). Regions where physicians most preferred using EVT also showed the smallest gap between current and ideal treatment decisions, whereas regions with the lowest preference for using EVT showed the largest discrepancy between current and ideal decision rates. Respondents from Europe were less likely to offer EVT compared with the respondents from North America.

This could relate to access to EVT, differences in practice parameters and health care systems, differences in guidelines, and how practitioners implement these guidelines in their practice. Similarly, treatment decisions among different subspecialties under current local resources differed significantly but not under assumed ideal conditions (Fig 1C). These observations could point toward external factors (eg, insufficient access to treatment facilities, monetary and health policy–related limitations) as a possible cause for low EVT decision rates in some regions. For example, alteplase utilization remains <1% in many developing countries.13 This may motivate the use of EVT in regions where patients or local jurisdictions are unable to afford alteplase.14 The gap between current and ideal practices in such regions may also reflect the limited resources of publicly funded hospitals or the patients’ means in areas with mostly private hospitals. This could promote the use of manual aspiration at the clot interface as the primary and economically efficient EVT technique in local practices.13 In some other countries in Africa, Asia, and Europe, EVT is either not available or not offered around the clock.15 Such limitations with the subsequent impact on the access to EVT-capable facilities and devices are all important determinants of the decision for or against using EVT.

Although this study clearly shows that M2 segment MCA occlusions are considered an appropriate target for EVT across all countries and specialties, there was substantial variability in decision-making among physicians. This is not surprising because no randomized controlled trials demonstrated EVT efficacy in M2 segment MCA occlusions. To the best of our knowledge, there currently are no plans for such a trial. The main reason for this is the lack of clinical equipoise. Most physicians consider EVT the superior treatment for patients with all endovascular accessible occlusions, including the M2 segment; hence, only a few are willing to randomize patients with distal accessible occlusions.

Any future trial that seeks to enroll patients with M2 segment MCA occlusions, therefore, will need to take into account the lack of equipoise and the potential for bias in trial enrollment (patients with unfavorable risk profiles who are unlikely to benefit from EVT are more likely to get enrolled). Evidence from high-quality patient-level meta-analysis such as from the Highly Effective Reperfusion evaluated in Multiple Endovascular Stroke trials Collaboration7 and from cohort studies that enrolled patients with M2 segment MCA occlusions who have not been offered EVT such as the Identifying New Approaches to Optimize Thrombus Characterization for Predicting Early Recanalization and Reperfusion With IV Alteplase and Other Treatments Using Serial CT Angiography (INTERRSeCT) study16 and numerous other nonrandomized studies4,8-11 may show the best available data for efficacy of EVT in such occlusions. In this situation, professional organizations and guideline committees may consider revising the endovascular treatment recommendations for M2 segment MCA occlusions despite the lack of Level-1A evidence. This will stimulate further improvement in the design of devices and aspiration catheters specifically tailored for distal vessels.

Limits

Our study had several limitations. First, the survey respondents were contacted by using a purposive sampling strategy that relied on personal contacts with local principal investigators. The absence of a comprehensive international register of stroke physicians and neurointerventionalists means that it is not certain that the respondents were representative of their region or country. Although the overall survey completion rate was high, the number of responses for some countries and specialties was relatively low and, therefore, might not be fully representative of practices within that country or that specialty. Finally, physician decisions made in this survey were based on hypothetical scenarios and may not reflect decisions that may be taken in real life or for patients with different clinical or imaging parameters. Our survey does not account for some anatomic factors, for example, the diameter of the affected M2 artery, that may impact treatment decisions. Despite these limitations, our study provides valuable
insights into current treatment approaches in patients with M2 segment MCA occlusions across different settings, regions, and specialties.

CONCLUSIONS
In the present study, EVT was considered the most likely selected treatment for patients with M2 segment MCA occlusions by practicing physicians.

ACKNOWLEDGMENTS
The authors thank the participants of this survey.

REFERENCES
5. Menon BK, Hill MD, Goyal M. Response by Menon to letter regarding article,”Analysis of workflow and time to treatment on thrombectomy outcome in the Endovascular Treatment for Small Core and Proximal Occlusion Ischemic Stroke (ESCAPE) randomized controlled trial.” Circulation 2016;134:e406–07 CrossRef Medline
Delayed Leukoencephalopathy: A Rare Complication after Coiling of Cerebral Aneurysms

A. Ikemura, T. Ishibashi, K. Otani, I. Yuki, T. Kodama, I. Kari, N. Kato, and Y. Murayama

ABSTRACT

BACKGROUND AND PURPOSE: Delayed leukoencephalopathy is a rare complication that occurs after endovascular coiling of cerebral aneurysms. We aimed to describe a clinical picture of delayed leukoencephalopathy and explore potential associations with procedural characteristics.

MATERIALS AND METHODS: We considered endovascular coiling procedures for cerebral aneurysms performed between January 2006 and December 2017 in our institution with follow-up MRIs. We used logistic regression models to estimate the ORs of delayed leukoencephalopathy for each procedural characteristic.

RESULTS: We reviewed 1754 endovascular coiling procedures of 1594 aneurysms. Sixteen of 1722 (0.9%) procedures demonstrated delayed leukoencephalopathy on follow-up FLAIR MR imaging examinations after a median period of 71.5 days (interquartile range, 30–101 days) in the form of high-signal changes in the white matter at locations remote from the coil mass. Seven patients had headaches or hemiparesis, and 9 patients were asymptomatic. All imaging-associated changes improved subsequently. We found indications suggesting an association between delayed leukoencephalopathy and the number of microcatheters used per procedure ($P = .009$), along with indications suggesting that these procedures required larger median volumes of contrast medium (225 versus 175 mL, OR = 5.5, $P = .008$) as well as a longer median fluoroscopy duration (123.6 versus 99.3 minutes, OR = 3.0, $P = .06$). Our data did not suggest that delayed leukoencephalopathy was associated with the number of coils ($P = .57$), microguidewires ($P = .35$), and guiding systems ($P = .57$).

CONCLUSIONS: Delayed leukoencephalopathy after coiling of cerebral aneurysms may have multiple etiologies such as foreign body emboli, contrast-induced encephalopathy, or hypersensitivity reaction to foreign bodies.

ABBRÉVİATIÔN: DL = delayed leukoencephalopathy

Endovascular coiling is an effective procedure for preventing rupture of cerebral aneurysms or treating ruptured aneurysms. However, a small percentage of patients experience complications, which include thromboembolic events (incidence rate of 4.7%–12.5%) and aneurysm rupture (incidence rate of 2.0%–8.8%), along with posterior reversible encephalopathy syndrome and perianeurysmal edema, which may be indicative of symptomatic inflammatory reactions. Recently, delayed leukoencephalopathy (DL) has emerged as a new type of complication under several names, including delayed leukoencephalopathy, delayed enhancing lesions, and delayed multiple white matter lesions. Its various suggested etiologies include granulation reaction caused by foreign body emboli from the hydrophilic coating of procedural devices, contrast-induced encephalopathy, or bioactive polyglycolic/polyactic acid coil sensitivity. Despite an increasing number of reported cases, the overall clinical picture (natural history, incidence, onset time, symptoms, treatment, mortality, and morbidity) of DL remains unclear.

We aimed to define the clinical features of DL and investigate its possible associations with procedural characteristics in a retrospective study of cerebral aneurysms treated by endovascular coiling.
MATERIALS AND METHODS

Study Design and Participants

The internal review board of Jikei University Hospital approved this study (approval number 29–228 [8844]). All data related to the management of cerebral aneurysms were extracted from a comprehensive observational data base after approval of an internal review board. Each patient provided comprehensive written consent for the procedures and examinations. Specific informed consent for this study was waived because the data were obtained from routine examinations and treatments and analyzed retrospectively. At the request of the internal review board, we posted a notice of the study and gave patients an opportunity to refuse participation. Patients with aneurysms (20 years of age or older) who underwent endovascular coiling and a follow-up MR imaging examination after 3, 6, and 12 months at our institution, between January 2006 and December 2017, were considered. For each procedure, patient age and sex, aneurysm location, largest diameter of the aneurysm, fluoroscopy time, and the type and volume of iodinated contrast medium, along with the type and number of devices used in the procedure, were extracted. Devices were defined as guiding systems (ie, guiding sheaths, guiding catheters, and median catheters), microcatheters (including balloon catheters), microguidewires, and coils. We did not consider whether the devices were used simultaneously. Furthermore, we did not consider stents and flow diverters in our analysis. Patients with DL were reviewed for their clinical history, which included MR imaging findings, neurologic findings, treatment of DL, final clinical outcome (minor morbidity, major morbidity, mortality), other procedural complications, allergy tests, time of onset of DL, and time of disappearance of DL.

Procedure

Endovascular coiling for all aneurysms was performed using digital subtraction angiography with a standard iodine contrast agent following our clinical routine.19,20 Patients received general anesthesia and systemic anticoagulation with heparin. The type and number of devices were customized during each procedure. Double-catheter, balloon-assisted, or stent-assisted techniques were used to prevent coil herniation into the parent artery in cases of wide-neck aneurysms.

MR Imaging

Follow-up MR imaging examinations were performed using a 1.5T or 3T MR imaging system, routinely including DWI, FLAIR, T1WI, T2WI, and TOF-MRA to identify possible recanalization of the treated aneurysm or postprocedural complications. Contrast-enhanced MR imaging was added at 12 months after the procedure at the discretion of the attending physician.

We considered the following MR imaging outcomes associated with DL:

1. Broad high-signal changes on FLAIR images in the white matter at regions remotely located from the coil mass and observed at ≥2 weeks after the procedure, while the DWI findings remained normal. (These findings were not present immediately after the procedure.)
2. Decreases in size or the disappearance of high-signal changes on FLAIR images within a few months.

Statistical Analyses

Descriptive statistics were used to summarize the results. Distribution of each variable was assessed using normal quantile plots. DL proportions were calculated for each patient and procedural characteristic. We assessed the association of DL with the number of guiding systems, microguidewires, and microcatheters by classifying the procedures into 2 groups, using 1 device or >1 device. The number of bioactive polyglycolic/poly(lactic acid) coils per procedure was classified as no such coil used and ≥1 such coil used. The association of DL with the variables of age, largest aneurysm diameter, contrast volume, fluoroscopy time, and number of coils was assessed by classifying them into 2 groups of smaller than or equal to or larger than the median of the variable. ORs for the occurrence of DL were estimated by logistic regression. The evidence of an association was assessed using the Fisher exact test. Commercial software was used for the analyses (STATA, Release 15; StataCorp, College Station, Texas).

RESULTS

Patient Demographics

Our institution performed 1754 endovascular coiling procedures for 1594 cerebral aneurysms (193 ruptured, 1401 unruptured) between January 2006 and December 2017. The flow diagram regarding the selection of the procedures is presented in Fig 1. Three patients (younger than 20 years of age), 14 procedures that did not have any data regarding procedure devices, and 15 procedures that did not include follow-up MR imaging examination were excluded. There were 1722 procedures in the final analysis.
The DL incidence was 0.9% (1706 procedures without DL and 16 with DL) during the study duration. Among the 16 aneurysms in the 16 procedures (16 patients) with DL, there were 1 ruptured and 15 unruptured aneurysms. Adjunctive to the endovascular coil procedure, 1 aneurysm was treated using the stent-assisted technique; 1 with the balloon-assisted technique; and 14 with the double-catheter technique. DL patient demographics are presented in Table 1, and the associated details are listed in On-line Table 1.

Clinical Course

Fourteen patients with DL underwent endovascular treatment without intraprocedural complications and were neurologically intact without demonstrating abnormal MR imaging outcomes on the first day postsurgery. Among the 2 other patients with DL, one with an ICA-ophthalmic artery aneurysm demonstrated a worsening of visual acuity and evidence of central retinal artery occlusion. The patient was discharged 5 days after the procedure with mRS 1 (quarter blindness). The other presented with intraoperative aneurysm rupture; however, the coiling procedure could be completed after the rupture. The patient presented with a headache on the next day, and MR imaging revealed a minor subarachnoid hemorrhage. The patient was discharged after 8 days postsurgery without neurologic deficits.

DL symptoms or abnormal MR imaging findings were identified after a median period of 71.5 days (interquartile range, 30–101 days). Among the 16 patients with DL, there were 7 symptomatic and 9 asymptomatic patients. Among the symptomatic patients, 7 developed neurologic symptoms, 1 demonstrated continuous headache after discharge, and 6 developed motor weakness (1 with aphasia, 1 with visual field loss). These patients recovered from their symptoms after being treated with either steroid therapy or free radical scavenger. The 9 asymptomatic patients recovered without medical intervention. There were no minor or major continuous morbidity or mortality. Among the 16 patients with DL, 7 underwent a skin patch test for metal hypersensitivity and 3 tested negative, while 4 tested positive (Table 1).

MR Imaging Findings

Follow-up of 4 of the 16 patients with DL included contrast-enhanced MR imaging. On the basis of abnormal MR imaging findings, all 16 patients were diagnosed with DL.

A follow-up MR imaging examination for each patient was continued until there was an improvement in the abnormal findings. High-signal changes on FLAIR images for 13 patients disappeared after a median period of 229 days (interquartile range, 200–360 days) after undergoing endovascular coiling. Minor levels of high-signal changes persisted in the remaining 3 patients; however, there was a noticeable decrease in the size of the high-signal region.

An illustrative case of a patient with DL whose follow-up included contrast-enhanced MR imaging is presented in Fig 2. DWI outcomes revealed no abnormal changes, but there were extensive high-signal changes on FLAIR images in a region that was primarily perfused by the vessel that underwent the endovascular procedure. Additionally, SWI outcomes demonstrated dot-shaped low signals in the regions with high-signal changes.

Procedural Characteristics

Procedural characteristics are summarized in Table 2 according to DL occurrence; and the associated DL odds ratios for each procedural characteristic, in Table 3. Details regarding the devices used during the procedures of patients with DL are listed in On-line Table 1, as well as the total number of devices by
manufacturer used in our hospital (On-line Table 2, guiding systems; On-line Table 3, microcatheters; On-line Table 4, microguidewires; and On-line Table 5, coils) for the procedures with and without DL. We used a Shuttle sheath (Cook, Bloomington, Indiana) in 2 of the 16 patients with DL, bioactive polyglycolic/polyactic acid coils in 6, and 2 microcatheters simultaneously via 1 guiding system in all patients with DL. Use of 180 mL of contrast medium was associated with higher DL odds (OR 4.55; 95% CI, 1.6–19.5; P = .008) and use of 1 microcatheter (P = .009, Fisher exact test). Our results also suggested that median fluoroscopy time longer than 99.5 minutes was associated with higher DL odds (OR 3.0; 95% CI, 1.0–9.5; P = .06). We could not confirm an association of the use of bioactive polyglycolic/polyactic acid coils and higher odds of DL (OR 4.4; 95% CI, 0.1–1.1; P = .08).

DISCUSSION

One of the strengths of our study is the large number of endovascular coiling procedures and patients with DL. We found that 0.9% of endovascular coiling procedures resulted in patients with DL and that their clinical course was typically benign. The exact mechanism of DL remains uncertain; however, different hypotheses have been proposed. Some case reports

| Table 2: Patient and procedure characteristics (per procedure) with and without DL |
| --- | --- | --- |
| Characteristics | Without DL | With DL | All Patients |
| Female sex | 71.3% (1217/1706) | 81.3% (13/16) | 71.4% (1230/1722) |
| Male sex | 28.7% (489/1706) | 18.8% (3/16) | 28.6% (492/1722) |
| Age (yr) | 59 (50–67) | 59.5 (51–66.5) | 59 (50–67) |
| Largest diameter of aneurysm (mm) | 5.9 (4.7–8.0) | 5.7 (5.0–8.4) | 5.9 (4.8–8.0) |
| Fluoroscopy time (min) | 99.3 (72.6–131.0) | 123.6 (104.8–165.2) | 99.5 (72.8–131.1) |
| Contrast volume (mL) | 175 (150–220) | 225 (195–240) | 180 (150–220) |
| No. of coils | 8 (6–13) (min 1–max 60) | 10.5 (6–17) (min 2–max 36) | 8 (6–13) (min 1–max 60) |
| No. of bioactive polyglycolic/polyactic acid coils | 1 (0–3) (min 0–max 38) | 0 (0–1) (min 0–max 9) | 1 (0–3) (min 0–max 38) |
| No. of microcatheters (including balloon catheters) | 2 (1–2) (min 1–max 10) | 2 (2–2) (min 2–max 4) | 2 (1–2) (min 1–max 10) |
| No. of microguidewires | 2 (2–2) (min 1–max 7) | 2 (1.5–2.5) (min 1–max 3) | 2 (2–2) (min 1–max 7) |
| No. of guiding systems | 1 (1–1.5) (min 1–max 3) | 1 (1–1) (min 1–max 2) | 1 (1–1) (min 1–max 3) |

Note: — min indicates minimum; max, maximum.

* Categoric variables are expressed in percentage and continuous variables in median and interquartile range.

FIG 2. An illustrative case with left ICA aneurysm post-endovascular coiling (patient 11). The aneurysm size is >17 mm in maximum diameter (A), and endovascular coiling was successfully performed using the double-microcatheter technique (B). After 55 days, right weakness developed and broad high-signal change in the left parieto-occipital region is detected on a FLAIR image (C). In the same region, there is a scattered contrast effect (D) and low spotty regions in the SWI (E). The patient was hospitalized and treated with steroid pulse therapy, and the symptoms and image abnormality subsequently improved.
indicated that DL may be a granulation reaction etiologically associated with foreign body emboli from the hydrophilic coating of the devices.10,12-14 Polymer coating embolism from intravascular devices has also been increasingly reported with regard to cardiovascular21 and endovascular therapy.22,23

In a previous study analyzing a series of 3 cases with delayed enhancing lesions—each treated with the double microcatheter technique—Oh et al10 performed a benchtop evaluation of the inner lumen of microcatheters. They found material wearing off the catheter shafts after multiple in-and-out coil maneuvers and proposed that DL may be caused by the fragmentation of the inner wall of microcatheters and consecutive emboli. Shapiro et al12 reported 5 patients who underwent coil-supported Pipeline Embolization Device (Covidien, Irvine, California) embolization or stent-supported endovascular coiling and presented with foreign body emboli after the procedure. Multiple catheters were used to treat most of the patients evaluated in our study because all endovascular coiling procedures involved stent or flow-diverter deliveries and all patients with DL were treated with multiple microcatheters. Therefore, our results also suggest that the hydrophilic coating of catheters may peel off and act as an embolic source due to the friction between the tight-fitting multiple catheters. The peeling off of the device coating may be associated with the complexity of these procedures, which may be reflected by a tendency of longer fluoroscopy duration in the procedures for patients with DL. In vitro experiments with multiple catheter types and frequent replacement and repositioning are required for further investigation. We routinely used guiding systems with a fairly large inner lumen (up to 8F), but choosing even larger catheters may further lower the friction between devices.

The neurotoxicity of iodinated contrast medium, along with the disruption of the blood-brain barrier and leakage into the brain tissue, has previously been reported to be associated with contrast encephalopathy.16,17,24 Contrast-induced encephalopathy typically follows coronary angiography and intracranial endovascular treatment and is characterized on plain CT as leakage of contrast medium.25-27 Transient cortical blindness is a commonly reported complication due to contrast-induced encephalopathy and is considered to be associated with high doses of contrast agents.26,28 Our study estimated that the odds for experiencing DL were higher for larger volumes of contrast agent (>180 mL). The patients in our study did not undergo CT examinations; however, 1 patient with DL had high-signal changes on FLAIR images in the hemisphere opposite the treated vessel, and it is possible that the contrast medium may have been translocated to this location. These results support a hypothesis that using a higher dose of contrast medium than the patient can metabolize may be associated with DL.17

Nickel allergy or hypersensitivity to polyglycolic/polylactic acid coils is reported to potentially cause DL.9,29 In our study, only 7 patients with DL received patch tests for metal hypersensitivity, and none of these 7 patients had metal allergies associated

Table 3: Odds ratio of complications for each patient and procedure characteristic (per procedure) with and without DL

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Without DL</th>
<th>With DL</th>
<th>OR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female sex</td>
<td>71.3% (1217/1706)</td>
<td>81.3% (13/16)</td>
<td>Reference</td>
<td>.39</td>
</tr>
<tr>
<td>Male sex</td>
<td>28.7% (489/1706)</td>
<td>18.8% (3/16)</td>
<td>0.6 (0.2–2.0)</td>
<td>.39</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>59 or younger</td>
<td>50.6% (863/1706)</td>
<td>50.0% (8/16)</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>Older than 59</td>
<td>49.4% (843/1706)</td>
<td>50.0% (8/16)</td>
<td>1.0 (0.4–2.7)</td>
</tr>
<tr>
<td>Largest diameter of aneurysm</td>
<td>5.9 mm</td>
<td>49.0% (713/1455)</td>
<td>53.3% (8/15)</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>>5.9 mm</td>
<td>51.0% (742/1455)</td>
<td>46.7% (7/15)</td>
<td>0.8 (0.3–2.3)</td>
</tr>
<tr>
<td>Fluoroscopy time</td>
<td>≤99.5 min</td>
<td>50.3% (843/1676)</td>
<td>25.0% (4/16)</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>>99.5 min</td>
<td>49.7% (833/1676)</td>
<td>75.0% (12/16)</td>
<td>3.0 (1.0–9.5)</td>
</tr>
<tr>
<td>Contrast volume</td>
<td>≤180 mL</td>
<td>56.2% (941/1676)</td>
<td>18.8% (3/16)</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>>180 mL</td>
<td>43.9% (735/1676)</td>
<td>81.3% (13/16)</td>
<td>5.5 (1.6–19.5)</td>
</tr>
<tr>
<td>No. of coils</td>
<td>≤8</td>
<td>51.0% (865/1696)</td>
<td>43.8% (7/16)</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>>8</td>
<td>49.0% (831/1696)</td>
<td>56.3% (9/16)</td>
<td>1.3 (0.5–3.6)</td>
</tr>
<tr>
<td>No. of bioactive polyglycolic/polylactic acid coils</td>
<td>0</td>
<td>39.9% (676/1696)</td>
<td>62.5% (10/16)</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>≥1</td>
<td>60.1% (1020/1696)</td>
<td>37.5% (6/16)</td>
<td>0.4 (0.1–1.1)</td>
</tr>
<tr>
<td>No. of microcatheters (including balloon catheters)</td>
<td>1</td>
<td>27.0% (46/1706)</td>
<td>0% (0/16)</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>>1</td>
<td>73.0% (1245/1706)</td>
<td>100% (16/16)</td>
<td>.009 (Fisher exact test)</td>
</tr>
<tr>
<td>No. of microguidewires</td>
<td>1</td>
<td>16.2% (276/1705)</td>
<td>25.0% (4/16)</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>>1</td>
<td>83.8% (1429/1705)</td>
<td>75.0% (12/16)</td>
<td>0.6 (0.2–1.8)</td>
</tr>
<tr>
<td>No. of guiding systems</td>
<td>1</td>
<td>75.0% (1272/1696)</td>
<td>81.3% (13/16)</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>>1</td>
<td>25.0% (424/1696)</td>
<td>18.8% (3/16)</td>
<td>0.7 (0.2–2.4)</td>
</tr>
</tbody>
</table>

a Categoric variables are expressed in percentage and continuous variables in median and interquartile range.

Ikemura Feb 2020 www.ajnr.org
with nickel. We used polyglycolic/polyactic acid coils for only 6 of the 16 patients with DL. However, a hypersensitivity reaction to any foreign body used during the invasive procedures continues to be a possible etiology of DL.

It is our understanding that DL may be caused by various factors: foreign body embol–associated granulation reaction, contrast-induced encephalopathy, or a hypersensitivity reaction to foreign bodies leading to identical image findings. We also cannot exclude interactions and associations between factors such as contrast-induced permeability and the retention of shaved-off catheter coating and the subsequent development of foreign body emboli.

Our study has several limitations. It was a single-center retrospective investigation using data collected from clinical routine procedures. The procedures included stents or flow diverters but not Woven EndoBridge devices (WEB; Sequent Medical, Aliso Viejo, California). There were only a few cases of DL despite the cases being relatively numerous compared with previous studies. None of our patients with DL had posterior circulation aneurysms, which may be related to sample size bias because DL has also been previously reported in such patients. The number of cases of DL was too few to apply a multivariate logistic regression, and we could not investigate confounding of the procedural characteristics. Pathology tests were not performed. Only a few patients with DL underwent contrast-enhanced MR imaging, and none underwent CT. Our analysis could not distinguish between the simultaneous and consecutive use of microcatheters. We could not investigate associations of specific devices with DL because different types of guiding systems, microcatheters, microguidewires, and coils and their combinations were customized during each procedure, which resulted in unique combinations in almost every procedure.

CONCLUSIONS

DL is a rare complication following endovascular coiling of cerebral aneurysms. We believe that it may be associated with several etiologies, including foreign body emboli related to complicated procedures or contrast-induced encephalopathy or hypersensitivity reaction to foreign bodies. Although the clinical course of DL is mostly benign, clinicians need to be aware of the potential causes of DL.

ACKNOWLEDGMENTS

The authors wish to thank Ms Rie Sakima for clinical data preparation and the study team and all the study participants.

Disclosures: Katherine Otani—UNRELATED: Full-time employee of Siemens Healthcare K.K. Katherine Otani supported this study as a biostatistician. Yuichi Murayama—UNRELATED: Consultancy; Stryker, Kaneka Medix; Grants/Grants Pending; Stryker, Siemens K.K., Japan; Comments: research grant*. Payment for Lectures Including Service on Speakers Bureaus: Stryker, Cerenovus, Kaneka Medix; Royalties: Stryker.* *Money paid to the institution.

REFERENCES

Reversible cerebral vasoconstriction syndrome (RCVS) describes a constellation of clinical and angiographic findings that includes severe headache and reversible segmental vasoconstriction of the cerebral arteries, with or without neurologic deficits. Diagnosis is difficult and one of exclusion because the differential diagnosis for sudden severe headache includes both aneurysmal and nonaneurysmal subarachnoid hemorrhage. Moreover, the broad differential diagnosis of vasoconstriction of the cerebral vessels encompasses diverse entities such as primary angiitis of the CNS and atherosclerosis. Numerous inciting factors for RCVS have been described, but the list of triggers continues to grow. Treatment options include medical optimization of risk factors, corticosteroids, and oral or intra-arterial calcium channel blockers. If left untreated, RCVS can lead to permanent neurologic disability and even death. Complications such as hemorrhage and stroke are well-documented. In the past decade, on the basis of the experience with treatment of patients with vasospasm secondary to SAH, an endovascular approach using the intra-arterial (IA) infusion of calcium channel blockers in patients with refractory RCVS has emerged, with case reports and a small series of promptly improved vessel caliber and also symptoms. The underlying hypothesis is that the vasoconstriction of RCVS is vasospasm as observed in SAH and that similar treatment approaches will similarly prevent the development of permanent neurologic deficits. In this case series, we present 11 patients with documented or presumed RCVS who presented with or progressed to clinically relevant vasoconstriction and in whom IA treatment with verapamil resulted in clinical and radiographic improvement. A detailed narrative description, including illustrative images, of 3 exemplary patients is provided.

MATERIALS AND METHODS

Since 2006, the authors have used intra-arterial verapamil as a treatment option in patients with suspected RCVS and clinical deterioration. Individual cases of patients with presumed RCVS who underwent cerebral angiography with intra-arterial administration of verapamil were retrospectively identified through a departmental angiography data base search from 2006–2016 at the University Hospital of Basel, Switzerland; 2016 at
University Hospitals of Cleveland, Case Medical Center in Cleveland, Ohio; and 2006–2011 at Forsythe Medical Center in Winston-Salem, North Carolina, which identified patients undergoing intra-arterial verapamil infusion for any reason. Inclusion criteria are listed in Table 1 and are based on work by Calabrese, et al.4 We interpreted criterion number 5 to include acute reversibility demonstrated as a result of verapamil treatment. Patients treated for vasospasm in the setting of nonaneurysmal (perimesencephalic) subarachnoid hemorrhage were excluded. Institutional board review approval (University Hospitals of Cleveland and Forsythe Medical Center) and individuals’ written consent (University Hospital of Basel) were obtained for this multicenter case series. All imaging, clinical records, laboratory results, and treatment and follow-up data were obtained from the electronic medical records and PACS of the hospitals and were reviewed by 2 experienced neurointerventionalists (K.A.B./A.R.) to verify inclusion.

Image Interpretation

Procedural information and angiographic results were also retrospectively evaluated by 2 experienced neurointerventionalists (K.A.B./A.R.) for confirmation of treatment indications and results. A semiquantitative classification of grade was performed by visually assessing the luminal narrowing compared with the best normal vessel caliber on either the same study or prior cerebral angiograms using the following categories: 1) mild: luminal narrowing of $<30\%$ of normal caliber; 2) moderate: between 30% and 60% of normal caliber; and 3) severe: luminal narrowing of $>60\%$ of normal caliber, similar to the stratification described by Jun et al.10 At least 1 segmental focus of at least moderate proximal vasoconstriction or any distal vasoconstriction would indicate the need for intra-arterial treatment. Confirmation of an adequate angiographic response to treatment was defined as a 10%–30% improvement in the most severely constricted vessel caliber.

DSA and IA Verapamil Therapy

Endovascular treatment was performed using a standard biplane angiographic technique starting with a diagnostic series of both internal carotid arteries and the dominant vertebral artery, with the patient under systemic heparinization. IA verapamil was administered proximally in the affected vascular territory. Verapamil was diluted in saline to a final concentration of 1 mg/mL and pulse-infused at a rate of 1 mL/min through the diagnostic catheter, meaning that 1 mL of verapamil was manually injected every minute through the side port of a 3-way valve connected to the diagnostic catheter and also to a continuous heparinized saline flush, allowing intermittent flush. The overall dosage was determined by the vasoconstriction degree and distribution; higher doses of verapamil were used in more extensive and more severe vasoconstrictions with a range of 5–20 mg per territory (maximum of 20 mg per vessel and 60-mg total dose per session) as described in the treatment of subarachnoid hemorrhage-induced vasospasm by Jun et al.10 and Keuskamp et al.11 Due to prolonged procedural times because of the slow infusion rate, treatment was performed with monitored anesthesia care with continuous monitoring of systemic blood pressure, heart rate, respiratory frequency, and arterial oxygen saturation. Repeat images to demonstrate the absence of embolic complications were obtained immediately following injection, and images to demonstrate the vasodilatory response were obtained at a minimum of 10 minutes following the injection.12 At the end of the procedure, the patients were admitted to intensive care for blood pressure support and monitoring per protocol for patients with SAH and vasospasm. Patients were monitored clinically and with daily transcranial Doppler sonography.

RESULTS

Eleven patients with presumed RCVS who underwent IA treatment with verapamil were identified (Table 2 and On-line Table). All patients met the 5 criteria for RCVS (Table 1); 4 patients had ambulatory imaging documentation of complete vasoconstriction resolution, and the remaining patients without ambulatory follow-up had reversibility of the vasoconstriction at the time of treatment. Nine of the identified patients were women, and 2 were men, with a mean age of 38.2 \pm 13.1 years. Serologic vasculitis work-up including antinuclear antibodies, rheumatoid factor, soluble substance A and substance B antibodies, perinuclear antineutrophil cytoplasmic antibodies, and antineutrophil cytoplasmic antibodies was negative in all 11 patients. Brain biopsy in patient 1 was negative for vasculitis. Except for 1 groin pseudoaneurysm successfully treated with thrombin injection, there were no complications reported from the angiographic procedures.

All patients retrospectively met the angiographic criteria for treatment, and all territories treated met the criteria for an angiographic response. One patient required balloon angioplasty in addition to intra-arterial verapamil for severe ICA stenosis (patient 3). One patient who developed heparin-induced thrombocytopenia required the use of argatroban, a direct thrombin inhibitor, during her procedures (patient 4). All patients improved neurologically immediately following intra-arterial verapamil infusion, and all continued to show neurologic improvement on discharge. Four patients received and were unresponsive to steroids before the diagnosis of RCVS was considered. Five patients returned to the angiography suite multiple times because of recurrent symptoms or elevated transcranial Doppler studies (mean middle cerebral artery velocity greater than 120 cm/sec or greater than 20 percent elevation of flow velocity above baseline).

Table 1: Diagnostic criteria for RCVS4

<table>
<thead>
<tr>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Unusual, acute severe headache of progressive or sudden onset, presenting with or without neurologic focal deficit and/or seizure</td>
</tr>
<tr>
<td>2. Benign CSF analysis (protein level, <80 mg/dL; leukocyte count, <10 \times 10^3; and normal glucose level)</td>
</tr>
<tr>
<td>3. Imaging studies demonstrating 2 different points of vessel narrowing in at least 2 different intracranial arteries</td>
</tr>
<tr>
<td>4. Imaging proving absence of intracranial aneurysm/vascular malformation or aneurysmal SAH</td>
</tr>
<tr>
<td>5. Reversibility of intracranial vessel narrowing on short-term follow-up evaluation (<12 months)</td>
</tr>
</tbody>
</table>
A 43-year-old woman developed thunderclap headache when she was running on the treadmill and went to an outside hospital where she had work-up for SAH, including CT of the head and lumbar puncture, which had negative findings. After a week, she developed acute worsening of headache with nausea and vomiting, and CT of the head at an outside hospital showed a right frontal hematoma. She was admitted to an outside hospital. MR imaging studies after 4 days showed right frontal hemorrhage, which was unchanged, and an MRA showed right ICA/MCA occlusion. At the outside hospital, she was treated with nimodipine and levetiracetam (Keppra), high-dose steroids, diazepam (Valium), and morphine. Her main symptoms were headache, confusion, and hallucinations; she also developed left hemivisual field inattention.

She was ultimately transferred to our hospital. On admission, her NIHSS score was 16, and she was found to have left-sided weakness, left hemianopia, and left hemiattention. MR imaging on admission showed multiple diffusion-restricted lesions in the bilateral hemispheres; however, lesions were more pronounced in the right hemisphere, particularly in the right MCA territory. DSA confirmed right ICA terminus occlusion extending into the right M1 segment with reconstitution of distal MCA branches via leptomeningeal collaterals. Multifocal vasoconstriction was seen in the left anterior circulation and was most severe in the bilateral posterior circulation (Fig 1). IA verapamil was injected in both ICAs (left ICA, 20 mg; right ICA, 5 mg) and the right vertebral artery (10 mg), whereupon angiographic improvement was observed, particularly in the distal vessels (Fig 1), with the exception of the occluded right ICA/MCA. Because left-sided weakness and somnolence immediately improved, we presumed that the vasodilation led to improved leptomeningeal collateral flow to the right MCA territory. Oral verapamil was started and titrated to 240 mg daily. Due to elevated transcranial sonography velocities or recurrent somnolence, IA verapamil treatment was repeated 4 additional times on hospital days 2, 3, and 4 for a total amount of 120 mg. Steroids were discontinued after a vasculitis work-up, including a brain biopsy negative for vasculitis. Other additional medications (nimodipine, morphine, diazepam, levetiracetam) were also stopped. With sustained clinical and sonographic improvement finally obtained, discharge occurred on day 19. The only residual symptom was a mild left neglect. Follow-up MRA at 4 months showed persistent occlusion of the right ICA terminus and right MCA, but complete resolution of vasoconstriction in the remaining intracranial circulation. At 5-year follow-up, a slight weakness of the lower extremities and left lower quadrantanopia was still present.

Case 2

A 43-year-old woman presented at an outside hospital with headache and altered mental status; hypernatremia was found on laboratory work-up. She had a diagnosis of multiple sclerosis treated with interferon β-1 as well as a history of substance abuse and depression. MR imaging showed FLAIR signal alterations in both occipital and parietal lobes, consistent with posterior reversible encephalopathy syndrome, bilateral scattered foci of diffusion restriction, and demyelination consistent with multiple sclerosis. She was treated with oral verapamil and steroids and transferred to our hospital where DSA was performed for worsening confusion. It showed severe focal and segmental vasoconstriction in both the anterior and posterior circulations. A total amount of 30 mg of IA verapamil was injected in both ICAs (10 mg, respectively) and the left vertebral artery (10 mg), which led to improvement of intracranial vessel caliber and improvement of symptoms. Follow-up CTA after 6 days showed only residual mild narrowing of the right distal M1 and proximal M2 branches. Encephalopathic symptoms resolved, steroid medication was stopped, and oral verapamil was continued. The patient was discharged to rehabilitation on day 17.

Case 3

A 25-year-old man presented with a partial right hemiparesis and intermittent aphasia following an episode of head trauma in the setting of a history of chronic binge drinking. The patient had known hypoparathyroidism, and on admission, he had elevated liver enzymes. He presented twice to an outside hospital, and ultimately CT and CTA were performed, which showed vasoconstriction. The patient was transferred to our hospital on day 10 post-trauma with motor weakness of the right leg, headache, and intermittent aphasia. MR imaging performed on hospital day 1...
showed acute ischemia in the left anterior cerebral artery territory, bilateral SAH, a small amount of intraventricular hemorrhage, and severe narrowing of both ICA and the basilar artery (Fig 2). Endovascular treatment was performed on hospital day 2 in the morning with IA verapamil injection in the left ICA and basilar artery (10 mg, respectively), with improvement in the basilar narrowing (Fig 2). Due to agitation and fluctuating clinical status including transient aphasia during the procedure, the patient was intubated and taken to MR imaging, where no new ischemic lesions were identified. The patient returned to the angiography suite for uncomplicated angioplasty of the severe narrowing of the right ICA. Additionally, 10 mg in the right ICA and, again, 10 mg in the basilar artery were administered; overall, 40 mg of verapamil was administered. After extubation, the clinical symptoms improved, oral nimodipine was started at 180 mg per day, and the patient was placed in intensive care for 1 week. Oral nimodipine was discontinued on hospital day 12 due to resolution of symptoms. Twenty-four days had passed since the initial presentation, and discharge occurred on hospital day 14 to rehabilitation. Findings of an MRA at 5 weeks postdischarge were normal (Fig 2).
In most cases, RCVS is a benign and self-limiting condition with spontaneous resolution; however, it can also be a complex clinicoradiologic challenge.4 Despite oral and intravenous calcium channel blockers,1,13-16 additional pathologic imaging features besides the typical “string of beads” appearance of vasoconstriction have been described in 12%–81% of patients.1 Unfortunately, the diagnosis is often delayed, and the initial clinical treatment is variable if not disorganized due to inexperience with the condition and its overlap with other disorders such as aneurysmal or nonaneurysmal SAH and vasculitis. RCVS can be easily mistaken for primary angiitis of the central nervous system even on digital subtraction angiography. Treatment options include medical optimization of risk factors, corticosteroids and oral or intra-arterial calcium channel blockers. The course can be monitored clinically and by using transcranial Doppler and complete resolution of vasoconstriction within 3 months is the typical confirmation for the diagnosis of RCVS.

All of our patients ultimately underwent IA treatment with verapamil due to their refractory, progressive clinical course. Our female preponderance and age range (25–69 years) reflect the predisposition of the syndrome for women (sex ratios from 2:1 up to 10:1 have been reported2,7,17) and the known predilection for young and middle-aged individuals, however, there are descriptions of RCVS in patients up to 76 years of age.2,7,18,19

In all of our patients, at least 1 imaging complication was present (acute ischemia: 8 patients; intraparenchymal hemorrhage: 3 patients; cortical SAH: 4 patients; posterior reversible encephalopathy syndrome: 2 patients). In the medical literature, up to 39% of the patients with RCVS have been reported to develop ischemic events,1 and 12%–20% of patients were positive for intraparenchymal hemorrhage,7,14 slightly lower rates compared with our case series.

Cortical SAH has been described in up to 34%,7,14 and posterior reversible encephalopathy syndrome, in 9%–38% of patients with RCVS. For the latter, vasoconstriction is believed to be causative for the characteristic vasogenic edema.7,20,21 Several authors have hypothesized that RCVS and posterior reversible encephalopathy syndrome have an overlapping pathophysiology because both occur in the setting of sympathetic overactivity and endothelial dysfunction leading to disturbances of the vascular tone.20,22,23

We observed clinical worsening in 4 of 11 patients despite empiric administration of glucocorticoids and/or cyclophosphamide. Empiric use of immunosuppressant therapy is common, given the clinical and angiographic similarities between primary angiitis of the central nervous system and RCVS and emphasizes the limited experience with this disease entity.17,24,25 Use of glucocorticoids in RCVS treatment has been described as associated with poor outcome and is therefore controversial.1,26-29 A possible explanation for deterioration following steroids is glucocorticoid-induced noradrenaline hypersensitivity in vascular smooth-muscle cells, though the exact mechanisms are not yet known.30

All our patients had at least 1 known RCVS trigger in their clinical history (autoimmune diseases: 3 patients; bone marrow transplantation: 2 patients; postpartum state: 2 patients; head trauma: 1 patient; exhaustive exercise/postcoital: 2 patients; blood transfusions: 1 patient; narcotic use/binge drinking: 5 patients).1 RCVS is known to be associated with autoimmune diseases and immunosuppressive treatment following transplantation. Endothelial damage and activation occur in both of these conditions and are believed to trigger the disease.1,31 While women are more predisposed to the disorder per se, the incidence rate in those who gave birth recently is even higher.1,32

Currently, there is no guideline for the use of IA treatment in RCVS. Nevertheless, IA treatment with calcium channel blockers has not only been recognized as an important treatment adjunct for severe refractory RCVS but has also been proposed as a differential diagnostic tool.3,9,27-33-36 At our institutions, there is an increased awareness of the entity in general and a lower threshold for intervention. As opposed to systemic administration of high-dose oral calcium channel blockers, this targeted therapy approach may avoid sustained hypotension, which can further precipitate cerebral infarction in the

FIG 2. MRA of patient 3 on hospital day 1 shows severe vasoconstriction of the basilar artery as well as both ICA terminuses and M1 segments (A). Diffusion-weighted imaging reveals acute ischemia in the left anterior cerebral artery territory (B). Angiogram on hospital day 2 shows severe distal basilar occlusion (C). One hour after infusion of 10 mg of IA verapamil in the proximal left vertebral artery, the spasm is markedly reduced (D). Follow-up MRA, 5 weeks after discharge, demonstrates complete resolution of vasoconstriction (E).
CONCLUSIONS

RCVS remains a challenging diagnosis, and its severity can be underestimated. Careful clinical and imaging evaluation is crucial, and a high index of suspicion for possible complications must be maintained to guide optimal management. Angiographic evaluation may be necessary in patients with fulminant RCVS, not only because of its superiority as the criterion standard for vascular imaging but also as a provocative diagnostic maneuver in the setting of potential IA treatment. This clinical report adds evidence for the effectiveness of IA verapamil as a treatment escalation in RCVS and confirms its favorable safety profile. In light of the growing evidence, we suggest a low threshold when considering IA treatment not only as an effective treatment option but may also serve as a diagnostic tool, crucial to guiding acute management. The improvement in vessel caliber is not angiographically immediate and is better observed at least 10 minutes after infusion. Furthermore, as with vasospasm from SAH, IA treatment is not durable and multiple treatments during the hospital course were necessary in 5 of 11 of our patients because the vasoconstriction tended to recur. Recurrence of vasoconstriction in this setting with the need for repeat IA treatment is not infrequent and has been reported. Nevertheless, there is evidence that in patients with vasospasm from SAH, a preventative strategy using frequent and early endovascular treatment seems to reduce the risk of delayed cerebral ischemia.

ACKNOWLEDGMENTS

We thank Dr Selina Ackermann from the University Hospital Basel for editorial assistance.

REFERENCES

Artery of Davidoff and Schechter Supply in Dural Arteriovenous Fistulas

K.D. Bhatia, H. Kortman, T. Wälchli, I. Radovanovic, V.M. Pereira, and T. Krings

ABSTRACT

SUMMARY: The artery of Davidoff and Schechter is a dural branch of the posterior cerebral artery that can supply the meninges close to the falcotentorial junction. It is usually not identified on angiography except when enlarged in the setting of a dural AVF or meningioma. The impact on treatment of the artery of Davidoff and Schechter supply to a fistula is not well-described in the literature. Our retrospective analysis of patients with dural AVFs treated at the Toronto Western Hospital between 2006 and 2018 identified 6 patients with dural AVFs receiving supply from artery of Davidoff and Schechter (of a total of 173 patients with dural AVFs). All patients were initially treated by transarterial embolization using liquid embolic agents. Three patients required a second endovascular procedure partly due to residual supply from artery of Davidoff and Schechter, and in all cases, angiographic cure was obtained. The treatment approach, challenges encountered, and potential complications of treating such fistulas are described.

ABBR EVI ATIONS: ADS = artery of Davidoff and Schechter; PCA = posterior cerebral artery; SCA = superior cerebellar artery

Artery of Davidoff and Schechter (ADS) is a dural branch that arises from the posterior cerebral artery and supplies the falcotentorial junction. It is usually not identified on angiography except when enlarged in the setting of dural AVFs, meningiomas, or, rarely, cerebellar tumors. The ADS is the only dural branch of the posterior cerebral artery (PCA) and unlike most other arteries that provide dural supply, it has an intradural origin. The first description was by Wollschlaeger and Wollschlaeger, in 1965, based on postmortem barium angiography, and they named the artery to honor their mentors in neuroradiology. While a PCA origin of the ADS is most common, a similar branch arising from the SCA was identified in the original 1965 study (reporting an SCA anastomosis to the PCA dural branch in a cadaver) and reported in 5 patients with tentorial AVFs by Byrne and Garcia in 2013 and later eponymously named as the artery of Wollschlaeger and Wollschlaeger by Tayebi Meybodi et al, in 2017. The literature is variable in describing the SCA branch as a variant of the ADS versus an entirely separate artery. Because we have previously described a tentorial communication of the ADS between the dural arterial network and the intradural posterior circulation poses a potential risk of iatrogenic stroke related to reflux of liquid embolic agents toward pial vessels. Given the overall rarity of falcotentorial AVFs, the impact that the ADS supply has on the treatment of
these fistulas is not well-described. In this study, we aimed to assess the angioarchitecture, treatment strategies, and clinical outcomes for intracranial dural AVFs that receive arterial supply from the ADS. This study builds on our previously published analysis of intracranial dural AVFs with a pial artery supply.\(^1\)

MATERIALS AND METHODS

Ethics approval for this study was granted by the Research Ethics Board of the University Health Network, Toronto (approval No. 19-5018). Retrospective cohort review was undertaken of all patients with intracranial AVFs managed at Toronto Western Hospital between 2006 and 2018. Inclusion criteria were a confirmed diagnosis of dural AVF on DSA, follow-up time-resolved MRA or DSA after interventional or conservative management, and a demonstrated arterial supply to the AVF from ADS. Clinical presentation and clinical outcomes were obtained from the electronic patient records.

Imaging Assessment

Baseline and follow-up DSA (and MRA when available) imaging for each patient was analyzed independently by 2 reviewers, both fellowship-qualified in interventional neuroradiology (K.D.B. and H.K.). Disagreements were resolved by a senior reviewer (T.K.). The following characteristics were assessed on DSA: fistula location, arterial supply, venous drainage, classifications of Borden et al\(^1\) and Cognard et al\(^1\)\(^7\) endovascular treatment approach, embolic agent used, number of endovascular procedures required, residual supply from the ADS after the first embolization, and final angiographic outcome.

RESULTS

Diagnosis

Between 2006 and 2018 at Toronto Western Hospital, 173 patients with 192 fistulas were identified with a confirmed diagnosis of dural AVF on DSA and follow-up imaging available. Of these, 6 patients (3 women and 3 men; mean age, 46.5 years) with 6 fistulas demonstrated arterial supply to the AVF from the ADS (3.5% of patients, 3.1% of fistulas) (see On-line Table 1 for individual patient demographics, clinical presentations, and angiographic analysis results). One patient presented with subarachnoid hemorrhage. Four patients were diagnosed with falcorentorial fistulas (all Cognard type IV); 1 patient, with a parasagittal fistula (Cognard III); and 1 patient, with a superior sagittal sinus fistula (Cognard IIa+b) (Fig 1). Patients 1 and 6 were previously included in our published analysis of AVFs with pial artery supply.\(^1\)

Treatment Planning

Following multidisciplinary discussion among radiosurgery, cerebrovascular neurosurgery, and interventional neuroradiology, the consensus opinion in all 6 cases was for initial endovascular transarterial embolization based on the angiographic features, the extensive vascular structures involved, the deep location, and the perceived natural history.

Endovascular Treatment

All 6 patients initially underwent transarterial embolization using liquid embolic agents (On-line Table 2). Three patients required a second embolization session, in part due to residual supply to the fistula from the ADS. Two patients specifically underwent microcatheter cannulation of the ADS (Figs 2 and 3), and patient 2 underwent embolization via the ADS. All patients demonstrated cure of the fistula on the final DSA (Figs 2E, -F and 3E, -F). No procedural complications were encountered; in particular, we did not encounter reflux to the PCA.

DISCUSSION

Published Literature

Based on our review of the literature, this is the largest reported series of dural AVFs supplied by the ADS treated by endovascular techniques (the existing literature predominantly being case reports; On-line Table 3).\(^1\)\(^-\)\(^3\)\(^,\)\(^\)\(^18\) The ADS supply may not be appreciated on angiography due to competitive flow from multiple arterial feeders (Fig 3A, -B) and thus may not always have been recognized in large series of tentorial AVFs.\(^9\)\(^,\)\(^19\) Tentorial fistulas constitute \(<3\%\) of cranial AVFs but are 6 times more likely than nontentorial AVFs to present with hemorrhage,\(^2\) likely a result of the direct cortical venous drainage seen with these AVFs.\(^3\)\(^,\)\(^13\)\(^,\)\(^20\)

Surgical Approach to Falcotentorial AVFs

Most tentorial AVFs carry a high risk of hemorrhage and endovascular approaches can be challenging; thus, some cases may require microsurgical disconnection.\(^1\)\(^3\)\(^,\)\(^2\)\(^1\) The primary surgical goal for tentorial AVFs is the same as for all AVFs—occlusion of
the proximal portion of the draining vein.21 In principle, the operative strategy is based on an optimal surgical approach with an ideally adapted patient position allowing gravity to retract the brain, open subarachnoid planes, and shorten dissection times to expose and interrupt the draining vein.13,21

Lawton et al.13 in 2008, created a surgical classification of tentorial AVFs based on their experience with 31 cases, differentiating 6 types based on fistula location, dural base, associated sinuses, and direction of venous drainage. Among those 31 patients, arterial supply from branches of the SCA or PCA (including the ADS) was identified in 8 patients.13 Six of these 8 patients had the Galenic subtype, located adjacent to the falcotentorial junction with drainage to the vein of Galen either directly or via cortical veins, requiring a posterior interhemispheric surgical approach after initial transarterial embolization.13 Preoperative embolization is often undertaken to minimize blood loss due to the extensive adjacent arterial and deep venous structures in the operative field.13,22 If a cure can be achieved by endovascular means, this may be preferable to a surgical approach.21

In our overall cohort of 173 patients with intracranial AVFs, only 4 patients had falcotentorial Galenic subtype AVFs13 (2.3%). All 4 patients demonstrated an ADS supply and were included in this study; this finding is consistent with the known high rates of SCA or PCA supply to this AVF subtype.13 All 4 patients underwent endovascular treatment with angiographic cure, and none required surgical intervention.

Endovascular Approaches to Falcotentorial AVFs with ADS Supply

Both transarterial2,3,18 and transvenous23 approaches with the use of liquid embolic agents have been described for the successful treatment of falcotentorial AVFs, with a treatment goal of occlusion of the falcotentorial junction and foot of the draining vein to achieve cure. In our series, all patients initially underwent transarterial embolization using liquid embolics (On-line Table 2), with excellent outcomes, thus eliminating the need for potentially more invasive surgical approaches.

In patient 2, the initial embolization procedure also required microcatheter selection and embolization from the ADS itself (Fig 3) once competitive flow from the middle meningeal artery was excluded. In this instance, a highly distal position was achieved with the microcatheter, allowing deposition of small coils to minimize reflux followed by administration of Onyx.
(Covidien, Irvine, California) directly to the fistulous point using a modified pressure-cooker technique. Understanding the complex arterial anatomy and using imaging-based treatment were the keys to a complete, safe, and successful endovascular treatment approach in this case. In patient 1, the right ADS was cannulated with a microcatheter (Fig 2), but a distal position adjacent to the fistula could not be obtained. Our opinion was that successful injection of a liquid embolic agent from this proximal position would require initial formation of a long plug of embolic agent, thus increasing the risk of reflux into the PCA and basilar artery. This patient was subsequently cured by transvenous embolization.

Impact of ADS Supply on the Endovascular Approach

The key to avoiding reflux across the ADS was initial recognition of its supply to the AVF. Given the potential difficulties of identifying the ADS supply when there is competitive flow (Fig 3) and the high likelihood of pial supply from the SCA or PCA to a Galenic-type tentorial AVFs, it would be reasonable to assume that most fistulas in this location have potential ADS supply. Therefore, care should be taken to assess

| Table: Risk-reduction strategies for endovascular treatment of falcotentorial dural AVFs |
|---------------------------------|---------------------------------|-----------------|
| Category | Risk-Reduction Strategy | Patients Treated |
| Anatomic assessment; to identify supply from ADS | Magnified high-frame-rate angiography | 1–6 |
| Transarterial embolization; strategies to avoid reflux across ADS | 3D rotational angiography with multiplanar reconstructions | 1–6 |
| Embolization directly via ADS; strategies to treat via ADS while avoiding reflux | Initial embolization from non-ADS arterial supplies (to reduce competitive flow) | 1–6 |
| Strategies for residual ADS supply | Close monitoring for linear reflux anteriorly from the vein of Galen (along the expected course of ADS) | 1–6 |
| | Direct cannulation of ADS with embolization if distal access achieved (pressure-cooker technique to minimize reflux) | 2 |
| | Aborting embolization attempts from ADS if distal access not achieved (insufficient safety margin) | 1 |
| | Staged embolization over multiple sessions as required | 1, 3, 5 |
| | Transvenous approach (eg, reverse pressure-cooker technique) | 1 |
the ADS supply with magnified, high-frame-rate DSA and MPRs of 3D rotational angiography (Fig 2B) when treating these fistulas. Even if such a supply is not identified, care should still be taken during embolization to assess any linear reflux anteriorly from the vein of Galen and along the expected course of the free tentorial edge, because this could represent reflux back toward the PCA and basilar artery. We have summarized the strategies we used to avoid dangerous reflux across ADS in the Table.

Study Limitations

This study is limited by the small sample size, retrospective design, and the already-discussed difficulties associated with identifying the ADS supply (potentially underestimating the true rate of supply). The requirement for follow-up imaging may have excluded patients with low-grade fistulas (less of a concern in tentorial AVFs, which are usually high-grade).

CONCLUSIONS

Dural AVFs supplied by the ADS are rare and difficult to treat by surgical or endovascular means. Endovascular treatment can be successfully undertaken by incorporating detailed anatomic assessment with risk-reduction strategies. Recognition of the ADS supply to falcotentorial junction fistulas is key to avoiding iatrogenic posterior circulation stroke.

REFERENCES

Asymptomatic Cerebral Vasoconstriction after Carotid Artery Stenting

ABSTRACT

BACKGROUND AND PURPOSE: Carotid artery stent placement is widely performed for treatment of carotid stenosis. The purpose of this study is to present our observations on cerebral vasoconstriction in ipsilateral anterior circulation during immediate post-stenting angiography in patients with near-total occlusion of the proximal ICA.

MATERIALS AND METHODS: We retrospectively reviewed patient data from December 2008 to December 2018. There were 28 patients with carotid near-total occlusion. Two neuroradiologists reviewed the final cerebral angiographic finding of carotid artery stent placement to evaluate the presence of vasoconstriction or vasodilation.

RESULTS: A total of 28 patients with near-total occlusion (mean ± standard deviation age, 69.0 ± 6.5 years; 92.9% male) were analyzed. Ten patients showed vasoconstriction in the treated territory, and 18 patients did not show vasoconstriction after carotid artery stenting. There were no statistically significant differences in comorbidity, frequency of symptomatic lesions, antiplatelet medication, mean procedure time, and initial NIHSS and baseline modified Rankin scale scores between the 2 groups. However, vasoconstriction is more likely to happen in patients with isolated territory from the contralateral anterior and posterior circulation (66.7% in the isolated territory group and 12.5% in the not-isolated territory group; P < .05). No headache or neurologic deficit was noted in all 10 patients with cerebral vasoconstriction.

CONCLUSIONS: Cerebral vasoconstriction may occur after carotid artery stenting more frequently than expected. It occurs more frequently in patients with near-total occlusion and with isolation of the cerebral circulation. A large-scale study is necessary to assess the clinical implications of cerebral vasoconstriction after carotid artery stenting.

ABBREVIATIONS: CAS = carotid artery stenting; CPP = cerebral perfusion pressure; HPS = hyperperfusion syndrome; NTO = near-total occlusion

Carotid artery stenting (CAS) and carotid endarterectomy are widely performed for the treatment of carotid stenosis to improve cerebral perfusion and prevent stroke recurrence. Both the morphology of the stenotic vessel and hemodynamics of cerebral perfusion change after CAS. Some changes are immediately notable based on postprocedural angiographic finding, among which is cerebral vasoconstriction. Cerebral vasoconstriction cases after carotid endarterectomy have often been reported.1-6 In contrast, cerebral vasoconstriction cases after CAS have rarely been reported.7-12 The purpose of this retrospective study is to present our observation on cerebral vasoconstriction in the ipsilateral anterior circulation during immediate poststenting angiography in patients with near-total occlusion (NTO) of the proximal ICA.

MATERIALS AND METHODS

Design and Patient Selection

We retrospectively reviewed patient data from December 2008 to December 2018. A total of 361 stent placement procedures (in 286 patients) were performed in our hospital. Of these, there were 296 carotid stent placement procedures (in 221 patients) for carotid atherosclerotic stenosis and 28 patients with carotid NTO (Fig 1). NTO was defined as ipsilateral distal ICA less than the contralateral distal ICA, or ipsilateral distal ICA equal to or less than the ipsilateral external carotid artery.13 Two interventional neuroradiologists (S.K. Baik and J. Roh) reviewed the final cerebral angiographic finding of CAS to
evaluate the presence of vascular changes, such as vasoconstriction or vasodilation. Moreover, preprocedural DSA or MRA images were reviewed to determine if the vascular territory was isolated from the contralateral anterior or posterior circulation. Isolated circulation was defined as 1) signal intensity drop of the ipsilateral MCA-ICA territory, and 2) absence of an ipsilateral A1 segment and posterior communicating artery when evaluated on TOF-MRA. In 24 of the 28 patients (85.7%), the results of independent review from the 2 radiologists (S.K. Baik and J. Roh) showed complete agreement, and the discrepancies in 4 patients were resolved after consensus meeting of the 2 neuroradiologists (S.K. Baik and J. Roh).

Data Collection

Demographic data and medical history (including age, sex, hypertension, diabetes mellitus, cigarette smoking, alcohol drinking, hyperlipidemia, atrial fibrillation, coronary artery disease, active cancer, and previous stroke) were collected. Procedural data collected were laterality, procedure time, deployed stents, balloon catheters, and embolic protection devices. In addition, data on the presence of symptoms caused by carotid stenosis, antiplatelet medication, plaque echogenicity on carotid Doppler ultrasonography, and initial NIHSS and baseline modified Rankin scale scores were collected. Moreover, data on the incidence of postprocedural parenchymal hemorrhage and discharge NIHSS and 3-month modified Rankin scale scores were collected.

Procedural Technique

All CAS procedures were performed by using a biplane angiography unit (Axiom Artis zee Biplane; Siemens, Erlangen, Germany). All the patients received aspirin (100 mg/day) and clopidogrel (75 mg/day) treatment at least 7 days before the procedure. All procedures were performed with the patient under local anesthesia. A bolus of IV heparin (50 IU/kg of body weight, 3000–5000 IU) was injected after the placement of the guide catheter. Subsequently, 1000 IU/h infusion was administered among all the patients.

The Guider Softip XF Catheter (Boston Scientific, Fremont, California) was used as a guide catheter in all patients, except in 2, in whom the Envoy Catheter (Codman & Shurtleff, Raynham, Massachusetts) was used. Distal embolic protection devices were deployed in all patients except 1. The types of embolic protection device were Spider FX (Covidien, Plymouth, Minnesota), FilterWire EZ (Boston Scientific, Natick, Massachusetts), and Emboshield NAV6 (Abbott Laboratories, Abbott Park, Illinois). We applied pre- and poststenting dilatation in all the patients except 2. Only prestenting balloon dilation was performed in 1 patient, and only poststenting balloon dilation was performed in another patient. The Ryujin balloon catheter (Terumo, Tokyo, Japan) and UltraSoft SV (Boston Scientific) were applied until 2011. Afterward, the Sterling balloon catheter (Boston Scientific) was used.

We applied open-cell type stents in all the patients and a combination of open- and closed-cell type stents in 1 patient. In most cases, Precise (Cordis, Fremont, California) was applied. However, in some cases, Protégé (Covidien), Acculink (Guidant, St. Paul, Minnesota), and Carotid Wallstent (Boston Scientific) were applied. After CAS, angiography of the proximal ICA and intracranial area and immediate postprocedural CT were performed in all patients.

Statistical Analysis

Statistical analysis was performed by using the Statistical Package for Social Sciences version 18.0 software for Windows (IBM, Armonk, New York). The patients were classified into 2 groups based on the presence of cerebral vasoconstriction. Univariate analysis was carried out by using the Mann–Whitney U test for continuous variables and the Fisher exact test for categoric variables. A P value of <.05 was considered as statistically significant.

RESULTS

The patients’ baseline characteristics are shown in On-line Table 1. A total of 28 patients with NTO were analyzed. Of those, 26 patients (92.9%) were men, and the mean ± standard deviation age was 69.0 ± 6.5 years (range, 51–81 years). The left ICA was treated in 15 patients (53.6%), and 17 patients (60.7%) had symptomatic stenosis. Ten patients showed multifocal vascular narrowing considered as vasoconstriction in the treated territory, whereas 18 patients did not show vasoconstriction after CAS. There were no statistically significant differences in comorbidty, frequency of symptomatic lesions, antiplatelet medication, mean procedure time, and initial NIHSS and baseline modified Rankin scale scores between the 2 groups. None of the 28 patients were taking vasoactive drugs.

However, vasoconstriction is more likely to happen in patients with isolated territory from the contralateral anterior
and posterior circulation (66.7% in the isolated territory group and 12.5% in the not-isolated territory group; \(P < .05 \)). Vasocostriction was observed in a larger number of the patients than expected (10/28 [35.7%]). Small- and medium-sized vessels of the ipsilateral M2–3 and A2–3 were noted, and these changes were mostly multifocal. All the patients with vasocostriction were asymptomatic.

The characteristics of 10 patients with asymptomatic cerebral vasocostriction after CAS are shown in On-line Table 2. The characteristics of 18 patients without asymptomatic cerebral vasocostriction after CAS are shown in On-line Table 3. There was no significant association between the types of embolic protection devices and cerebral vasocostriction. No headache or neurologic deficit was noted in any of the 10 patients with cerebral vasocostriction. There was no postprocedural hemorrhage in any of the 28 patients with NTO who underwent CAS, and no patient had a worsened NIHSS score by more than 2 points or mechanisms become dysfunctional and fail to compensate for CBF reduction.\(^{15}\)

Moreover, autoregulation is impaired by stenosis or occlusion of the ICA. Two investigations by using transcranial Doppler sonography found that cerebral autoregulation is impaired in patients with severe ICA stenosis or occlusion.\(^{16,17}\) A correlation between the degree of stenosis and loss of autoregulation was noted in both groups.\(^{16,17}\) Of these, Reinhard et al\(^{17}\) found that cerebral autoregulation is most severely impaired in patients without Willisian collaterals. Furthermore, Haubrich et al\(^{18}\) demonstrated that impaired cerebral autoregulation may recover after CAS.

Compensatory mechanisms maintain cerebral perfusion in the initial stages of CBF reduction. Powers\(^{19}\) categorized these cerebrovascular adjustments into 3 stages: stage 0, when CBF is normal; stage 1, when CBF is reduced and autoregulation dilates the cerebral vessels to maintain CBF; and stage 2, when the compensatory capacity for cerebral vasodilation exceeds worsened modified Rankin scale score at discharge. In addition, no patient had a decreased modified Rankin scale score at 90 days, except for 4 patients who were lost to follow-up. Cerebral vasocostriction after CAS in 2 patients (cases 10 and 24) is shown in Fig 2.

DISCUSSION

There have been many reports of changes in hemodynamic status or cognitive function after CAS; however, few report the morphologic changes in intracranial vasculature after CAS. Morphologic changes of the intracranial artery were noted immediately after CAS in patients with NTO, and smooth vascular narrowing was observed. In our study, all the patients with vasocostriction were asymptomatic, which indicated that these morphologic changes in the intracranial vasculature are physiologic responses to increased cerebral perfusion, which is a type of autoregulation.

Cerebral autoregulation is a homeostatic process that regulates and maintains constant CBF in a range of blood pressures. In healthy adults, CBF is constantly maintained between 50 and 150 mm Hg cerebral perfusion pressure (CPP). The vascular adjustments that underlie autoregulation consist of constriction of cerebral resistance vessels when CPP increases and vasodilation of these vessels when CPP decreases.\(^{14}\) However, during cerebral ischemia, these...
the limit, CBF begins to decrease, and cerebrovascular autoregulation is disrupted.

In patients with carotid NTO, CBF in the ipsilateral intracranial circulation is reduced. In response to CBF reduction, the cerebral vessels may be dilated to maintain cerebral perfusion. Likewise, autoregulation may be impaired in proportion to the severity of the stenosis. Immediately after CAS, a large amount of blood flows into the cerebral vessels, where autoregulation is impaired. We thought that cerebral vessels become uniformly constricted under normal autoregulation. Nevertheless, as in our patients, multifocal vasoconstriction may occur because of partial disruption of the autoregulation. Therefore, asymptomatic vasoconstriction in our patients is considered as a type of autoregulation or the boundary between autoregulation and pathologic condition. If the autoregulation is completely disrupted, then the cerebral vessels cannot constrict and are dilated. This condition is thought to be more vulnerable to hyperperfusion syndrome (HPS).

In our study, vasoconstriction occurred more frequently in patients with isolation of the cerebral circulation, which is consistent with the finding of Reinhard et al,17 that autoregulation is further impaired in patients without Willisian collaterals. This is probably because the cerebral hemodynamic reserve is further reduced, and autoregulation is subsequently further impaired in patients with isolation of the cerebral circulation. These changes are expected to return to normal when autoregulation is restored over time after CAS.

Six case reports of cerebral vasoconstriction after CAS have been published so far (Table). In these reports, cerebral vasoconstriction frequently occurred immediately after CAS and up to 1 month after CAS. In our study, we observed only the development of cerebral vasoconstriction immediately after CAS. In these 6 reports, the symptoms were mild in some patients and severe in the other cases.

However, in our study, all the patients with vasoconstriction were asymptomatic. This may be attributed to the location and degree of vasoconstriction, and susceptibility between individuals is different. Vasoconstriction after CAS has a broad spectrum of manifestations, depending on the severity of autoregulation impairment. If the autoregulation impairment is mild, then vasoconstriction is not prominent and the patients are asymptomatic. It may be a physiologic response, which is a type of autoregulation. Otherwise, if autoregulation impairment is severe, then vasoconstriction is prominent and may cause severe symptoms. It may be a pathologic condition, causing severe headache or stroke.

After CAS, impaired autoregulation of CBF also causes HPS.20 Both cerebral vasoconstriction and HPS are caused by abrupt increased blood flow into the cerebral vessels that are dilated by a compensatory response to severe carotid stenosis. Cerebral vasoconstriction probably occurs because the cerebral artery constricts abnormally. However, HPS probably occurs because the cerebral arteries cannot constrict and are dilated. Both are caused by impairment of cerebral autoregulation. To our knowledge, there have been no reports or studies on the morphologic changes of intracranial vessels in HPS after CAS.

After CAS, aside from HPS, cerebral vasoconstriction may occur. In the previous case report, the patient’s symptom deterioration after CAS was misdiagnosed as HPS and antihypertensive medications were administered. Left MCA vasoconstriction was later observed. This caused severe disability in the patient.10 Therefore, when the patient’s symptoms worsen after CAS, the possibility of cerebral vasoconstriction should be considered. It should be differentiated and treated appropriately. In previous reports, administration of calcium channel blockers, such as oral lomerizine hydrochloride,10 or intra-arterial verapamil,8,11 was effective in the treatment of vasoconstriction after CAS. This study had some limitations. First, this was retrospective study. Second, the sample size was small.

CONCLUSIONS

Cerebral vasoconstriction may occur after CAS more frequently than expected. It occurs more frequently in patients with NTO and with isolation of the cerebral circulation. A large-scale study is necessary to assess the clinical implications of cerebral vasoconstriction after CAS.

Disclosures: Seung Kug Baik—RELATED: Grant: This work was supported by a 2-year research grant from Pusan National University.

REFERENCES

Table: Previous cases of CV after CAS

<table>
<thead>
<tr>
<th>Study</th>
<th>Age (y)</th>
<th>Sex</th>
<th>Laterality</th>
<th>Onset from CAS</th>
<th>Infarction</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arai et al7</td>
<td>72</td>
<td>M</td>
<td>R</td>
<td>13 h</td>
<td>Present</td>
<td>No deficit</td>
</tr>
<tr>
<td>Shiraga et al12</td>
<td>62</td>
<td>M</td>
<td>R</td>
<td>1.5 days</td>
<td>Present</td>
<td>No deficit</td>
</tr>
<tr>
<td>Soltanolkotabi et al11</td>
<td>49</td>
<td>F</td>
<td>L</td>
<td>14 days</td>
<td>Present</td>
<td>No deficit</td>
</tr>
<tr>
<td>Aghaebrahim et al12</td>
<td>60</td>
<td>M</td>
<td>R</td>
<td>1 mo</td>
<td>Not available</td>
<td>No deficit</td>
</tr>
<tr>
<td>Watanabe et al9</td>
<td>74</td>
<td>M</td>
<td>R</td>
<td>17 days</td>
<td>Present</td>
<td>No deficit</td>
</tr>
<tr>
<td>Higashi et al10</td>
<td>73</td>
<td>M</td>
<td>L</td>
<td>Immediately</td>
<td>Present</td>
<td>Right hemiparesis, higher brain dysfunction</td>
</tr>
</tbody>
</table>

Note:—CV indicates cerebral vasoconstriction; R, right; L, left.

Characterization of Carotid Plaque Components by Quantitative Susceptibility Mapping

ABSTRACT

BACKGROUND AND PURPOSE: Intraplaque hemorrhage in the carotid artery is related to an increased risk of cerebrovascular ischemic events. We aimed to investigate whether quantitative susceptibility mapping can characterize carotid artery plaque components and quantify the severity of intraplaque hemorrhage.

MATERIALS AND METHODS: For this ex vivo quantitative susceptibility mapping study, 9 carotid endarterectomy specimens were imaged on a 3T MR imaging scanner using a 3D multi-echo gradient-echo sequence and a microscopy coil. The samples were examined histologically using immunostains, including glycophorin A and Prussian blue. The areas of erythrocytes, iron deposits, calcification, and fibrous matrices observed on stained sections were compared with quantitative susceptibility mapping findings and their mean susceptibility values.

RESULTS: Intraplaque hemorrhage and iron deposits were observed only in areas hyperintense on quantitative susceptibility mapping; calcifications and fibrous matrices were prevalent in hypointense areas. The mean susceptibility values for necrotic cores with intraplaque hemorrhage but no iron deposits, cores with iron deposits but no intraplaque hemorrhage, cores with intraplaque hemorrhage or iron deposits, and cores with calcification were 188 ± 51, 129 ± 49, −11 ± 17, and −158 ± 78 parts per billion, respectively. There was a significant difference in the mean susceptibility values among the 4 histologic components (P < .001). The mean susceptibility values of the whole plaque positively correlated with the percentage area positive for glycophorin A (r = 0.65, P < .001) and Prussian blue (r = 0.47, P < .001).

CONCLUSIONS: Our findings suggest that quantitative susceptibility mapping can characterize the composition of carotid plaques and quantify the degree of intraplaque hemorrhage and iron deposits.

ABBREVIATIONS: CR = contrast ratio; GYPA = glycophorin A; ICH = intracranial hemorrhage; IPH = intraplaque hemorrhage; QSM = quantitative susceptibility mapping; SV = susceptibility value

Vulnerable atherosclerotic plaques in carotid arteries are obviously correlated with cerebrovascular ischemic events such as ischemic stroke and transient ischemic attacks. The characteristics of vulnerable plaques are intraplaque hemorrhage (IPH), lipid-rich necrotic cores, thin fibrous caps, and, to a lesser extent, plaque calcification. IPH in the carotid artery is related to an increased risk of plaque rupture; it plays a critical role in stratifying the risk of future events in patients with carotid atherosclerosis. In a meta-analysis, the presence of IPH increased the risk of cerebrovascular events 5- to 7-fold. While carotid endarterectomy or carotid artery stent placement helps prevent future stroke, it may elicit intraoperative embolic complications, especially when plaques contain many vulnerable components such as IPH or lipids. Therefore, a method for characterizing the intraplaque components is needed for the prediction of cerebrovascular ischemic events and perioperative complications. Imaging modalities for the evaluation of IPH should be noninvasive and easily accessible in daily clinical practice. There are various noninvasive imaging methods to recognize carotid vulnerable plaques in vivo. However, ultrasonography including contrast-enhanced sonography, shear wave elastography, and CT including contrast-enhanced CT cannot accurately diagnose IPH.
hemorrhage. The compositional components, including IPH. Therefore, we investigated whether QSM can be used to characterize the composition of plaque components.

Multiparametric qualitative MR imaging can help visualize components that render plaques vulnerable to rupture. T1-weighted and fat- and flow-suppressed sequences are the preferred imaging modalities to evaluate IPH because they exploit methemoglobin-induced T1-shortening. However, it can be difficult to differentiate IPH from the lipid-rich necrotic core. The disadvantages of these qualitative and semiquantitative approaches include their operator dependency, the need for reference tissue, and their lack of specificity for the identification of plaque components.

Quantitative susceptibility mapping (QSM) is a quantitative imaging technique that has been used to assess hemorrhage, iron, and calcification in the brain. To our knowledge, no earlier studies correlated histopathologic findings with QSM data on carotid plaque components, including IPH. Therefore, we investigated whether QSM can be used to characterize the composition of carotid plaques and to quantify the degree of intraplaque hemorrhage.

MATERIALS AND METHODS

The institutional review board of the University of Miyazaki Hospital approved our retrospective, observational study and waived the requirement for informed consent.

Patients and Carotid Plaque Specimens

This study included 9 carotid specimens of 9 male patients ranging in age from 63 to 83 years (mean, 73 years) who underwent carotid endarterectomy with en bloc excision at the University of Miyazaki Hospital or affiliated hospitals between March 2015 and March 2017. Of these patients, 8 had symptomatic stenosis of 60%-95% and 1 patient had asymptomatic stenosis of 60%. The percentage diameter of stenosis was determined using the NASCET criteria on contrast-enhanced CT angiography.

The clinical profiles of the patients included hypertension (n = 6), diabetes mellitus (n = 2), and hyperlipidemia (n = 1).

The specimens were fixed in formaldehyde immediately after carotid endarterectomy. The time from fixation to MR imaging ranged from 9 to 60 days (mean, 35.5 ± 16.1 days). Formalin-fixed samples were placed on a 5-mm-thick 2% agarose gel layer in 10-cm petri dishes. The dorsal surface was marked for proper orientation, and the samples were carefully embedded in 2% agarose gel to remove all air.

MR Imaging Protocol

Agarose-embedded samples were subjected to MR imaging on a 3T scanner (Insignia 3T CX; Philips Healthcare, Best, the Netherlands) using dStream Microscopy coil (47 mm, Philips Healthcare) (Fig 1). A 3D multiecho gradient echo sequence was acquired in the axial plane; the parameters were: TR = 7.2/13/20/26/32/38 ms; FOV = 100 × 100 mm; matrix = 216 × 216 mm²; voxel size = 0.2 × 0.2 × 1.0 mm³; scan time = 9 minutes 32 seconds. 3D multiecho gradient echo data were used for QSM using complex data and a morphology-enabled dipole inversion method.

The MR imaging protocol also included 3D T1-weighted MPRAGE sequences; the parameters were the following: TR/TE = 7/2.8 ms; FOV = 100 × 100 mm; matrix = 256 × 256 mm²; voxel size = 0.2 × 0.2 × 0.6 mm³; scan time = 5 minutes 20 seconds.

Histologic and Immunohistochemical Analysis

Carotid endarterectomy tissue specimens were cut into 3-mm-thick slices to match the corresponding MR imaging scans (Fig 1); they were embedded in paraffin, cut into 3-μm-thick sections, and stained with H&E. Azan trichrome was used to visualize the fibrous collagen matrix. Prussian blue staining was performed to visualize ferric iron (Fe³⁺) to identify hemosiderin deposits indicative of chronic hemorrhage. To detect erythrocytes, we stained sections with an antibody against glycophorin A (GYPYA) (Dako, Glostrup, Denmark), a sialoglycoprotein on the erythrocyte membrane and visualized with EnVision system (Dako). We also applied 3,3’-diaminobenzidine tetrahydrochloride and performed counterstaining with Meyer hematoxylin. The immunostaining controls included nonimmune mouse immunoglobulin G instead of the primary antibody. Erythrocytes and Fe³⁺ deposits were localized by a combination of immunohistochemistry for GYPYA and Prussian blue staining, respectively.
Assessment of Plaque Composition with QSM

To characterize the plaque composition with QSM, 2 radiologists (M.A., T.H.) first consensually selected foci that were hyperintense or hypointense relative to the 2% agarose gel background and manually set ROIs (Figs 2A and 3A). Then 1 pathologist (K.M.) and 1 radiologist (M.A.) consensually assessed the corresponding areas on histologic sections for spatial agreement or disagreement between the histologic sections and the QSM images. The plaque configuration and areas with specific plaque components and calcification were considered for coregistration between QSM and histology sections. Sections were excluded from further analysis when the MR images failed to match the histologic sections due to gross sample deformation during histologic processing. Also excluded were segments with histologic processing errors (damaged or appropriately-cut plane samples) and histologic sections with spatial disagreement between histologic sections and MR images. For the final selection of histologic sections, 2 pathologists (K.M., Y.A.) consensually checked for the presence or absence of IPH, iron deposits, calcification, fibrous matrix components, dense inflammatory infiltrates, and necrotic cores without intraplaque hemorrhage in hyper- and hypointense areas on QSM images.

IPH was defined as the presence of intact and/or fragmented erythrocyte foci in atherosclerotic plaques detected by H&E and GYP A staining; calcification, as basophilic deposits on H&E-stained sections; and fibrous matrix components, as blue foci on Azan trichrome-stained sections. Dense inflammatory infiltrates were identified by the accumulation of mononuclear cells. When erythrocyte foci in a necrotic core were absent or undetectable, the designation was necrotic core without IPH.

To measure the susceptibility value of the main plaque components on QSM images, 1 pathologist (K.M.) first assessed all H&E-, GYP A-, and Prussian blue-stained sections and selected ROIs containing a necrotic core with IPH but no Fe$^{3+}$ deposits; Fe$^{3+}$ deposits (chronic hemorrhage) without IPH; calcification; and a necrotic core with neither IPH nor Fe$^{3+}$ deposits. Then 2 radiologists (M.A., T.H.) consensually drew ROIs on QSM images that matched the histologic sections. The susceptibility values in the ROIs were determined using ImageJ (National Institutes of Health, Bethesda, Maryland). Exclusion criteria were the same as those in the qualitative evaluation.

On MPRAGE images, 2 radiologists (M.A., T.H.) also put ROIs in the areas corresponding to the same histologic components and adjacent background with the 2% agarose gel. The signal intensities of the ROIs on MPRAGE were determined using ImageJ. The contrast ratio (CR) of each plaque component was calculated by dividing the signal intensity of each component by the background signal intensity.

Correlation between Intraplaque Erythrocytes and Iron Deposits and the Susceptibility Value on QSM Images

The extent of erythrocyte/iron deposits on histologic sections was correlated with the mean susceptibility value (SV) of the whole plaque on QSM images. One pathologist (K.M.) first manually traced whole plaque on histologic sections. Areas positive for GYP A (erythrocyte component) or Fe$^{3+}$ staining (iron deposits) were quantified using Win-ROOF Color Image Analysis Software (Mitani, Fukui, Japan) (Fig 4A, B). To quantify the degree of hemorrhage/iron deposition in carotid plaques on histopathologic sections, the software calculated the percentage of the area with

FIG 2. Representative QSM (A) and MPRAGE (B) images of carotid plaques and corresponding histologic images (C–F) in a 77-year-old man. Carotid plaque with both hyper- and hypointense areas on the QSM image (A) and corresponding MPRAGE image (B). The hyperintense ROI (yellow outline) corresponds with histologic evidence of intraplaque hemorrhage and erythrocytes in the atherosclerotic necrotic core (C, H&E stain). The glycophorin-A-positive erythrocytes and erythrocyte fragments are abundant in the plaque (D). In the hyperintense ROI (yellow outline) on the QSM image (A), Prussian blue staining shows no iron deposition (E). Two hypointense ROIs (blue outline) on the QSM image (A) correspond with basophilic calcification in the plaque (F, H&E stain). The corresponding blue and yellow outlines are placed on the MPRAGE image (B).
RESULTS
Comparison of Histologic and QSM Findings
As shown in the Table, histology was compared with 26 hyper- and 9 hypointense areas on QSM images. Of the 26 hyperintense areas, 19 (73%) manifested IPH and 20 (77%) contained Fe3+ deposits (Figs 2A–C and 3). Of these areas, 14 featured both IPH and Fe3+ deposits; 5 showed only IPH; and 6, only Fe3+ deposits. Immunohistochemistry for GYPA highlighted the presence of intact and fragmented erythrocytes (Fig 2B). Of the 9 hypointense areas on QSM images, all exhibited a fibrous matrix, and 8 (89%) had calcifications (Fig 2A, -C). All 8 hypointense areas with calcification had large, platelike calcifications, while 6 of 7 hyperintense areas with calcification had dotlike calcifications that were smaller than the voxel size of QSM images. The incidence of calcifications and fibrous matrices was significantly higher in hypointense areas than in hyperintense areas (P < .05); no hypointense areas contained IPH or Fe3+ deposits. With respect to dense inflammatory infiltrates and necrotic cores without intraplaque hemorrhage, there was no significant difference in the incidence of the components between hyper- and hypointense areas.

For quantitative analysis, we assessed 5 typical atherosclerotic necrotic cores with IPH but no Fe3+ deposits, 7 cores with Fe3+ deposits but no IPH, 7 cores with neither IPH nor Fe3+ deposits, and 10 cores with calcification. The mean SV in foci of the necrotic core with IPH was 188 ± 51 parts per billion (ppb), it was 129 ± 49 ppb in cores with Fe3+ deposits without IPH, −11 ± 17 ppb in cores without IPH or Fe3+ deposits, and −158 ± 78 ppb in cores with calcification (Fig 5A). The mean SV in foci of necrotic cores with IPH and in cores with Fe3+ deposits but no IPH was significantly larger than but did not overlap with the SV of necrotic cores without either IPH or Fe3+ deposits or with the SV of cores with calcifications (P < .01). There was no significant difference in the mean SV of necrotic cores with IPH and necrotic cores with Fe3+ deposits without IPH.

The summary of the mean CR of each component on MPRAGE images is shown in Fig 5B. There were no significant differences in the mean CR among necrotic cores with IPH but no Fe3+ deposits, necrotic cores with Fe3+ deposits but no IPH, and necrotic cores with neither IPH nor Fe3+ deposits. The mean CR was significantly lower for calcification than the other 3 components (P < .05).

Correlation between the Degree of Erythrocyte/Iron Deposition and Its Susceptibility on QSM Images
The relationship between erythrocytes and iron deposits observed on histologic sections and the mean SV of a whole plaque region on QSM images is shown in Fig 6. There was a moderately positive correlation in GYPA-positive areas (r = 0.65, n = 34, P < .001) (Fig 6A) and a weak positive correlation with areas positive for Fe3+ (r = 0.47, n = 34, P < .01) (Fig 6B). Fe3+-positive areas tended to be much smaller than areas positive for GYPA. Some areas with a relatively high mean SV were observed at nearly zero areas positive for Fe3+ (Fig 6B). There was no significant correlation between Prussian blue–stained areas and GYPA-positive areas (r = 0.28, n = 34, P = .1) (Fig 6C).

DISCUSSION
For characterization of carotid plaques, qualitative analysis showed IPH and Fe3+ deposits in hyper- but not in hypointense areas on QSM images. The incidence of calcification and fibrous matrix deposits was higher in hyper- than in hypointense areas. All calcified foci with hypointensity on QSM had large platelike calcifications with diamagnetic properties. Although calcifications

FIG 3. Representative QSM image (A) of carotid plaques of a 79-year-old man and corresponding histologic images (B and C). Carotid plaque with a hyperintense area on the QSM image (A, red outline), which contained few GYPA-positive erythrocyte components in the corresponding histologic ROI (B, red outline). There are many intracellular hemosiderin deposits (blue) and a few erythrocytes (brown, arrow) in the ROI (C).
were also observed in hyperintense areas, they tended to be smaller than the voxel size of the QSM images. This finding suggests that paramagnetic hemoglobin or hemosiderin or both exert stronger effects than diamagnetic calcifications. Quantitative analysis showed that the mean SV was significantly higher for cores with IPH or Fe$^{3+}$ deposits than cores without either IPH or Fe$^{3+}$ deposits and cores with calcifications. The SV for necrotic cores with IPH and for cores with Fe$^{3+}$ deposits did not overlap the SV of necrotic cores without either IPH or Fe$^{3+}$ deposits or the SV of cores with calcifications. Our findings indicate that the qualitative and quantitative assessment of carotid plaques on QSM images may help facilitate the identification of their composition.

Although QSM and gradient echo phase imaging have been reported to be useful for the differentiation of intracranial
calcifications and hemorrhage. QSM may be superior. We document that QSM also distinguishes between hemorrhage and calcification in carotid artery plaques. The inferiority of gradient echo phase imaging to QSM can be explained by the underlying physics: the phase is determined by the product of the TE and the magnetic field, which is a nonlocal parameter or a convolution of all surrounding tissue magnetic susceptibility sources. Imaging parameters, including TE, field strength, object orientation, and object size, can change the appearance of gradient recalled-echo phase images. The high-pass filtering that is commonly used in susceptibility-weighted imaging makes the phase image noisy and difficult to interpret.

In the mean CR on MPRAGE images, there were no significant differences among necrotic cores with IPH but no Fe³⁺ deposits, cores with Fe³⁺ deposits without IPH, and necrotic cores with neither IPH nor Fe³⁺ deposits. Formalin fixation shortens the relaxation time of tissues with time. In the current ex vivo study, all plaque components except calcification could not be differentiated on MPRAGE images. The relaxation times of plaque tissues on MPRAGE images seemed to be

<table>
<thead>
<tr>
<th>Plaque Components</th>
<th>Hyperintense Area (n = 26)</th>
<th>Hypointense Area (n = 9)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraplaque hemorrhage</td>
<td>19 (73)</td>
<td>0 (0)</td>
<td>.002</td>
</tr>
<tr>
<td>Iron deposition</td>
<td>20 (76.9)</td>
<td>0 (0)</td>
<td><.0001</td>
</tr>
<tr>
<td>Calcification</td>
<td>7 (26.9)</td>
<td>8 (88.9)</td>
<td>.002</td>
</tr>
<tr>
<td>Fibrous matrix deposits</td>
<td>9 (34.6)</td>
<td>9 (100)</td>
<td>.001</td>
</tr>
<tr>
<td>Dense inflammatory infiltrates</td>
<td>10 (38.5)</td>
<td>4 (44.4)</td>
<td>1.0</td>
</tr>
<tr>
<td>Necrotic core without intraplaque hemorrhage</td>
<td>5 (19.2)</td>
<td>1 (11.1)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

a Data in parentheses are percentages.

FIG 5. Comparison of the mean SV on QSM images (A) and the CR on MPRAGE images (B) among 4 typical atherosclerotic components. Analysis was with 1-way ANOVA with the Scheffe test (asterisk, P < .001; double asterisks, P < .01).

FIG 6. Relationship between the mean magnetic SV and areas positive for GYPA (A, erythrocytes) or Fe³⁺ (B). Relationship between Prussian blue–stained areas and GYPA–positive areas (C).
shortened. This effect must have affected the results on MPRAGE images.

In our study, the SV of IPH in the carotid artery detected on QSM images is $201 \pm 115 \text{ ppm}$. This value overlaps the lower end of the SV range of cerebral cavernous malformations (125–750 ppm) and is much lower than the SV range of intracranial hemorrhage (ICH, 570–1380 ppm) in the hyperacute-to-chronic stage.18,32 This difference may be explained by differences in the microenvironment of the brain parenchyma and the carotid artery wall.

The susceptibility for intracranial hemorrhage depends on the magnetic status of hemoglobin iron in degraded erythrocytes; it varies greatly with the hemorrhage size and stage.18,24,33 ICH occurs when a massive number of erythrocytes rapidly burst out of an artery. The fast degradation of these cells results in a high SV due to the presence of deoxyhemoglobin in hyperacute hematomas and of methemoglobin during erythrocyte lysing.18 The influx of macrophages results in iron phagocytosis and either iron clearing from degraded erythrocytes in the late subacute stage or in iron storage in hemosiderin the chronic ICH stage.18 The former event results in a susceptibility reduction, while the latter increases susceptibility due to the formation of a superparamagnetic domain. Cerebral cavernous malformations are characterized by slow, small hemorrhages at the capillary level; consequently, SV increases more slowly and remains lower than in the presence of ICH.34 Bleeding in the necrotic core of carotid plaques may be even less and slower than in cerebral cavernous malformations, and it may be recurrent due to disruption of the vasa vasorum and plaque fissure/rupture.36 IPH and Fe$^{3+}$ deposits (ie, hemosiderin) tended to coexist in hyperintense areas on our QSM images. Because the presence of hemosiderin is indicative of chronic hemorrhage, hyperintense areas in carotid plaques may reflect different hemorrhagic stages. IPH can contribute to the progression of atheroma via the deposition of free cholesterol derived from the erythrocyte membrane,22 and it may change the macrophage phenotype in advanced atherosclerotic lesions. Hyperintense areas on QSM images may be associated with atheroma progression.

The quantification of erythrocytes and Fe$^{3+}$ deposits in whole plaques showed that the mean susceptibility values were positively correlated with GYPAspective and Fe$^{3+}$-positive areas. However, the Fe$^{3+}$-positive areas were much smaller than the GYPAspective areas. This difference may be attributable to differences in the size and abundance of erythrocytes compared with hemosiderin, an aggregate of ferritin protein, and also may lead to a weak correlation between Fe$^{3+}$-positive areas and SVs. Even small amounts of iron affected the mean SV on QSM images, probably due to the superparamagnetic susceptibility of hemosiderin, in which iron forms a magnetic domain.33 In addition, there was no significant difference in the mean SV between cores with IPH but no iron deposits and cores with iron deposits but no IPH. These results support high susceptibility on QSM images, reflecting both hemoglobin content and hemosiderin deposition. On the basis of our findings, we think that carotid plaque components with positive susceptibility on QSM images reflect erythrocyte and/or iron deposits at different hemorrhage stages (ie, deoxyhemoglobin, methemoglobin, and hemosiderin).

Quantification of changes in the IPH volume in asymptomatic individuals may help to identify new risk factors for the development and progression of IPH and may yield further clues for the prevention of cerebrovascular events.37 Because the mean SV of whole plaques was correlated with the degree of IPH, quantification of the IPH volume on QSM images may be useful for assessing the initial IPH volume and subsequent changes.

Our study has some limitations. It did not include in vivo images, and our sample size was relatively small. Although imaging of in vivo QSM for the extracranial carotid artery seems to be challenging, an in vivo QSM study of carotid plaques was recently reported.38 Future studies using in vivo carotid QSM are needed to clarify the usefulness of the in vivo imaging. Evia et al39 showed the strong linear correlation in susceptibility on QSM between in vivo and ex vivo brain tissues. Therefore, our results may be valuable for translation of ex vivo QSM findings to in vivo ones.

We did not perform an in vivo comparison of MPRAGE with QSM. This is also needed to clarify whether the image quality of QSM is similar to that of MPRAGE for clinical use and to evaluate whether QSM is more useful for characterization of plaque components than MPRAGE. The time from fixation of samples to MR imaging was relatively long; the mean time was 36 days. Evia et al39 reported that susceptibility in gray and white matter measured ex vivo with QSM does not change in the first 6 weeks after death and fixation. Therefore, the effect of the time from fixation to MR imaging may have been small. Last, the sections visualized on our QSM images are not completely comparable with the histology sections because the section thickness was 1 mm on QSM and 3 μm on histologic images. Therefore, the histologic images may reflect only a part of the QSM images.

CONCLUSIONS

Our ex vivo study suggests that QSM can be used to help characterize the composition of carotid plaque (ie, IPH, Fe$^{3+}$ deposition, necrotic core, and calcification). It may facilitate the quantification of erythrocytes and Fe$^{3+}$ deposits in plaques and differentiate these deposits from necrotic cores and calcification.

REFERENCES

Intraplaque hemorrhage on CTA.

Eur Radiol 2019;29:5129–38 CrossRef Medline

iii. Carotid atherosclerotic calcification does not result in high signal intensity in MR imaging of intraplaque hemorrhage. AJNR Am J Neuroradiol 2010;31:1403–07 CrossRef Medline

xi. Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping. Radiology 2014;270:496–505 CrossRef Medline

Standard Diffusion-Weighted Imaging in the Brain Can Detect Cervical Internal Carotid Artery Dissections

G. Adam, J. Darcourt, M. Roques, M. Ferrier, R. Gramada, Z. Meluchova, S. Patsoura, A. Viguier, C. Cognard, V. Larrue, and F. Bonneville

ABSTRACT

BACKGROUND AND PURPOSE: The ICA is the most common site of cervical artery dissection. Prompt and reliable identification of the mural hematoma is warranted when a dissection is clinically suspected. The purpose of this study was to assess the capacity of a standard DWI sequence acquired routinely on the brain to detect dissecting hematoma related to cervical ICA dissections.

MATERIALS AND METHODS: This was a retrospective study of a cohort of 110 patients younger than 55 years of age (40 women; mean age, 46.79 years) admitted at the acute phase of a neurologic deficit, headache, or neck pain and investigated by at least a standard 3T diffusion-weighted sequence of the brain. Among them were 50 patients (14 women; mean age, 46.72 years) with subsequently confirmed ICA dissection. In the whole anonymized cohort, both a senior and junior radiologist separately assessed, on the DWI sequences only, the presence of a crescent-shaped or circular hypersignal projecting on the subpetrosal segment of the ICA arteries, assuming that it would correspond to a mural hematoma related to an ICA dissection.

RESULTS: The senior radiologist found 46 subpetrosal hyperintensities in 43/50 patients with ICA dissection and none in patients without dissection (sensitivity, 86%; specificity, 100%). The junior radiologist found 48 subpetrosal hyperintensities in 45/50 patients with dissection and none in patients without dissection (sensitivity, 90%; specificity, 100%).

CONCLUSIONS: In our cohort, a standard DWI sequence performed on the brain at the acute phase of a stroke or for a clinical suspicion of dissection detected nearly 90% of cervical ICA dissections.

ABBREVIATION: FS = fat-saturated

Cervical artery dissection is defined by the spontaneous or posttraumatic onset of a hematoma in the wall of an artery. The cervical ICA is the most common site for dissection of supra-aortic trunks. While cervical artery dissections are responsible for nearly 25% of ischemic strokes in young or middle-aged adults, dissections may be diagnosed without or before the onset of a stroke. These ischemic complications occur in 82% of patients in the first week following dissection. It is, therefore, essential to be able to diagnose cervical artery dissection as soon as possible following the appearance of a mural hematoma to implement an adapted treatment, medical or endovascular, and reduce the risk of thromboembolic or hemodynamic complications. In this context of dissection and in case of stroke due to a large-vessel occlusion, noninvasive imaging of the extra- and intracranial arteries is essential for planning, if necessary, an endovascular recanalization strategy, both cervical and cerebral, because tandem occlusions may occur and can be treated at the same time.

MR imaging allows the diagnosis of cervical artery dissection by directly visualizing the wall hematoma through fat-saturated (FS) T1WI. It appears as a crescent-shaped hypersignal around an eccentric residual arterial lumen. This T1 hyperintensity is associated with the presence of intracellular and extracellular methemoglobin in the hematoma. Because these hemoglobin-degradation products only appear 72 hours after the formation of the hematoma, T1 hypersignal is only visible after this period. Before 72 hours, oxyhemoglobin and deoxyhemoglobin appear isointense on T1-weighted sequences; this feature makes diagnosis difficult in the acute phase and can be the cause of false-negatives. The sensitivity of the FS T1WI is, therefore, more reliable after the first 72 hours of the onset of a dissection.
Lumen.

Phy (a mural hematoma of a right carotid artery dissection. MR angiography most frequently seen.1

Segment of the ICA, where the wall hematoma of the dissections range, 21

Percent of our university hospital (14 women; mean age, 46.72 years; range, 21–65 years) with a final diagnosis of carotid dissection. 22 Patients had acute cerebral ischemic lesions and 7 patient (12%) had a transient ischemic attack.

A control group of 60 individuals had the same distribution in sex and age. This group consisted of 2 subgroups: 35 patients (11 women; mean age, 47.91 years; range, 20–65 years) who had an ischemic stroke unrelated to carotid dissection and 25 patients (15 women; mean age, 45.36 years; range, 21–65 years) who had a clinical suspicion of carotid dissection due to aggressive symptoms such as neck pain or Horner syndrome, but for whom the dissection diagnosis was rejected by the complete radiologic assessment. The final diagnoses for those patients were ischemic stroke (35/60 patients, 58%); functional disorder (9/60 patients, 15%); transient ischemic attack (7/60 patients, 12%); migraine with aura (5/60 patients, 8%); ear, nose, and throat pathology (2/60 patients, 3%); rupture of an aneurysm (1/60 patients, 2%); and a vasovagal episode (1/60 patients, 2%). The control population was admitted during the same period and underwent the same 3T cerebral DWI as the 50 patients with carotid dissection not have been consecutively enrolled to match with the dissection group in age and sex and presence of stroke on DWI.

The 50 patients with a final diagnosis of carotid dissection and the 60 controls without dissection showed no significant difference regarding the presence of ischemic stroke: Twenty-eight of 50 (56%) patients with carotid dissection had an ischemic stroke, while 35/60 (58%) patients from the control group had one (\(P = .4\)). Two patients (4%) had a transient ischemic attack in the “dissection” group. In the control group, 35 patients (58%) had acute cerebral ischemic lesions and 7 patient (12%) had a transient ischemic attack.

Materials and Methods

Patients

From June 2014 to December 2016, we retrospectively included 50 consecutive patients younger than 55 years of age from a register of our university hospital (14 women; mean age, 46.72 years; range, 21–65 years) with a final diagnosis of carotid dissection. This diagnosis was confirmed secondarily, either by Doppler sonography when an intimal flap or a parietal hematoma was visible (10 patients, 20%), or by MR imaging showing a hyperintense parietal wall hematoma on FS T1WI (22 patients, 44%), or finally during follow-up showing either restoration to the original condition of the caliber of the cervical ICA, which presented at the acute phase with a postbulbar irregular stenosis (18 patients, 36%), or the development of a pseudoaneurysm (14 patients, 28%). Patients were admitted to the neurovascular emergency department due to neck pain (18 patients, 36%), headache (35 patients, 70%), Horner syndrome (28 patients, 56%), or neurologic deficit (30 patients, 60%) such as visual disturbances (14 patients, 28%), speech disorders (12 patients, 24%), or sensory (13 patients, 26%) or motor disorders (24 patients, 48%) (On-line Table). The average NIHSS score on arrival at the neurovascular emergency department was 5 (range, 0–24). The patients were examined with at least routine DWI on a 3T MR imaging. Among these 50 patients, 28 patients (56%) had acute cerebral ischemic injury on initial MR imaging. The time between the onset of any symptoms reported by the patient (ie, neck pain, headaches, or neurologic deficit), considering that it might correspond to the onset of the internal carotid artery wall hematoma, and acquisition of MR imaging was calculated for each patient.

A control group of 60 individuals had the same distribution in sex and age. This group consisted of 2 subgroups: 35 patients (11 women; mean age, 47.91 years; range, 20–65 years) who had an ischemic stroke unrelated to carotid dissection and 25 patients (15 women; mean age, 45.36 years; range, 21–65 years) who had a clinical suspicion of carotid dissection due to aggressive symptoms such as neck pain or Horner syndrome, but for whom the dissection diagnosis was rejected by the complete radiologic assessment. The final diagnoses for those patients were ischemic stroke (35/60 patients, 58%); functional disorder (9/60 patients, 15%); transient ischemic attack (7/60 patients, 12%); migraine with aura (5/60 patients, 8%); ear, nose, and throat pathology (2/60 patients, 3%); rupture of an aneurysm (1/60 patients, 2%); and a vasovagal episode (1/60 patients, 2%). The control population was admitted during the same period and underwent the same 3T cerebral DWI as the 50 patients with carotid dissection not have been consecutively enrolled to match with the dissection group in age and sex and presence of stroke on DWI.

The 50 patients with a final diagnosis of carotid dissection and the 60 controls without dissection showed no significant difference regarding the presence of ischemic stroke: Twenty-eight of 50 (56%) patients with carotid dissection had an ischemic stroke, while 35/60 (58%) patients from the control group had one (\(P = .4\)). Two patients (4%) had a transient ischemic attack in the “dissection” group. In the control group, 35 patients (58%) had acute cerebral ischemic lesions and 7 patient (12%) had a transient ischemic attack.

MR Imaging

All brain MRIs included at least 1 DWI sequence with 4-mm-thick sections on 3T magnets, either a Magneton Skyra (Siemens, Erlangen, Germany) (TR/TE: 5300/96 ms; matrix: 110 \times 110; acquisition time: 53 seconds) or an Achieva TX (Philips Healthcare, Best, the Netherlands) (TR/TE: 2756/57 ms; matrix: 112 \times 89; acquisition time: 33 seconds), from the vertex to the upper part of the second cervical vertebra, including the distal, subpetrous cervical segment of the cervical internal carotid arteries.
FIG 2. DWI in 3 different patients with cervical internal carotid artery dissections. Crescent-shaped hypersignal of wall hematomas (A–C, solid arrows), ring-shaped hypersignal of a wall hematoma (B, solid arrow), linear hyperintensity of pharyngeal lymphoid tissue (A and B, arrowheads), and nodular hypersignal of a ganglion (B, dashed arrow).

MR Imaging Analysis
The DWIs of patients and controls were isolated from the rest of the examinations, grouped together, anonymized, randomized, and randomly numbered.

Two observers, a senior radiologist (F.B.) and a junior radiologist (G.A.), with no knowledge of the patients or controls, the other sequences, and the clinical information, independently analyzed the DWI sequences separately. They had to determine whether a hypersignal with a crescent or ring shape suggestive of a wall hematoma was present in the projection of the distal cervical internal carotid arteries (Fig 2).

Other DWI high signal intensities, either located at a distance from the subpetrous segments of internal carotid arteries or of different shapes, were not retained. In particular, pharyngeal lymphoid tissue and lymph nodes, respectively, in the form of linear and nodular hypersignals, were not taken into account (Fig 2).

In a second step, among patients with dissections, after anonymity was waived, we calculated the time between the onset of symptoms and MR imaging; and when FS T1WI was performed, we compared it visually with the DWI sequence to evaluate their respective capacities in detecting a wall hematoma. Among the 50 patients with dissections, we also analyzed the shape of the DWI hyperintensities of those who had an occlusion based on MRA or CTA data (On-line Table 1).

Statistical Analysis
We calculated the sensitivity and specificity of the crescent- or ring-shaped DWI hypersignal along the expected wall of the subpetrosal ICA for the detection of carotid dissections. A κ coefficient was calculated to measure the interobserver agreement between the senior and the junior radiologists in the detection of crescent- or ring-shaped DWI hyperintensities.

RESULTS
The senior radiologist found 46 abnormal DWI hyperintensities in the projection of the distal portion of cervical internal carotid arteries in 43/50 patients with carotid artery dissection (bilateral hypersignal for 3 patients) and none in patients without dissection (sensitivity, 86%; specificity 100%). The junior radiologist found 48 abnormal DWI hyperintensities in the distal portion of internal carotid arteries in 45/50 patients with carotid dissection (bilateral hypersignal for 3 patients) and none in patients without dissection (sensitivity 90%; specificity 100%). The κ coefficient was calculated at 0.99, meaning excellent interobserver agreement.

Finally, after consensus, 90% (45/50) of patients with dissections could be correctly diagnosed due to the DWI sequence alone, and none of the subjects of the control group were misclassified. For patients who had a dissection, the time between the onset of their symptoms and their MR imaging was <24 hours for 24/50 patients (48%), between 24 and 72 hours for 11/50 patients (22%) and >72 hours for 15/50 patients (30%). FS T1WI was part of the initial MR imaging protocol in 26/50 (52%) patients with dissection. For these MR images, the wall hematoma appeared hyperintense on both DWI and FS T1WI in 20/26 (77%) patients. It was visible only on DWI in 4/26 (15%) patients (Fig 3). These MR images were obtained, on average, 15 hours 20 minutes after the onset of symptoms (range, 80 minutes to 32 hours). On the other hand, the hyperintensity of the wall hematoma was only visible on FS T1WI in 2/26 (8%) patients; these MRIs were performed, on average, 6 days after the onset of symptoms (5–7 days).

DISCUSSION
The primary result of our study is that 90% of cervical ICA dissections could be detected by a standard, routine DWI sequence, acquired of the brain in the event of clinical suspicion of ischemic stroke or cervical artery dissection. Other authors had already investigated the possibility of diagnosing a dissection of the upper cervical portions of the internal and vertebral carotid arteries by analyzing 5 different brain sequences (sagittal T1 WI, axial FLAIR imaging, axial gradient recalled-echo T2-weighted imaging, DWI, and 3D time-of-flight angiography of the circle of Willis). In that study, the dissection diagnosis was made if the hematoma was seen on 3 different sequences. The authors showed that 59/77 (77.6%) patients with a cervical artery dissection included in the field covered during the brain acquisition had a correct diagnosis using this method. The diagnosis was more frequent for carotid dissections (54/58 patients, 93.1%) than for vertebral dissections (5/19 patients, 26.3%). The sensitivity of each sequence assessed independently for detecting wall hematomas was not indicated. Our study shows comparable sensitivity of the DWI sequence alone in the detection of ICA dissections, independent of FS T1WI in particular.

However, contrary to this previous study, we analyzed not only the carotid dissections that were included in the field of acquisition of the DWI, but we included all carotid dissections without prejudging their locations and their extensions to subpetrous segments of the cervical ICA. Our results would, therefore, suggest that most carotid dissections reach the distal,
subpetrous segments of the internal carotid arteries. Curiously, there are scant data in the literature regarding the accurate frequency of damage of the subpetrous segment in carotid dissections, even if it appears to be affected "in most cases." According to some authors, dissections usually originate 2 cm above the carotid bulb and extend over a variable length, often up to the carotid canal, covering the subpetrous segment. In our study, 1 dissection of 10 was not diagnosed by DWI, either due to the absence of hyperintensity despite a subpetrous topography included in the field of acquisition or because the hematoma was likely situated lower in the wall of the cervical ICA. The association between the tortuosity of cervical arteries and dissections is known. In 1 study, these loops were shown in 22% of dissections compared with 8% in healthy controls. In view of our results, these loops were often subpetrous, therefore included in the field of exploration, but some might be postbulbar and, therefore, not included in the field, and this feature may explain some of the false-negatives of the routine DWI brain sequences.

Among cervical artery dissections reported in the study of Naggara et al., 67 ICA dissections were included in the fields of acquisition of brain MRIs and 21 carotid dissections were excluded, 76% of high dissections. This determination was made by analyzing axial FS T1WI performed on 1.5T magnets. Compared with our results, which indicate 90% of ICA dissections seen on subpetrous segments, it is possible that the findings of their sequence were faulty, particularly for the small wall hematomas or hematomas seen early, before 72 hours, and there were, in actuality, more carotid dissections included in the fields of acquisition of brain MRIs but not detected by their restrictive method. Although no studies have shown the superiority of 3T MR imaging compared with 1.5T in the detection of cervical artery dissections, with the intensity of the MR imaging signal being directly proportional to the intensity of the primary magnetic field, the signal-to-noise ratio is higher on a sequence performed at 3T than at 1.5T. It is likely that the wall hematomas of our series were more visible on 3T. Several studies have also shown interest in 3T MR imaging using T1 Cube (GE Healthcare) or black-blood sequences for detecting wall hematomas of dissections, but without comparing them with 1.5T.

In our study, DWI at 3T revealed a parietal hematoma of ICA dissection very early because most of our patients with a dissection were examined by MR imaging within 24 hours after the onset of their symptoms. DWI was even better than FS T1WI in detecting wall hematoma in 15% of our patients, having undergone both sequences on their initial MR imaging performed, on average, 15 hours 20 minutes after the onset of symptoms. On the other hand, the later the MRIs were performed, the more likely it was that DWI findings were faulty. The hyperintensity of the wall hematoma was only visible on FS T1WI in 2/26 (8%) patients; these MRIs were then performed, on average, 6 days after the onset of symptoms (range, 5–7 days). The intracerebral hematoma signal intensity on DWI is the lowest during the early subacute phase of intracellular methemoglobin (between 4 and 7 days) before increasing again in the late subacute phase (after 7 days). This phenomenon could, therefore, explain the poorer sensitivity of DWI in detecting dissecting hematomas during this subacute phase.

The DWI and FS T1WI sequences, therefore, appear complementary in detecting ICA dissections: DWI could detect wall hematomas in the acute phase, even before the appearance of a FS T1WI hypersignal, while the latter could enable diagnosis of dissections beyond 72 hours and later than DWI. These considerations about the temporality are accurate if the wall hematoma occurs at the same time as the first symptoms of patients, which is not always the case.

Our study showed not only the very good sensitivity of DWI in the detection of ICA dissections but also an excellent specificity with no false-positives. Crescent- or ring-shaped hypersignals were likely to represent wall hematomas of dissections, not hemorrhagic plaques, because these are not supposed to appear with DWI hypersignal and are not usually located in the subpetrosal aspect of the distal ICA. However, it is important to learn to distinguish crescent- or ring-shaped dissections of hematomas from linear and nodular hyperintensities of pharyngeal lymphoid tissue and lymph nodes. Once this sign is learned, it enables detection of wall hematomas with excellent specificity and excellent interobserver agreement. In clinical routine, the radiologist will

FIG 3. Hyperacute dissection with a wall hematoma appearing hyperintense on DWI (A, arrow), with apparent diffusion coefficient restriction (B, arrow), not visible on FS T1WI (C, dotted arrow) or the axial source image of time-of-flight MR angiography (D, dotted arrow).
naturally be aided by other classic protocol sequences such as FLAIR and gradient recalled-echo T2* to more easily locate the hypersignal on DWI. However, in practice, in view of our results, if the hematoma clearly appears hyperintense on DWI at the acute phase of a neurologic deficit or neck pain, then the specificity of our sign can be obtained without FS T1WI and thus save acquisition time. It also does not appear necessary to re-examine the patient later to confirm the presence of a dissection if the hypersignal of the hematoma is visible in DWI on the initial MR imaging.

The primary limitation of our study is its retrospective nature, including 50 patients with dissections and 60 patients without dissections, a prevalence of 45% dissections in our total population, or an overrepresentation of dissections compared with the general stroke population. However, knowing this prevalence, if the sensitivity was on the same side as the ischemic lesions. This bias was expected wall of the subpetrosal ICA, particularly if this hypersignitivity was increased, the observers would also have seen more hematomas than there were in reality, with a consequent decrease in specificity. This did not occur, as no false-positives were found.

Some patients with dissections had visible cerebral ischemic lesions on DWI. This could have been a bias in the analysis of the presence of a crescent- or ring-shaped hypersignal along the expected wall of the subpetrosal ICA, particularly if this hypersignal was on the same side as the ischemic lesions. This bias was removed by the same proportion of ischemic lesions in the dissection group as in the control group.

We chose to investigate ICA dissections; we do not know the sensitivity and specificity of DWI in the detection of vertebral artery dissections. One study observed DWI hyperintensity in connection with vertebral dissections in a small cohort of 4 patients on 1.5T MR imaging. A future study, including a greater number of patients and performed with 3T MR imaging will analyze the capacity of DWI in detecting wall hematomas of vertebral dissections. Finally, this following study may also compare the respective sensitivities and specificities of DWI and FS T1WI sequences in detecting cervical artery dissections as a function of the time of onset of symptoms.

CONCLUSIONS

In our study, a standard diffusion-weighted sequence routinely performed on the brain at the acute phase of a stroke or for a clinical suspicion of cervical artery dissection detected nearly 90% of cervical ICA dissections by showing a crescent- or ring-shaped hypersignal along the expected wall of the subpetrosal ICA. This sign, present on the first sequence generally acquired during MR imaging for a suspicion of acute ischemic stroke, makes it possible to confidently discuss the dissection diagnosis and initiate medical treatment adapted to very quickly reduce the risk of thromboembolic complications, and also to better predict the material necessary for a potential endovascular procedure.

REFERENCES

MRI Patterns of Extrapontine Lesion Extension in Diffuse Intrinsic Pontine Gliomas

L. Makepeace, M. Scoggin, B. Mitrea, Y. Li, A. Edwards, C.L. Tinkle, S. Hwang, A. Gajjar, and Z. Patay

ABSTRACT

BACKGROUND AND PURPOSE: Diffuse intrinsic pontine glioma is a devastating childhood cancer that despite being primarily diagnosed by MR imaging alone, lacks robust prognostic imaging features. This study investigated patterns and quantification of extrapontine lesion extensions as potential prognostic imaging biomarkers for survival in children with newly diagnosed diffuse intrinsic pontine glioma.

MATERIALS AND METHODS: Volumetric analysis of baseline MR imaging studies was completed in 131 patients with radiographically defined typical diffuse intrinsic pontine gliomas. Extrapontine tumor extension was classified according to the direction of extension: midbrain, medulla oblongata, and right and left middle cerebellar peduncles; various extrapontine lesion extension patterns were evaluated. The Kaplan-Meier method was used to estimate survival differences; linear regression was used to evaluate clinical-radiographic variables prognostic of survival.

RESULTS: At least 1 extrapontine lesion extension was observed in 125 patients (95.4%). Of the 11 different extrapontine lesion extension patterns encountered in our cohort, 2 were statistically significant predictors of survival. Any extension into the middle cerebellar peduncle was prognostic of shorter overall survival (P = .01), but extension into both the midbrain and medulla oblongata but without extension into either middle cerebellar peduncle was prognostic of longer overall survival compared with those having no extension (P = .04) or those having any other pattern of extension (P < .001).

CONCLUSIONS: Within this large cohort of patients with typical diffuse intrinsic pontine gliomas, 2 specific extrapontine lesion extension patterns were associated with a significant overall survival advantage or disadvantage. Our findings may be valuable for risk stratification and radiation therapy planning in future clinical trials.

ABBREVIATIONS: DIPG = diffuse intrinsic pontine glioma; EPLE = extrapontine lesion extension; ETV = extrapontine tumor volume; MCP = middle cerebellar peduncle; OS = overall survival; PFS = progression-free survival; PTV = pontine tumor volume; RT = radiation therapy; TTV = total tumor volume

High-grade gliomas comprise 10%–15% of pediatric brain tumors and cause half of the deaths occurring as a result of CNS neoplasms in children. Of pediatric high-grade gliomas, those occurring in the pons, formerly referred to as diffuse intrinsic pontine glioma (DIPG), are most common and have the worst prognosis, with a 2-year survival rate of <10%. DIPGs present with characteristic MR imaging features, explaining the high accuracy of the initial diagnostic imaging work-up (>95%) and the low rates of biopsies required before treatment. On MR imaging, the typical DIPG appears as an expansile, dominantly T2-hyperintense, usually inhomogeneous, intra-axial brain stem mass involving most of the pons but originating from the ventral pons (or basis pontis). These tumors often show some signal enhancement after IV injection of gadolinium-based contrast agents and ventral exophytic growth, leading to engulfing of the basilar artery. Extrapontine lesion extensions (EPLEs) are also common in DIPG.

Although outcomes in DIPG remain grim overall, differences in disease course across patients are also well-known. Therefore, the need for imaging features that can inform noninvasive biologic characterization, aid early prognostication, and guide the development of risk-stratification schemes for future clinical trials persists. Hence, the quest for robust conventional (or
advanced) prognostic imaging biomarkers of DIPG continues in the pediatric neuroimaging and neuro-oncology communities.

In 2008, Hargrave et al. studied several conventional MR imaging features, including local extension, exophytism, percentage of pontine volume affected, T1 or T2 signal heterogeneity, metastasis, tumor dimension, and margin definition and found none to be predictive of survival. Jackson et al. have also attempted to describe imaging characteristics of long-term survivors of DIPG, but the value of the findings was somewhat limited by the small number of long-term survivors. In 2015, Jansen et al. suggested that the duration of clinical symptoms before diagnosis, age at diagnosis, and ring enhancement within the tumor lesion in postcontrast T1-weighted images may have prognostic value in DIPG. Others have suggested that ADC or ADC histogram metrics derived from diffusion-weighted MR imaging may identify prognostically distinct subgroups and correlate with survival in patients with DIPG. Most recently in 2018, Hoffman et al. assessed clinical-radiographic characteristics and their relationship with outcomes in a collaborative study that included >1000 patients with DIPG. In the largest population of DIPGs ever studied, they identified increased craniocaudal tumor dimension and higher rates of EPLE, tumor necrosis, and ring enhancement at diagnosis as significantly associated with shorter overall survival (OS) on univariate analysis, but only ring enhancement was significantly associated with OS on multivariate analysis. This outcome contrasts with the findings of Pouissant et al. in which larger tumor volumes were associated with longer survival (in that study, EPLEs were not analyzed separately but were presumably included), though enhancement at diagnosis was associated with shorter survival in their cohort as well.

Although prior studies, including the last 2 references cited above, suggest that EPLE may be relevant to and explain some of the differences in the clinical course and OS in patients with DIPG, methodologic differences hamper the unambiguous interpretation of these findings. Therefore, we sought to revisit this matter and clarify, in more specific terms, the potential prognostic value of EPLE at diagnosis in DIPG. To that end, we conducted a retrospective study using systematic and standardized analysis of imaging data focusing on the descriptive (ie, patterns) and quantitative (ie, overall burden) evaluation of EPLE and correlated those factors with key survival metrics in the largest, single-center cohort of patients with radiographically confirmed typical DIPG to date.

MATERIALS AND METHODS

Study Population

We identified all patients (younger than 18 years of age) with newly diagnosed DIPG who were evaluated at our institution at the time of diagnosis during the 17-year period between January 1, 2000, and December 31, 2017 (193 patients). Patients who had been previously treated or had metastatic disease at diagnosis were not included. For the purposes of this review, we requested approval from our institutional review board to retrospectively evaluate the clinical and imaging data collected during the treatment and follow-up of patients. This request, in conjunction with a waiver of repeat consenting when the patient had been enrolled in a clinical trial, was granted.

Patients who did not have an adequate baseline MR imaging examination suitable for segmentation and coregistration were excluded (n = 36). Additionally, patients who were alive on May 1, 2018, were excluded because final survival data could not be collected for them (n = 24). Two of the remaining 133 patients were excluded because in retrospect, they were determined to have non-DIPG tumors of the brain stem (ie, not fulfilling the imaging criteria of the typical DIPG). One patient exhibited supratentorial tumor spread diffusely into the cerebral hemispheres with a gliomatosis cerebri growth pattern and a mixed glial/neuronal histopathologic phenotype, and 1 patient underwent surgical resection, which revealed a high-grade glioma of the medulla oblongata. Overall, 131 patients were included in our retrospective chart review and diagnostic MR imaging review study; 108 patients were enrolled in a total of 8 different therapeutic clinical trials, and 23 patients were treated on individualized treatment plans. Details of the 3 clinical trials accounting for the largest patient accrual sources, including treatment protocols and outcomes, have been reported previously.

Clinical Variables

Clinical information was extracted from the patients’ medical records, including demographics, age at diagnosis, progression-free survival (PFS), and OS. Age at diagnosis was defined as the time from the date of birth to the diagnostic MR imaging study performed at our institution; PFS was defined as the time from diagnosis to disease progression as determined by a combination of clinical and radiologic parameters, with minor differences across treatment protocols. Typically, progressive disease was defined by any of the following: 1) neurologic abnormalities or worsening neurologic status not explained by causes unrelated to tumor progression (eg, seizures, anticonvulsant toxicity, electrolyte disturbances, sepsis); 2) a >25% increase in the product of the maximum perpendicular diameters of the tumor lesion by imaging; 3) the presence of new metastatic disease; or 4) increasing doses of dexamethasone required to maintain a stable neurologic status. OS was defined as the time from diagnosis to death from any cause. The presence or absence of metastasis at the time of progression was recorded as well as the distribution pattern of metastasis: intracranial, intraspinal, or both.

Image Processing

Baseline MR imaging studies of the brain (ie, first diagnostic MR imaging examinations at our institution) were obtained for all patients within 2 weeks before initiation of treatment. After the baseline MR imaging study, patients either consented to participate in a therapeutic clinical trial or elected an individualized, nonprotocol treatment plan. Most studies (n = 114) were performed on 3T magnets (the remaining on 1.5T) and under various forms of anesthesia. Standard brain MR imaging was performed in all patients, including axial T1WI, postcontrast axial T1WI, and postcontrast 3D-T1WI. Postcontrast axial FLAIR imaging was also available for all except 4 patients for whom sagittal 3D-FLAIR imaging was used for segmentation. For 1 patient, who had no axial T2WI, sagittal 3D-T2WI
was used for segmentation. Voxel size for the 3D acquisitions was isotropic (1 × 1 × 1 mm). The section thickness for 2D imaging sequences was consistently 4 mm without a gap; however, subsequently, all axial 2D images were interpolated to isotropic voxels (1 × 1 × 1 mm) and coregistered to the postcontrast 3D T1 images.

The total tumor volume (TTV) was automatically estimated using a machine learning–based segmentation tool that we modeled after the work of Wang et al., which uses anisotropic convolutional neural networks to segment the entire tumor on the basis of precontrast T1-weighted and T2-weighted and postcontrast T1-weighted and FLAIR images. Postcontrast T2-weighted images were used for 2 subjects for whom precontrast T2-weighted images were unavailable. Subsequently, the images (including the TTV) were normalized to the Montreal Neurological Institute brain atlas. In the Montreal Neurological Institute space, the pons was segmented using SPM 12 software (http://www.fil.ion.ucl.ac.uk/spm/software/spm12); then, the resultant intrapontine tumor volume (pontine tumor volume [PTV]) was returned to the patient’s space.

Radiologic Variables

After the automated segmentation of the tumors, each set of images and segmentations was evaluated and processed manually by a single, trained observer under the supervision of a board-certified neuroradiologist. Using the automatically detected TTV as a starting point, the TTV was adjusted in 3D Slicer (http://www.slicer.org) to correct any misclassification of image voxels. The median smoothing tool, with a 2- to 3-voxel radius, depending on the accuracy of each segment at the tumor borders, was used on individual segments during the adjustment process. Once the entire tumor was segmented, the PTV was isolated from the TTV using anatomic boundaries and landmarks. Any exophytism (typically ventral) that arose from the pons was included in the PTV. Often, the primarily intrapontine tumor had an exophytic component that prolapsed downward ventrally to the medulla, but a direct extension into the upper aspect of the medulla was also present. In these cases, sagittal and coronal views were used to distinguish the exophytic portion of the PTV and EPLE toward the medulla oblongata. Extrapontine tumor volume (ETV) was defined as the discordance between the PTV and the TTV. ETV was then further classified by location into extensions of the midbrain, medulla oblongata (collectively vertical EPLE), and right and left middle cerebellar peduncles (MCPs, collectively horizontal EPLE) (Figs 1 and 2). In addition to TTV, the cranio-caudal dimension of the tumor was extracted from the segmented volume by subtracting the location of the most inferior section that contained the TTV from the most superior one. The presence of postcontrast enhancement was recorded for each extension as well as the pontine component of each tumor. The presence of ring enhancement was also recorded for each tumor.

Statistical Analysis

Descriptive statistics were calculated for variables of interest. Kaplan-Meier estimates were calculated to estimate the 1-, 2-, and 5-year OS and PFS rates and respective 95% confidence intervals. The association between possible prognostic factors and OS data was explored by performing univariate linear regression because the data were not censored. Cox regression models were used to model the relationship between PFS and possible prognostic factors. Two-sample t tests were used to assess whether imaging parameters were different between age categories (3 years or older at diagnosis versus younger than 3 years at diagnosis, age groups commonly used by other investigators). Patients were classified into 3 survival groups by their survival status (OS > 2 years, OS between 1 and 2 years, and OS < 1 year). Continuous variables of ETVs were
compared among survival groups by performing ANOVA, and categoric variables of extrapontine extension were compared by performing \(\chi^2 \) testing. A 2-sample \(t \) test was performed to test the association between dichotomous enhancement pattern–related variables and continuous variables (global TLV/aggregate volume). All analyses were evaluated using SAS, Version 9.4 (SAS Institute, Cary, North Carolina).

RESULTS

Survival Outcomes

Of the 131 patients meeting the inclusion criteria, the median age at diagnosis was 6.4 years (interquartile range, 4.6 to 8.2). Ninety-eight (74.8%) patients were white; 18 (13.8%), black; demographics of the remaining 15 (12%) are shown in Table 1. Seventy-eight (59.6%) patients were female and 53 (40.4%) were male, resulting in a female-to-male sex ratio of 1.5:1. The median PFS time was 6.8 months (interquartile range, 5.8 to 9.1). The respective 1-, 2-, and 5-year PFS rates were 16.20% (95% CI, 10.44–23.09%), 3.44% (95% CI, 1.14–7.90%), and 0.86% (95% CI, 0.08–4.25%). At the time of progression, metastatic disease had developed in 24 patients (18.3%), 7 with intracranial metastasis, 4 with spinal metastasis, and 13 with both spinal and intracranial metastasis. The presence of metastasis at progression was significantly associated with shorter PFS \((P = .01)\), but not with OS \((P = .09)\), pattern of extension \((P = .89)\), TTV \((P = .95)\), or ETV \((P = .39)\). Patient characteristics are summarized in Table 1. The median OS time was 10.3 months (interquartile range, 7.4–14.9 months). The respective 1-, 2-, and 5-year OS rates were 38.20% (95% CI, 29.89–46.39%), 8.40% (95% CI, 4.45–13.92%), and 0.76% (95% CI, 0.07–3.82%). Kaplan-Meier curve OS rates of the cohort are shown in Fig 3. Analysis showed no difference in survival between age groups \((P = .65)\).

Extrapontine Lesion Extension

Baseline tumor volumes are summarized in Table 2. On the initial diagnostic MR imaging, 95.4% \((n = 125)\) of the tumors had at least 1 EPLE. The mean TTV, PTV, and ETV were 40.0279 cm\(^3\) (range, 8.9750–110.8010 cm\(^3\)), 36.1874 cm\(^3\) (range, 8.9750–100.8550 cm\(^3\)), and 4.0331 cm\(^3\) (range, 0.2840–16.9780 cm\(^3\)), respectively (Table 2). The most common extension of EPLE was into the midbrain 83.2% \((n = 109)\), and the least common extension of EPLE, though still present in 61.8% of tumors, was into the MCPs \((n = 81)\). Only 5.3% \((n = 7)\) of tumors had

![FIG 2. Unilateral horizontal extrapontine lesion extension in a patient with DIPG in transverse postcontrast TIWI (A and C) and T2WI (B and D). The segmented (A and B) extrapontine lesion extension toward the right middle cerebellar peduncle is highlighted in yellow.](image-url)

<table>
<thead>
<tr>
<th>Table 1: Patient characteristics</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis</td>
<td></td>
</tr>
<tr>
<td>3 yr or older</td>
<td>120 (91.6)</td>
</tr>
<tr>
<td>Younger than 3 yr</td>
<td>11 (8.4)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>78 (59.6)</td>
</tr>
<tr>
<td>Male</td>
<td>53 (40.4)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>2 (1.5)</td>
</tr>
<tr>
<td>Asian and white</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Black</td>
<td>18 (13.8)</td>
</tr>
<tr>
<td>Black and white</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>Multiple</td>
<td>5 (3.8)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (1.5)</td>
</tr>
<tr>
<td>Unknown</td>
<td>2 (1.5)</td>
</tr>
<tr>
<td>White</td>
<td>98 (74.8)</td>
</tr>
<tr>
<td>Metastasis at the end of progression-free survival?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>24 (18.3)</td>
</tr>
<tr>
<td>Spinal</td>
<td>7 (5.3)</td>
</tr>
<tr>
<td>Intracranial</td>
<td>4 (3.1)</td>
</tr>
<tr>
<td>Intracranial + spinal</td>
<td>13 (9.9)</td>
</tr>
<tr>
<td>No</td>
<td>112 (85.5)</td>
</tr>
</tbody>
</table>
both right and left MCP extensions. Of the 16 potential combination patterns (>1 EPLE associated with a tumor), 11 were present in the study population as shown in Fig 4. Most interesting, no horizontal EPLE was present without the concurrent presence of at least 1 vertical EPLE, either into the medulla oblongata or the midbrain.

The presence of any MCP extension was associated with shorter survival ($P = .01$) on univariate analysis, but the volume of EPLE into the MCPs was not significant as a predictor of poorer OS ($P = .07$). When we compared patterns of EPLE, patients with tumors with both vertical EPLEs without horizontal EPLE experienced significantly longer survival than did patients with any other pattern of EPLE ($P < .001$) or those without any EPLE ($P = .04$). The TTV, ETV (overall EPLE burden), and PTV were not significantly associated with OS.

Postcontrast Enhancement

At diagnosis, 80.92% of tumors ($n = 106$) had some degree of postcontrast enhancement. Of those with enhancement, 50.9% ($n = 54$) were ring-enhancing lesions. A number of tumors (22.1%, $n = 29$) also showed occult enhancement, which we have previously identified as a potential marker of angiogenesis.7 Of 125 tumors with EPLE, 33.6% ($n = 42$) showed enhancement in at least 1 EPLE. The presence of postcontrast enhancement in individual EPLEs is summarized in Table 3. Enhancement of individual EPLEs was not associated with OS, PFS, an EPLE pattern, or TTV. The presence of any postcontrast enhancement at diagnosis was associated with increased ETV ($P = .02$) and shorter OS ($P = .01$), and enhancement of an EPLE into the midbrain was associated with increased ETV ($P = .01$). The presence of ring enhancement was also associated with increased ETV ($P = .01$). The presence of an MCP extension was not associated with the presence of enhancement ($P = .36$), ring enhancement ($P = .82$), or metastatic disease at progression ($P = 1.00$).

DISCUSSION

Our study, capitalizing on the largest single-center patient cohort to date, demonstrates that EPLEs are very common in DIPG and that their identification and quantitative analysis are feasible and, potentially, worthwhile in the clinical setting. Semiautomated segmentation enabled us to efficiently determine the frequency of the individual forms of EPLE and the various patterns defined by their possible combinations. We then found statistically significant correlations between horizontal EPLE (toward the MCPs) and shorter OS and vertical EPLE and longer survival, findings that have not been reported previously. We, therefore, submit that vertical and horizontal EPLEs should be evaluated separately because their effects on survival appear to have different, possibly opposing influences. Beyond their prognostic value, these findings may have implications for the targeting and dosing strategies used in fractionated conformal radiation therapy (RT), which provide only temporary relief but are the cornerstone of current treatment for DIPG. We think that these findings are meaningful additions to the existing body of the clinical and imaging knowledge base in DIPG.

The current overhaul of the definition of DIPG, including the poorly understood clinical implications, represents a limitation of...
Because our study was retrospective and based on historical data, we used the now-obsolete term DIPG. This is, however, true for all previous similar studies, and we anticipate that large-scale prospective studies using the current, integrated approach introduced in the latest World Health Organization classification may not be available for several years. Another limitation of our study stems from the evolution of treatment regimens explored in our patients during the 17-year review period.12,13 While the course of treatment was not analyzed in this study, changing protocols and the use of different chemotherapeutic or other tumor-targeted agents across the cohort should be considered. We found no significant difference in OS between patients treated in the 2 largest trials included in the cohort (P = .480). After all, treatment heterogeneity is inevitable, given that no effective treatments for DIPG beyond RT have been identified and that new trials using novel agents must be constantly developed.

Approximately 80% of tumors radiographically diagnosed as DIPG in the past are thought to correspond to diffuse midline glioma H3 K27M–mutant neoplasms. Potentially clinically relevant, differences among H3 wild-type, H3.1-, and H3.3-mutant tumors have been recognized recently in several reports.2,18 Unfortunately, the imaging and some of the biologic correlates of these tumor subgroups are still poorly understood because no consistent imaging features have been found to identify H3 K27M–mutant high-grade gliomas or to distinguish those from H3 wild-type tumors within the pons or elsewhere. This distinction depends on the availability of a biopsy at diagnosis or retrospectively at the time of postmortem examination; despite the recent advances in our understanding of the molecular and epigenetic underpinnings of DIPG (and other pediatric high-grade gliomas), the diagnosis of pediatric brain stem malignancies continues to rely heavily on imaging because of the persistently low rates of tissue biopsy at presentation (<15%) in most countries, including the United States.

The lack of biopsy in our cohort represents a limitation of our study too. However, recent reports demonstrating the feasibility and accuracy of detecting H3 mutations in circulating tumor DNA within biofluids in these patients hold promise for minimally invasive diagnostic approaches in the future.19,20 In the meantime, the devastating nature of DIPG, and the lack of therapeutic advances necessitate the continued search for robust imaging biomarkers in pediatric DIPG/DMG in the pursuit of enhanced prognostication and risk stratification at the time of diagnosis.

In prior studies, the methods for evaluating tumor volume have been inconsistent, while the description of the various EPLE patterns and the quantitative determination of the overall EPLE burden have been lacking. It is, therefore, difficult to estimate the contribution of EPLE to the overall lesion volume and its potential prognostic impact in those studies because the various forms and patterns of EPLE are not explicitly specified.5 While the course of treatment was not analyzed in this study, changing protocols and the use of different chemotherapeutic or other tumor-targeted agents across the cohort should be considered. We found no significant difference in OS between patients treated in the 2 largest trials included in the cohort (P = .480). After all, treatment heterogeneity is inevitable, given that no effective treatments for DIPG beyond RT have been identified and that new trials using novel agents must be constantly developed.

Approximately 80% of tumors radiographically diagnosed as DIPG in the past are thought to correspond to diffuse midline glioma H3 K27M–mutant neoplasms. Potentially clinically relevant, differences among H3 wild-type, H3.1-, and H3.3-mutant tumors have been recognized recently in several reports.2,18 Unfortunately, the imaging and some of the biologic correlates of these tumor subgroups are still poorly understood because no consistent imaging features have been found to identify H3 K27M–mutant high-grade gliomas or to distinguish those from H3 wild-type tumors within the pons or elsewhere. This distinction depends on the availability of a biopsy at diagnosis or retrospectively at the time of postmortem examination; despite the recent advances in our understanding of the molecular and epigenetic underpinnings of DIPG (and other pediatric high-grade gliomas), the diagnosis of pediatric brain stem malignancies continues to rely heavily on imaging because of the persistently low rates of tissue biopsy at presentation (<15%) in most countries, including the United States.

The lack of biopsy in our cohort represents a limitation of our study too. However, recent reports demonstrating the feasibility and accuracy of detecting H3 mutations in circulating tumor DNA within biofluids in these patients hold promise for minimally invasive diagnostic approaches in the future.19,20 In the meantime, the devastating nature of DIPG, and the lack of therapeutic advances necessitate the continued search for robust imaging biomarkers in pediatric DIPG/DMG in the pursuit of enhanced prognostication and risk stratification at the time of diagnosis.

In prior studies, the methods for evaluating tumor volume have been inconsistent, while the description of the various EPLE patterns and the quantitative determination of the overall EPLE burden have been lacking. It is, therefore, difficult to estimate the contribution of EPLE to the overall lesion volume and its potential prognostic impact in those studies because the various forms and patterns of EPLE are not explicitly specified.5

In contrast, the strengths of our study include consistent imaging protocols across various patient subcohorts, a robust and highly automated imaging data analysis and processing pipeline, and the systematic use of tumor volume quantification instead of the descriptive approach used in prior studies. We also report demographic, expanded survival, and other data that have been sparsely available (eg, the frequency of leptomeningeal metastatic spread at the end of PFS). We report specific patterns of metastasis intracranially, intraspinally, or both and their prevalence in this cohort as well as a significant relationship between the presence of metastatic disease in the brain and spinal cord at progression with shorter PFS (P = .01). The significance of this relationship is difficult to determine because the presence of metastatic disease was a criterion for progression in this cohort.

We have quantified the presence of postcontrast lesion enhancement in this cohort and identified relationships between the presence of any enhancement at diagnosis and increased TLV and ETV as well as between enhancement at diagnosis and poorer OS.

Our research confirms that EPLE into the midbrain, the medulla oblongata, and the MCPs is common in DIPG and suggests...
that differences in survival outcomes exist among various patterns of EPLE. We propose 2 specific patterns of EPLE as predictors of OS in newly diagnosed DIPG; thus, our findings may be valuable for risk stratification in future clinical trials for children with newly diagnosed DIPG.

The findings of shorter survival in patients with any horizontal extension into the cerebellar peduncles and an apparent survival benefit in patients with craniocaudal EPLE without horizontal EPLE may have ramifications for RT targeting and treatment planning. It is possible that only the presence or absence of horizontal EPLE is the prognostically determinant factor. On the basis of limited postmortem examinations and patterns-of-failure studies, focal irradiation rather than whole-brain RT has been most commonly recommended for patients with DIPG.21-23 In the era of 3D conformal RT, clinical target volumes have ranged between 1 and 2 cm and have been expanded in an isotropic fashion.15,23 Although further work is needed to evaluate the patterns of failure and routes of spread after conformal RT, findings from this study suggest that a potential avenue of treatment intensification could include a “boost” dose RT to horizontal tumor extensions. Additionally, these data provide the opportunity to examine the extent of EPLE across these 3 principal directions of spread at diagnosis, with the goal of identifying rational nonisotropically clinical target volume margins.

CONCLUSIONS

EPLE in newly diagnosed DIPG is common. In a large cohort of patients with newly diagnosed DIPGs, we determined that the presence of EPLE into either MCP is predictive of shorter OS. We conclude that the identification and quantitative analysis of EPLEs in DIPG are feasible, with potential clinical uses in the prognostication of DIPG at diagnosis and in the targeting and dosing strategies used in fractionated conformal RT.

REFERENCES

Frequency, Extent, and Correlates of Superficial Siderosis and Ependymal Siderosis in Premature Infants with Germinal Matrix Hemorrhage: An SWI Study

M.S. Albayram, G. Smith, F. Tufan, and M.D. Weiss

ABSTRACT

BACKGROUND AND PURPOSE: Germinal matrix intraventricular hemorrhage is a common complication of prematurity. An underrecognized complication of germinal matrix intraventricular hemorrhage is superficial siderosis, and the clinical consequences of superficial siderosis are not well-known. We aimed to investigate the prevalence, anatomic distribution, and severity of superficial siderosis and ependymal siderosis in premature infants with germinal matrix intraventricular hemorrhage using SWI.

MATERIALS AND METHODS: In this retrospective study, we included 88 patients across all grades of germinal matrix intraventricular hemorrhage who underwent MR imaging at term-equivalent age. Images were evaluated for the presence, distribution, and severity of superficial siderosis and ependymal siderosis. Univariate and multivariate logistic regression analyses were performed to determine factors associated with superficial siderosis and ependymal siderosis. The agreement among T1, T2, and SWI sequences was examined.

RESULTS: Seventy-two patients had brain stem superficial siderosis, and 79 patients had ependymal siderosis. The presence, extent, and severity of superficial siderosis and ependymal siderosis were closely related to the grade of germinal matrix intraventricular hemorrhage and intraventricular hematoma volume. Brain stem superficial siderosis had a stronger correlation with intraventricular hemorrhage than with cerebellar hemorrhage. Compared with SWI, T1 and T2 sequences detected only small proportions of patients with superficial siderosis (12.5% and 6.9%, respectively).

CONCLUSIONS: The incidence of superficial siderosis and ependymal siderosis is very high in preterm infants with germinal matrix intraventricular hemorrhage when assessed by SWI at term-equivalent age. The presence and extent of superficial siderosis and ependymal siderosis are closely related to germinal matrix intraventricular hemorrhage grade and intraventricular hematoma volume. Additional prospective studies using SWI are needed to clearly determine the clinical consequences of germinal matrix intraventricular hemorrhage with superficial siderosis and ependymal siderosis.

ABBREVIATIONS: CN = cranial nerve; ES = ependymal siderosis; GM-IVH = germinal matrix intraventricular hemorrhage; HUS = head ultrasound; SS = superficial siderosis; TVHV = total ventricular hematoma volume

Superficial siderosis (SS) of the CNS is a disease characterized by deposition of hemosiderin, a by-product of the breakdown of red blood cells, into subpial layers of CNS tissue caused by chronic or recurrent bleeding into the subarachnoid space.1,2 In adults, most cases of CNS SS present with sensorineural hearing loss and cerebellar ataxia. Myelopathy, polyradiculopathy, anosmia, and dementia may also be present.1,2 Despite the attention afforded to imaging findings and clinical sequelae of adult SS, few studies have described SS, ependymal siderosis (ES), or similar pathology occurring after germinal matrix intraventricular hemorrhage (GM-IVH) in premature infants.3-5 To the best of our knowledge, no previous study has investigated the relationship of GM-IVH to SS or ES using primarily SWI, the most sensitive MR imaging for the detection of hemorrhage and siderosis.6-8

This study aimed to investigate the prevalence and anatomic distribution of SS and ES in premature infants with GM-IVH of different severities using SWI to assess the relationship of GM-IVH grade with the presence of SS in the cranial nerve (CN) VII/VIII complex and to determine the factors primarily associated with brain stem SS. We hypothesized that GM-IVH grade and volume would be positively related to the severity of SS and ES.
MATERIALS AND METHODS

Study Population

Patients with GM-IVH who underwent MR imaging in our institution (Department of Radiology, University of Florida College of Medicine) between 2011 and 2018 were identified by a search in our electronic data base for the key words “germinial matrix hemorrhage.” The study was approved by the institutional review board, and parental informed consent was obtained. Sex, birth weight, and gestational age at birth were noted. Inclusion criteria were as follows: 1) a history of GM-IVH diagnosed on head ultrasound (HUS) within 3 weeks after birth, and 2) the availability of at least 1 MR imaging study of diagnostic quality including axial SWI, T1, and T2-weighted imaging at term-equivalent age. Patients were excluded from the study if the quality of imaging was insufficient to recognize the presence of SS, if additional clinical diagnoses such as meningitis or abscess were present, or if MR imaging was performed before term-equivalent age. Patients in whom GM-IVH was detected on HUS but not MR imaging were also excluded.

Image Acquisition

MR imaging was performed on a 1.5T scanner (Avanto; Siemens, Erlangen, Germany) or a 3T scanner (Verio; Siemens) between 2011 and 2018 with a multichannel head coil in our radiology department. At our institution, MR imaging in neonates is routinely performed without sedation or general anesthesia. MR imaging was typically performed at term-equivalent age before discharge. For each patient, axial SWI was performed. Magnitude images, SWI, and SWI—minimum-intensity-projection images were obtained automatically from the scanner.

Image Analysis

Analysis of all images was performed by M.S.A., a neuroradiology attending physician with extensive experience in neuroimaging research. GM-IVH grading and measurements of hematoma size were performed using the patients’ HUS studies during the acute GM-IVH phase for the purpose of this study. The Papile classification was used for grading of GM-IVH with respect to the findings of the HUS examination in which hemorrhage was detected. GM-IVH and cerebellar hemorrhage dimensions (anterior-posterior [AP], cranio-caudal [CC], and transverse diameter) were recorded in each hemisphere, and GM-IVH volume was calculated by the ellipsoid volume formula $AP \times CC \times \pi/6$ for each hemisphere. Total dimensions of the ventricular hematoma included both germinal matrix and ventricular hemorrhage values combined. All calculations, visual evaluations, and measurements were performed on the PACS software (Visage; http://www.visageimaging.com). The presence of SS and ES was visually determined using magnitude, SWI, and minimum-intensity-projection SWI. Measurements of SS or ES depth were made using SWI.

The presence or absence of siderosis and maximal siderosis depth measurements were recorded from the bilateral lateral ventricles, bilateral lateral ventricular choroid plexuses, ependyma of the third ventricle, choroid plexus of the third ventricle, ependyma of the fourth ventricle, choroid plexus of the fourth ventricle, vermis of the cerebellum, bilateral cerebellar hemispheres, pons, mesencephalon, medulla oblongata, and spinal cord. The presence or absence of SS in the CN VII/VIII complex was also noted. Last, the distributions of SS in the spinal cord, medulla oblongata, pons, and mesencephalon were visually estimated as 0°, 90°, 180°, 270°, or 360° (0° denoting no SS and 360° denoting SS around the entire perimeter of a structure).

Statistics

Statistical analysis was performed using SPSS 20.0 (IBM, Armonk, New York). The normality of distribution of continuous data was assessed with the Kolmogorov-Smirnov or Shapiro-Wilk tests. Categoric variables were presented as frequencies and percentages, and continuous variables were presented as mean ± SD or median (minimum-maximum) when appropriate. Categoric variables were compared using χ^2 and Fisher exact tests, and continuous variables were compared using Mann-Whitney U, Student t, ANOVA, or Kruskal-Wallis tests. The correlations between variables were assessed using Pearson or Spearman correlation tests. Binary logistic regression was performed to determine factors independently associated with the presence of SS in the brain stem. The variables associated with brain stem SS in univariate analyses were included in logistic regression models. Because of the strong correlation between GM-IVH grade and total ventricular hematoma volume (TVHV), 2 separate logistic-regression models were used, each including one of these factors. The level of agreement between MR imaging sequences in the detection of brain stem SS was analyzed using κ analysis. Statistical significance was established at $P < .05$.

RESULTS

A total of 88 patients (52 males and 36 females) with GM-IVH were included. The mean gestational age at birth was 27.5 ± 2.9 weeks. The mean birth weight was 1110.6 ± 503.6 g. The mean durations between birth and HUS and MR imaging examinations were 6.1 ± 3.3 days and 68.5 ± 52.7 days, respectively. There were 22 patients in each GM-IVH grade group. While 33 patients had cerebellar hematoma (median volume, 14.7 mm3; minimum-maximum volume, 0.5–6333 mm3), siderosis was present in the ependymal zone of 79 (Fig 1), brain stem of 72 (Fig 2), cerebellar vermis of 53, cerebellum of 31, and CNs VII and VIII of 42. All patients with brain stem SS and 6/15 of patients without brain stem SS had ES. All patients with cerebellar SS also had cerebellar vermis SS, and all patients with cerebellar vermis SS also had brain stem SS. Supratentorial SS was detectable in 34% (30/88), mainly in the Sylvian fissures bilaterally. Convexity SS was present only in 2 patients (2.2%). Table 1 documents the relationship of GM-IVH grade to patient demographics, presence or absence of siderosis, and depth of siderosis in different anatomic locations.

Brain stem SS and ES were significantly more common in the GM-IVH grades II, III, and IV compared with the GM-IVH grade I group ($P < .001$ for all comparisons). The depth of brain stem SS increased with higher GM-IVH grades (for grades I–III, $P < .001$ for all comparisons) and was similar between patients with grade III and grade IV GM-IVH. Brain stem SS distribution and ventricular ependymal SS depth also increased in parallel...
with the severity of GM-IVH grade ($P < .001$ for all comparisons, Table 1 and Fig 3). While the incidence of cerebellar SS tended to be greater in higher GM-IVH grades ($P = .009$), the incidence of cerebellar hematoma was similar among GM-IVH grade groups. The median cerebellar SS depth increased in parallel with the severity of GM-IVH grade ($P = .001$, Table 1). While the TVHV significantly increased in higher GM-IVH grade groups ($P < .001$), there was no such trend for cerebellar hematoma volume ($P = .12$).

In the present study, we detected a significant SWI signal decrease, suggestive of blood products, on the surface of the CN VII and VIII complex (Fig 4). This finding was seen in 47% of patients in the present study (42/88).

Table 1: Comparison of GM-IVH groups for study variables

<table>
<thead>
<tr>
<th>GM-IVH Grade</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain stem SS (%)</td>
<td>45.5</td>
<td>95.5</td>
<td>95.5</td>
<td>95.5</td>
<td><.001</td>
</tr>
<tr>
<td>Brain stem SS distribution</td>
<td>0 (0–0.6)</td>
<td>168.8 (0–1.6)</td>
<td>213.8 (0–1.6)</td>
<td>247.5 (0–1.6)</td>
<td><.001</td>
</tr>
<tr>
<td>Spinal cord SSD (mm)</td>
<td>0 (0–0.8)</td>
<td>0.65 (0–1.1)</td>
<td>0.8 (0–1.1)</td>
<td>0.75 (0–1.1)</td>
<td><.001</td>
</tr>
<tr>
<td>Medulla oblongata SSD (mm)</td>
<td>0 (0–0.8)</td>
<td>0.75 (0–1.2)</td>
<td>1 (0–1.7)</td>
<td>1 (0–2)</td>
<td><.001</td>
</tr>
<tr>
<td>Pons SSD (mm)</td>
<td>0 (0–1.2)</td>
<td>0.6 (0–1.1)</td>
<td>0.8 (0–1.7)</td>
<td>0.85 (0–1.8)</td>
<td><.001</td>
</tr>
<tr>
<td>Mesencephalon SSD (mm)</td>
<td>0 (0–0.9)</td>
<td>0.6 (0–1.1)</td>
<td>0.8 (0–1.6)</td>
<td>0.8 (0–2.3)</td>
<td><.001</td>
</tr>
<tr>
<td>Lateral ventricle SSD (mm)</td>
<td>0.5 (0–1)</td>
<td>0.9 (0–3.3)</td>
<td>1 (0–2)</td>
<td>0.95 (0–4.2)</td>
<td><.001</td>
</tr>
<tr>
<td>Third ventricle SSD (mm)</td>
<td>0 (0–0.2)</td>
<td>0 (0–1.6)</td>
<td>0 (0–2.2)</td>
<td>0.6 (0–1.2)</td>
<td><.001</td>
</tr>
<tr>
<td>Fourth ventricle SSD (mm)</td>
<td>0 (0–0.8)</td>
<td>0.1 (0–0.9)</td>
<td>0.4 (0–1.9)</td>
<td>0.65 (0–2.2)</td>
<td><.001</td>
</tr>
<tr>
<td>CN VII/VIII siderosis (%)</td>
<td>9.1</td>
<td>54.5</td>
<td>72.7</td>
<td>54.5</td>
<td><.001</td>
</tr>
<tr>
<td>Total ventricular HV on HUS (mm3)</td>
<td>64.9 (79.8)</td>
<td>491.1 (558.7)</td>
<td>2168.7 (2469)</td>
<td>4319.4 (9731.5)</td>
<td><.001</td>
</tr>
<tr>
<td>Total cerebellar HV (mm3)</td>
<td>0 (0–13.6)</td>
<td>0 (0–6333)</td>
<td>0 (0–530)</td>
<td>0.5 (0–123)</td>
<td>.12</td>
</tr>
<tr>
<td>Cerebellar SS present (%)</td>
<td>31.8</td>
<td>77.3</td>
<td>72.7</td>
<td>59.1</td>
<td>.009</td>
</tr>
<tr>
<td>Cerebellar SS depth (mm)</td>
<td>0 (0–0.25)</td>
<td>0.3 (0–2)</td>
<td>0.35 (0–2.1)</td>
<td>0.43 (0–2.2)</td>
<td>.001</td>
</tr>
<tr>
<td>Cerebellar hematoma present (%)</td>
<td>27.3</td>
<td>45.5</td>
<td>27.3</td>
<td>50</td>
<td>.26</td>
</tr>
</tbody>
</table>

Note: HV indicates hematoma volume; SSD, superficial siderosis depth.

Numeric variables are presented as median (minimum-maximum).
The incidence of CN VII and VIII SS increased in parallel with GM-IVH grades for grades I–III (linear-by-linear association $P < .001$), but the grade IV group had a rate equivalent to that of the grade II group (Table 1). The strongest correlations with the presence of CN VII and VIII SS were siderosis of the lateral ventricle ($r = 0.62, P < .001$) and choroid plexus of the fourth ventricle ($r = 0.6, P < .001$).

The GM-IVH grade and TVHV had moderate-to-strong positive correlations with brain stem (r range, 0.52–0.6; $P < .001$ for all), cerebellar ($r = 0.37, P < .001$), and ventricular ES depth (r range, 0.4–0.67; $P < .001$ for all) (Table 2). Cerebellar hematoma volume had positive-but-weak correlations with brain stem SS depth measurements (r range, 0.2–0.34; P range, .001–.06) and a moderate and positive correlation with cerebellar SS depth ($r = 0.46, P < .001$).

The patients with brain stem SS had a significantly higher GM-IVH grade ($P < .001$), ventricular SS depth ($P < .001$), incidence of CN VII and VIII SS ($P < .001$), TVHV ($P < .001$), cerebellar vermis SS depth ($P < .001$), and cerebellar SS depth ($P = .002$) (Table 3). The patients with and without brain stem SS had similar rates and volumes of cerebellar hematoma and cerebellar vermis hematoma ($P > .05$ for all comparisons).

The binary logistic regression analysis indicated that both GM-IVH grade (model $r^2 = 0.48; OR = 5.9; 95\% CI, 2.1–16.3; P = .001$) and total ventricle volume (model $r^2 = 0.36; OR = 1.001; 95\% CI, 1–1.003; P = .04$) had independent and significant associations with the presence of brain stem SS.

Among the patients with brain stem SS, the T1 sequence detected 9/72 patients (12.5%), while the T2 sequence detected 5/72 patients (6.9%). The level of agreement for the presence of brain stem SS between SWI and T1 sequences was 0.049 ($P = .15$), and the level of agreement between SWI and T2 sequences was 0.026 ($P = .30$).

DISCUSSION

Intracortical injection of ferrous or ferric chloride into the rat or cat cortex causes transient epileptiform discharge, focal edema, and cavitory gliosis.11,12 Repeat subarachnoid bleeding and incident circulation of heme in the CSF can result in SS,13 a rare disorder characterized by intra- and extracellular hemosiderin deposition into subpial tissues.14-16 Neuropathology studies show that SS particularly affects the ventricular ependyma, choroid plexus epithelium, inferior temporal lobes, cerebellum, brain stem, spinal cord, and CNs VII and VIII.14-16 Microscopically, the meninges may be thickened and fibrotic,16 and hemosiderin-laden macrophages and extracellular iron granules can be identified in the subpial brain stem parenchyma, spinal cord, and cerebellum.14-16 Cases of brown-staining subpial siderosis and ES have been found extending approximately 2 mm in the spinal cord and 1–3 mm in the brain stem inward into the neural parenchyma.14-16 Central chromatolysis in the anterior horn cells and
the subpial white matter in the spinal cord.13,16 SS commonly present between the myelinated axons in the brain stem and in ovoid/spheroid bodies (a marker distinctive of SS) may also be a numeric variables are presented as mean ± SD or median (minimum-maximum) where appropriate.

Table 2: Correlations between GM-IVH grades and hematoma volumes with SSa

<table>
<thead>
<tr>
<th>GM-IVH Grade</th>
<th>Total Ventricular HV (mm³)</th>
<th>Cerebellar HV (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal cord SSD (mm)</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>Medulla oblongata SSD (mm)</td>
<td>0.60</td>
<td>0.63</td>
</tr>
<tr>
<td>Pons SSD (mm)</td>
<td>0.52</td>
<td>0.61</td>
</tr>
<tr>
<td>Mesencephalon SSD (mm)</td>
<td>0.59</td>
<td>0.62</td>
</tr>
<tr>
<td>Brain stem SS distribution</td>
<td>0.54</td>
<td>0.62</td>
</tr>
<tr>
<td>Lateral ventricle SSD (mm)</td>
<td>0.48</td>
<td>0.51</td>
</tr>
<tr>
<td>Third ventricle SSD (mm)</td>
<td>0.46</td>
<td>0.66</td>
</tr>
<tr>
<td>Fourth ventricle SSD (mm)</td>
<td>0.44</td>
<td>0.59</td>
</tr>
<tr>
<td>Choroid lateral ventricle SSD (mm)</td>
<td>0.67</td>
<td>0.72</td>
</tr>
<tr>
<td>Choroid third ventricle SSD (mm)</td>
<td>0.61</td>
<td>0.73</td>
</tr>
<tr>
<td>Choroid fourth ventricle SSD (mm)</td>
<td>0.40</td>
<td>0.47</td>
</tr>
<tr>
<td>Cerebellar SSD (mm)</td>
<td>0.37</td>
<td>0.50</td>
</tr>
<tr>
<td>Total ventricular HV on HUS (mm³)</td>
<td>0.85</td>
<td>n/a</td>
</tr>
<tr>
<td>Cerebellar HV (mm³)</td>
<td>0.17</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Note:–n/a indicates not applicable; HV, hematoma volume; SSD, superficial siderosis depth; HUS, head ultrasound.

Table 3: Comparison of patients with and without brain stem SS

<table>
<thead>
<tr>
<th>Brain Stem SS Absent (n = 15)</th>
<th>Brain Stem SS Present (n = 73)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age at birth (wk)</td>
<td>28.6 ± 2.9</td>
<td>27.3 ± 2.9</td>
</tr>
<tr>
<td>Sex (% male)</td>
<td>53.3</td>
<td>60.3</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>1299.5 ± 830</td>
<td>1071.7 ± 407.4</td>
</tr>
<tr>
<td>GM-IVH grade</td>
<td>1 (0)</td>
<td>11 (2)</td>
</tr>
<tr>
<td>Total ventricular HV on HUS (mm³)</td>
<td>91.6 (96.3)</td>
<td>935.1 (2978.8)</td>
</tr>
<tr>
<td>Cerebellar hematoma (%)</td>
<td>20</td>
<td>35.6</td>
</tr>
<tr>
<td>Cerebellar HV (mm³)</td>
<td>0 (0)</td>
<td>0 (7.9)</td>
</tr>
<tr>
<td>CV hematoma + (%)</td>
<td>0</td>
<td>19.2</td>
</tr>
<tr>
<td>CV HV (mm³)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Cerebellar SS + (%)</td>
<td>0</td>
<td>42.5</td>
</tr>
<tr>
<td>Lateral ventricle SSD (mm)</td>
<td>0 (0–1)</td>
<td>0.9 (0–3.3)</td>
</tr>
<tr>
<td>Third ventricle SSD (mm)</td>
<td>0 (0–0)</td>
<td>0 (0–2.2)</td>
</tr>
<tr>
<td>Fourth ventricle SSD (mm)</td>
<td>0 (0–0)</td>
<td>0.4 (0–2.2)</td>
</tr>
<tr>
<td>CV SS + (%)</td>
<td>0</td>
<td>72.6</td>
</tr>
<tr>
<td>CN VII/VIII SS + (%)</td>
<td>0</td>
<td>57.5</td>
</tr>
<tr>
<td>Cerebellar SSD (mm)</td>
<td>0 (0–0)</td>
<td>0.4 (0–2.8)</td>
</tr>
<tr>
<td>Cerebellar SSD (mm)</td>
<td>0 (0–0)</td>
<td>0 (0–2.5)</td>
</tr>
</tbody>
</table>

Note:–CV indicates cerebellar vermis; GM-IVH, Germinal matrix intraventricular hemorrhage; HV, hematoma volume; SSD, superficial siderosis depth; CN, cranial nerve; +, positive, pathology found; SSD, superficial siderosis depth.

Due to the limited number of human studies of SS and the indolent course of disease progression, studies of SS in animal models have been critical to establish disease pathophysiology and the timing required for pathologic features of the disease to emerge. Studies in which autologous washed blood cells were injected weekly during 3–6 months into the cisterna magna of rabbits identified distinct patterns of iron accumulation extending 1–2 mm in the brain parenchyma after 3 months.17,18 These animal studies indicate that bolus infusions of blood products into the ventricular infratentorially in all 25 patients with SS, with additional supratentorial SS in 27% (10/37). There was no discussion provided about the presence or distribution of SS in the posterior fossa, CNs, brain stem, cerebellum, or spinal cord or the relationship between the severity of GM-IVH and the severity of SS.

In the present study, 81% of preterm infants with GM-IVH showed some degree of SS in the posterior fossa, and 90% showed supratentorial ES. Supratentorial SS was detected in only 34% of cases, mainly in the Sylvian fissures and, rarely (2%), in the cerebral convexities. The study by Yilmaz et al9 reported a frequency of ES higher than that of our study but did not include cases of grade I GM-IVH. Our study noted a higher frequency of posterior fossa SS than the study of Yilmaz et al, which we believe is most likely related to our exclusive system are sufficient to induce patterns of neuropathology similar to those seen in human SS within approximately 2–3 months.

Previous studies have documented neuropathologic findings of short-term survivors of intraventricular hemorrhage. One study found that of 20 infants with verified intraventricular hemorrhage who survived for at least 1 week, 9 were found to have clotted blood filling dilated ventricles, suggesting severe GM-IVH and posthemorrhagic hydrocephalus.9 In all except 1 of these 9 cases, an accumulation of blood pigment was noted in the subarachnoid space. This study did not describe the location of subarachnoid blood products in the posterior fossa. Non-protein-bound iron has been found frequently and at high levels in CSF from preterm infants as early as 2–3 weeks after GM-IVH.20 In premature infants, GM-IVH may also precipitate SS.3–5 SS secondary to neonatal intraventricular hemorrhage was first described by Gomori et al4 who reported findings on T2-weighted imaging of superficial hypointensity of the medulla, tectal region, and Sylvian fissures in a neonate patient with bilateral GM-IVH. A later study identified low signal patterns on heavily T2WI consistent with SS in the basal cisterns, along the tentorium, covering the brain stem, and in the Sylvian fissures of 7 infants with previous peri-/intraventricular hemorrhage.3 More recently, Yilmaz et al12 reported SS in a retrospective study of 37 patients with a history of GM-IVH. SS was detected using T2-weighted imaging or SWI in 67.6% (25/37) of patients, was present...
grade IV GM-IVH in the medulla oblongata (Albayram Feb 2020 www.ajnr.org)

The timing at which MRIs were collected for the present study (mean, 68.5 ± 32.7 days) aligns with the timeframe during which we would expect iron accumulation and parenchymal destruction following GM-IVH, based on experimental studies as discussed earlier. It is not clear, however, how long SS remains detectable in infants after the initial hemorrhage. One case showed evidence of significant residual SS at 235 days after GM-IVH (Fig 5), suggesting that toxic effects of SS could be present, in some cases, for several months before resolution.

We found that both GM-IVH grade and TVHV were closely associated with SS depth in the brain stem, ventricle surfaces, cerebellum, and spinal cord. Multivariate regression analysis suggested that the presence of brain stem SS was associated with GM-IVH grade and TVHV, independent of birth weight, gestational age at birth, and cerebellar hematoma volume. Furthermore, cerebellar and vermis SS were present in many cases without cerebellar or vermis hemorrhage. This finding suggests that rather than cerebellar germinatal matrix hemorrhage, intraventricular hemorrhage is the main factor underlying both brain stem and cerebellar SS.

In the present study, ES was common in both the supratentorial and infratentorial regions and was closely associated with GM-IVH grade, TVHV, and brain stem SS. Notably, all patients with brain stem SS and 40% of patients without brain stem SS had ES. These findings suggest that ES is a common consequence of GM-IVH. Chronic or subacute iron accumulation in the ependymal surfaces may have a deleterious effect on subsequent brain development, in addition to the effects of GM-IVH itself, due to the close proximity of these structures to the germinatal matrix. The germinatal matrix, which is a key source of spheric cerebellar SS in our population was less common than vermian SS. We believe this is related to the close proximity of the vermis to the mesencephalon and supravermian cistern. In the present study, SS in the posterior fossa was most frequent and severe within the brain stem. The depth of SS was greatest at the level of medulla oblongata, which is adjacent to both the foramen of Luschka and fourth ventricle outlets. SS was less severe in the mesencephalon. The timing at which MRIs were collected for the present study (mean, 68.5 ± 32.7 days) aligns with the timeframe during which we would expect iron accumulation and parenchymal destruction following GM-IVH, based on experimental studies as discussed earlier. It is not clear, however, how long SS remains detectable in infants after the initial hemorrhage. One case showed evidence of significant residual SS at 235 days after GM-IVH (Fig 5), suggesting that toxic effects of SS could be present, in some cases, for several months before resolution.

We found that both GM-IVH grade and TVHV were closely associated with SS depth in the brain stem, ventricle surfaces, cerebellum, and spinal cord. Multivariate regression analysis suggested that the presence of brain stem SS was associated with GM-IVH grade and TVHV, independent of birth weight, gestational age at birth, and cerebellar hematoma volume. Furthermore, cerebellar and vermis SS were present in many cases without cerebellar or vermis hemorrhage. This finding suggests that rather than cerebellar germinatal matrix hemorrhage, intraventricular hemorrhage is the main factor underlying both brain stem and cerebellar SS.

In the present study, ES was common in both the supratentorial and infratentorial regions and was closely associated with GM-IVH grade, TVHV, and brain stem SS. Notably, all patients with brain stem SS and 40% of patients without brain stem SS had ES. These findings suggest that ES is a common consequence of GM-IVH. Chronic or subacute iron accumulation in the ependymal surfaces may have a deleterious effect on subsequent brain development, in addition to the effects of GM-IVH itself, due to the close proximity of these structures to the germinatal matrix. The germinatal matrix, which is a key source of hearing loss in most adult patients with SS. In 1 postmortem case study of an adult with SS and sensorineural hearing loss, pathologic examination revealed severe bilateral degeneration of the organ of Corti and spiral ganglion cells, with iron deposits noted in the glial and other cells of the cochlear nucleus in the brain stem near its CSF-facing surface. There is concern that similar patterns of SS may contribute adversely to neurodevelopmental outcomes in premature infants. A recent cohort study of extremely preterm infants reported higher rates of hearing loss at 2- to 3-years’ corrected age in infants with GM-IVH (I–IV included) compared with infants without GM-IVH.

In the present study, we detected significant iron accumulation on the surfaces of the CN VII/VIII complex. This finding was seen in 47% of patients in the present study (42/88). The incidence increased from grade I to III, but the grade IV group had a rate equivalent to that of the grade II group. The features most strongly correlated with the presence of CN VII/VIII SS were lateral ventricle ES and fourth ventricle choroidplexus ES. This finding is likely related to the close proximity of CNs VII and VIII and the lateral fourth ventricle outlets, in which the fourth ventricle choroid plexuses are present bilaterally.

The SWI sequence is the MR imaging sequence most sensitive to hemorrhage and SS and was used in all patients of this study. Previous imaging studies of GM-IVH generally used the T1, T2, or gradient T2 sequence to detect SS. In the present study, T1 and T2 sequences detected only a small proportion of the patients with SS. These findings suggest that SWI is more sensitive and efficient for detecting the presence and severity of SS compared to T1 and T2 weighted imaging.

The present study is limited by its retrospective design, the use of 2 different MR imaging machines, and the absence of a second radiologist to determine interrater reliability. Last, given the findings of neuropathologic studies, we cannot exclude the blooming artifacts of the SWI sequence; thus, the exact depth of SS might have been overestimated.

CONCLUSIONS

In the present study, we found a high rate of widespread SS and ES in premature infants with GM-IVH. As hypothesized, the
presence and extent of SS were closely and independently related to TVHV and GM-IVH grade. Notably, SS of the CN VII/VIII complex seems to be a very common complication of GM-IVH. Brain stem and cerebellar SS seem to be related to intraventricular hemorrhage, rather than to cerebellar hemorrhage. Although the deleterious effects of excessive iron on neuronal tissues are well-known, studies in premature infants with GM-IVH are limited and mostly retrospective. Prospective studies in preterm infants with GM-IVH are needed to clearly determine the clinical consequences of neonatal SS, especially relating to hearing impairment.

Disclosures: Garrett Smith—UNRELATED: Employment: University of Florida. Comments: I am an MD/PhD candidate at the University of Florida. I receive a regular stipend for this engagement.

REFERENCES
Macrocerebellum in Achondroplasia: A Further CNS Manifestation of FGFR3 Mutations?

ABSTRACT

SUMMARY: Achondroplasia is the result of a mutation in the fibroblast growth factor receptor 3 gene (FGFR3). Appearances suggestive of macrocerebellum have not been described in this patient group. We retrospectively reviewed MR imaging studies of the brain in 23 children with achondroplasia. A constellation of imaging findings that are recognized in macrocerebellum was observed, including cerebellar hemisphere enlargement (inferior and superior extension, wrapping around the brainstem); an effaced retro- and infravermian cerebellar subarachnoid CSF space; a shortened midbrain; distortion of the tectal plate; and mass effect on the brainstem. All MR imaging studies exhibited some of these findings. Quantitative analysis confirmed an increased cerebellar volume compared with age- and sex-matched controls. We hypothesized that this may be due to direct effects of the FGFR3 mutation on cerebellar morphogenesis.

ABBREVIATIONS: PCF = posterior cranial fossa; PCFBV = posterior cranial fossa brain volume; STBV = supratentorial brain volume

Achondroplasia is the most common form of inherited disproportionate short stature affecting approximately 250,000 people worldwide. It is an autosomal dominant condition. The responsible mutation is almost always a glycine-to-arginine substitution at codon 380 in the transmembrane domain of the fibroblast growth factor receptor 3 (FGFR3) gene, which results in overactivation of the receptor. Neuroimaging is frequently performed in children with achondroplasia because there are known associated intracranial abnormalities.1-4

Macrocerebellum, an abnormally enlarged cerebellum, while rare, is associated with many syndromic conditions5-12 and has also been described as an isolated finding.13-15 It has, however, never been reported in achondroplasia. We suspected an increased cerebellar volume in patients with achondroplasia based on observed qualitative MR imaging findings. However, given the high incidence of skull base deformities in achondroplasia, the possibility that these were contributing to the MR imaging appearances by causing crowding of the posterior cranial fossa (PCF) structures was considered. Skull base deformation occurs due to impaired endochondral ossification and premature fusion of the posterior fossa synchondroses.1,3 A recent quantitative study of the PCF in patients with achondroplasia, however, did not show a decreased bony PCF volume compared with controls but did confirm an increased cerebellar volume.3

We hypothesized that the appearances described in macrocerebellum are present to varying degrees in patients with achondroplasia and that these are due to a true increase in the cerebellar volume rather than secondary to skull base changes. In our case series, we describe the qualitative imaging features suggestive of macrocerebellum and use volumetric analysis to confirm our findings.

Case Series

A retrospective MR imaging data base search was conducted using the Radiology Information System at the Medical Imaging Department, The Royal Children’s Hospital, Melbourne, Australia. We identified all children (from birth to 18 years of age) who had a diagnosis of achondroplasia and an MR imaging study of the brain performed for any indication between January 2000 and November 2018. The study was approved by our institutional Human Research Ethics Committee as a clinical audit.

Received August 14, 2019; accepted after revision November 2.
From the Departments of Medical Imaging (H.M.P., A.M.F., S.K.) and Neurosurgery (J.Y.-M.Y.), The Royal Children’s Hospital, Parkville, Victoria, Australia; Neuroscience Research (J.Y.-M.Y.) and Developmental Imaging (J.Y.-M.Y., J.C.), Murdoch Children’s Research Institute, Parkville, Victoria, Australia; Department of Paediatrics (J.Y.-M.Y.), University of Melbourne, Parkville, Victoria, Australia; Department of Perinatal Medicine (A.M.F.), Mercy Hospital for Women, Heidelberg, Victoria, Australia; and Department of Diagnostic Imaging (S.K.), Monash Health, Clayton, Victoria, Australia.

Dr Joseph Yuan-Mou Yang receives grant support from the Royal Children’s Hospital Foundation (RCH1000).
Please address correspondence to Heather Michelle Pascoe, MD, Department of Medical Imaging, The Royal Children’s Hospital, 50 Flemington Rd, Parkville, Victoria, Australia, 3052; e-mail: pascoeh@gmail.com

http://dx.doi.org/10.3174/ajnr.A6369

CLINICAL REPORT

PEDIATRICS

The inclusion criteria were a diagnosis of achondroplasia and the availability of a diagnostic-quality MR examination of the brain in the study period. If the patient had >1 MR imaging in the study period, the most recent MR imaging was used. Twenty-three patients were included (12 boys and 11 girls). Ages ranged from 3 months to 15 years. An age- and sex-matched healthy control was selected for each patient. The controls were identified from the MR imaging database at The Royal Children’s Hospital using the following criteria: 1) normal brain anatomy, and 2) absence of a neurologic disorder. Reasons for their MR imaging referral were either sensorineural hearing loss or headache. MR imaging studies were performed on a 1.5 or 3T scanner.

Both qualitative and quantitative analyses were performed. For qualitative analysis, the volumetric T1WIs were retrospectively evaluated by a pediatric radiology fellow (H.M.P.) and 2 pediatric neuroradiologists (S.K. and A.M.F.), and the results were consensus-based. The presence of the following qualitative imaging features (Fig 1A–C) was assessed:

1. Extension of the cerebellar hemispheres inferior to the vermis (on the midsagittal plane; Fig 1A).
2. Extension of the superomedial portions of the cerebellar hemispheres above the tentorium cerebelli (on the coronal plane; Fig 1B).
3. Wrapping of the cerebellar hemispheres around the brainstem with extension around the lateral aspects of the brainstem at the level of the middle cerebellar peduncles (on the axial plane; Fig 1C).
4. Effacement of the retro- and infravermian subarachnoid CSF spaces (on the midsagittal plane; Fig 1A).
5. Apparent shortening of the midbrain with or without distortion of the tectal plate (on the midsagittal plane; Fig 1A).
6. Mass effect on the brainstem (on the midsagittal plane; Fig 1A). The features assessed were anterior bowing of the brainstem, narrowing of the prepontine cistern, and effacement of the fourth ventricle.

Quantitative analysis of the cerebellar and brainstem volumes was performed in each patient and the age- and sex-matched healthy control using automated brain tissue segmentation. T2WIs were used for analyzing patients younger than 1 year of age, and T1WIs for patients older than 1 year of age. All T2WIs used for the younger subjects had 0.4-mm in-plane resolution and 4-mm slice thickness. All 3D T1WIs had similar (0.5–0.9 mm) in-plane resolution and 0.9-mm slice thickness. The imaging sequence used and the resolution were comparable between the patient and the paired control to avoid introducing bias in our quantitative analysis. Morphologically Adaptive Neonatal Tissue Segmentation (MANTIS) software (https://www.mantisoftware.com/)16 was used in the younger group, and a surface-based brain parcellation software, FreeSurfer Version 6.0 (http://surfer.nmr.mgh.harvard.edu),17 was used in the older group. Manual editing was subsequently performed to ensure anatomic accuracy. This was performed by the neurosurgery fellow (J.Y.-M.Y.) and reviewed by a pediatric radiology fellow (H.M.P.) and a pediatric neuroradiologist (S.K.). The cerebellar segmentation included both the cerebellar hemispheres and vermis. The brainstem segmentation included the midbrain, pons, and medulla. The posterior cranial fossa brain volume (PCFBV) was derived by summing the cerebellum and brainstem volumes.

FIG 1. T1WIs of an 11-year-old child with achondroplasia (A–C) and the same T1WIs with superimposed cerebellum (yellow) and brainstem (cyan) segmentations (D–F). T1WIs from a healthy 11-year-old child (G–I) are provided for comparison. Extension of the cerebellar hemispheres inferior to the vermis is seen on the midsagittal plane (arrow in A); extension of the superomedial portions of the hemispheres above the tentorium cerebelli is seen on the coronal plane (arrow in B); and wrapping of the cerebellar hemispheres around the brainstem with extension around the lateral aspects of the brainstem at the level of the middle cerebellar peduncles is seen on the axial plane (arrows in C). Also seen on the midsagittal plane (A) are effacement of the retro- and infravermian subarachnoid CSF spaces, mass effect on the brainstem (which is anteriorly bowed [asterisk] with narrowing of the prepontine cistern and partial effacement of the fourth ventricle), and shortening of the midbrain with distortion of the tectal plate (open arrow). Note the normal morphology of the midbrain and tectal plate in G (open arrow).
Table 1: Summary of the qualitative features of macrocerebellum in patients with achondroplasia

<table>
<thead>
<tr>
<th>Macrocerebellum Imaging Features on Different Imaging Planes</th>
<th>No. of Patients with Imaging Features Present (% Total) (Total = 23 Patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension of the cerebellar hemispheres inferior to the vermis (midsagittal)</td>
<td>23 (100.0)</td>
</tr>
<tr>
<td>Extension of the superomedial portions of the hemispheres above the tentorium cerebelli (coronal)</td>
<td>16 (69.6)</td>
</tr>
<tr>
<td>Wrapping of the cerebellar hemispheres around the brainstem (axial)</td>
<td>20 (87.0)</td>
</tr>
<tr>
<td>Effacement of the retro- and infravermian subarachnoid CSF spaces (midsagittal)</td>
<td>22 (95.7)</td>
</tr>
<tr>
<td>Shortening of the midbrain (midsagittal)</td>
<td>8 (34.8)</td>
</tr>
<tr>
<td>Distortion of the tectal plate (midsagittal)</td>
<td>3 (13.0)</td>
</tr>
<tr>
<td>Mass effect on the brain stem (midsagittal)</td>
<td>7 (30.4)</td>
</tr>
</tbody>
</table>

Table 2: Quantitative analysis of the cerebellum and brainstem

<table>
<thead>
<tr>
<th>Variables</th>
<th>Patient (Mean ± SD)</th>
<th>Control (Mean ± SD)</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>5.38 ± 4.39</td>
<td>5.43 ± 4.46</td>
<td>.43</td>
</tr>
<tr>
<td>Cerebellum (mL)</td>
<td>137.85 ± 29.55</td>
<td>127.00 ± 27.78</td>
<td>.009</td>
</tr>
<tr>
<td>Brainstem (mL)</td>
<td>19.28 ± 3.96</td>
<td>19.56 ± 4.91</td>
<td>.92</td>
</tr>
<tr>
<td>PCFBV (mL)</td>
<td>157.34 ± 33.30</td>
<td>146.55 ± 32.16</td>
<td>.02</td>
</tr>
<tr>
<td>STBV (mL)</td>
<td>1097.56 ± 171.54</td>
<td>1001.05 ± 187.58</td>
<td><.001</td>
</tr>
</tbody>
</table>

Note—PCFBV indicates posterior cranial fossa brain volume; STBV, supratentorial brain volume; SD, standard deviation.

*Statistical significance (P < .05).

The supratentorial brain volume (STBV) was also calculated for all cases. This was performed using the brain tissue classification tool from SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12) to calculate the total brain volume, and the PCFBV was then subtracted from this.

Statistical analysis was performed using the R statistical and computing software and graphics (http://www.r-project.org). Group summary statistics were expressed in means and SDs. Comparison between the patients and their age- and sex-matched controls was analyzed using the paired Wilcoxon rank sum test. P values < .05 were considered statistically significant.

Results of the qualitative neuroimaging features of macrocerebellum are summarized in Table 1. Each of the MR imaging findings was recorded as present or not. Figure 1A–C demonstrates the qualitative MR imaging findings, with a healthy control for comparison shown in Fig 1G–I.

The results of quantitative analysis are summarized in Table 2. Figure 1D–F demonstrates the cerebellar and brainstem segmentations in standard orthogonal 2D MR imaging planes. Figure 2 demonstrates the cerebellar and brainstem segmentation as a 3D volume rendering.

The achondroplasia patients had a significantly larger PCFBV compared with their age- and sex-matched healthy controls (P = .02). This volume difference was due to a larger cerebellum (P = .009). There was no brainstem volume difference between the 2 study groups (P = .92). The patients with achondroplasia also had significantly larger STBVs compared with their age- and sex-matched healthy controls (P < .001).

DISCUSSION

The prevalence of skull base changes in patients with achondroplasia is well-documented; however, the morphology of the PCF content has not been widely reported. In particular, appearances described in macrocerebellum, such as those we observed, have not been described in this patient group.

The cerebellar enlargement in macrocerebellum has been reported to mainly involve the cerebellar hemispheres and has been described as an isolated finding as well as in many syndromic conditions. As a consequence of the cerebellar hemispheric enlargement, the hemispheres extend into available surrounding spaces, resulting in wrapping around the brainstem as well as upward and/or downward herniation. All of the patients with achondroplasia in our study demonstrated some of these qualitative signs of apparent cerebellar hemisphere enlargement. Ancillary changes of apparent macrocerebellum observed in the PCF were the following: effacement of the retro- and infravermian subarachnoid CSF spaces; apparent shortening of the midbrain, with associated distortion of the tectal plate in severe cases; and mass effect on the brainstem. Most of these features have been previously described in macrocerebellum.

On the basis of our qualitative results, it remained possible that deformation of the bony PCF causing overcrowding could be responsible for the MR imaging appearance of an apparent macrocerebellum. However, in line with the findings by Calandrelli et al, we confirmed that compared with healthy controls, cerebellar volumes were increased in patients with achondroplasia, indicating true macrocerebellum. In contrast to Calandrelli et al, however, we found no difference in the brainstem volume between patients and controls. This may be due to the small number of cases in both series; thus, larger series would be needed to establish whether there is any brainstem involvement in achondroplasia.

Fibroblast growth factor receptors are transmembrane tyrosine kinases that are expressed in the developing brain. They are encoded by 4 genes (FGFR1–4), including the FGFR3 gene, which is mutated in achondroplasia. Fibroblast growth factors bind to the fibroblast growth factor receptors, and this signaling is an important regulator of cerebral cortex development. Studies have demonstrated malformations involving the cerebral cortex, such as expansion of the occipitotemporal cortex and oversulcation of the mesiotemporal lobes in the presence of activating FGFR3 mutations. These findings may also explain our finding of significantly higher supratentorial brain volume in patients with achondroplasia compared with healthy controls.

Less well-known is that fibroblast growth factor signaling has also been shown in mice to have an important role in regulating the formation of the cerebellum from the early embryonic period into early postnatal life. Three neural layers are present in the adult cerebellar cortex (the molecular, Purkinje cell, and granular...
cells layers), and most of the cerebellar neurons migrate to the cortex from the ventricular zone during the early embryonic period under the influences of molecular signaling, including fibroblast growth factor signaling. In the mouse cerebellum, FGFR3 has been detected in the cerebellum as early as embryonic day 12.5. FGFR3 is then expressed at varying levels in different parts of the cerebellar nuclei and cortical layers throughout the remainder of the prenatal period extending to 21 days postnatally. Shazeeb et al24 reported no FGFR3 expression in the cerebellum of 3-week-old mice.

There is no current literature on the appearance of the cerebellum in achondroplasia. However, given our qualitative and quantitative findings, the known expression of FGFR3 in the cerebellum during early development in mice, and the known growth-promoting effects of FGFR3 mutations in the supratentorial compartment, we hypothesized that macrocerebellum in achondroplasia may be due to the direct effects of the FGFR3 mutation on cerebellar morphogenesis. Further genetic and pathologic studies are required to substantiate or refute this hypothesis.

A major limitation of our study is that it is retrospective, with a relatively small sample size. The prevalence of macrocerebellum in patients with achondroplasia can thus not be established from this study. Additionally, segmenting the cerebellar hemispheres and vermis separately was beyond the scope of the methodology of this study; thus, the relative contribution of each to the enlarged cerebellum cannot be determined.

CONCLUSIONS

Our study is the first to describe macrocerebellum with its typical appearance in children with achondroplasia. We confirmed an increase in the cerebellar volume quantitatively through volumetric analysis and hypothesized that macrocerebellum may be due to the direct effects of the FGFR3 mutation. Thus, macrocerebellum can be inferred when the qualitative imaging appearances we described are identified. These features should be sought when imaging patients with achondroplasia, alongside the other previously reported PCF and supratentorial features. Further pathologic and genetic studies will be required to gain a better understanding of our observations.

ACKNOWLEDGMENTS

We thank the support from The Royal Children’s Hospital Foundation, Murdoch Children’s Research Institute, The University of Melbourne Department of Pediatrics, and the Victorian Government’s Operational Infrastructure Support Program.

REFERENCES

S

Spinal cord (SC) atrophy occurs often in neuroinflammatory diseases and can be measured using structural MRI. Several studies have identified cervical SC atrophy as predictive of disease progression and/or disability in patients with multiple sclerosis and related diseases; thus, it is of great interest to measure SC atrophy longitudinally. One of the most common SC atrophy measurement methods is the mean upper cervical cord area (MUCCA). MUCCA has been found to be robust at the C1–C2 and C2–C3 intervertebral levels. However, there is little consensus on how reliable it is longitudinally or whether SC atrophy measures are ready for use as a clinical trial end point and/or for patient monitoring in neuroinflammatory diseases, SC injury, or degenerative cervical myelopathy among other diseases affecting the SC. Most studies of MR imaging–based SC

Received September 9, 2019; accepted after revision December 4.

From the Experimental and Clinical Research Center (C.C., V.J., A.U.B., F.P.), Max Delbrück Center for Molecular Medicine & Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center (C.C., V.J., M.S., A.U.B., F.P.) and Departments of Neuroradiology (V.J., M.S.) and Neurology (F.P.), Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; and Department of Neurology (A.U.B.), University of California, Irvine, Irvine, California.

Funding for this work was provided by the Deutsche Forschungsgemeinschaft DFG (EXC 257), awarded to F.P. and A.U.B.
atrophy comparisons of diseased with healthy SC measures have relied on interindividual variability calculated from cross-sectional data. Intraindividual variability in healthy participants (HP) is often ignored or assumed to be equivalent to the mean change (or SD) in SC atrophy measures. The utility of using cerebral 3D MRIs, including the upper cervical cord (UCC), as a source of MUCCA calculations is based on the availability of this sequence in most patients. These scans can be used for both detection of abnormalities in the brain and the retrospective analysis of SC atrophy. Although some methods for reducing variability in MUCCA have been described, these methods require extra calculations and effort that are not implemented in many SC atrophy studies, as of yet. Thus, investigations of raw MUCCA in HP are still required for making considerations for MRI sequence and analysis methods in prospective SC atrophy studies. Technical and rescan variability in HP must be evaluated to understand the pathologic changes in raw MUCCA in a longitudinal setting.

In this study, we hypothesized that the raw MUCCA will differ in HP, dependent on several factors: 1) non-distortion- versus distortion-corrected source MRIs, 2) analysis software used for MUCCA calculation, 3) intrarater biases, and 4) MR imaging artifacts/positioning. The aim of our study was to identify factors that impact healthy rescan MUCCA in a longitudinal intraparticipant manner using rescan cerebral distortion- and non-distortion-corrected MPRAGE images, while also accounting for interparticipant variations using cross-sectional cerebral distortion and non-distortion-corrected MPRAGE images.

MATERIALS AND METHODS
The local institutional review board (NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin) approved this retrospective study, and written informed consent was obtained from all participants.

Cohort
We performed a retrospective analysis of data of HP collected from the Day2day daily variability study, and an ongoing observational single-center cohort (EA1/163/12). Inclusion criteria were as follows: a minimum of 18 years of age and no presence of any neurologic/psychiatric disorders, contraindications for an MR imaging examination, or incidental MR imaging findings. Participants who had undergone a full MR imaging scan protocol between January 2015 and January 2019 were eligible. Age and sex were collected for each healthy participant.

MR Imaging Acquisition
All images were acquired with 2 distinct 3T systems (Magnetom Trio; Siemens, Erlangen, Germany). From the Day2day study, we collected distortion- and non-distortion-corrected 3D MPRAGE sequences, including the upper cervical cord (1 × 1 × 1 mm resolution, TR = 2500 ms, TE = 4.77 ms, acquisition time [altogether] = 9:20 minutes, plane = sagittal). Eight HP (female/male = 6:2, mean age = 28.4 ± 2.97 years) were scanned with this MPRAGE protocol weekly for 6–8 months (11–50 scans per healthy participant), and 50 HP (female/male = 50:0, mean age = 24.9 ± 3.10 years) were scanned with the distortion-corrected 3D MPRAGE sequence once in the Day2day study, all with the same scanner at the Max Planck Institute for Imaging Research, Berlin. From the observational study, we collected a non-distortion-corrected 3D MPRAGE sequence including the UCC (1 × 1 × 1 mm resolution, TR = 1900 ms, TE = 3.03 ms, acquisition time = 4:26 minutes, plane = sagittal) all with the same scanner at the Berlin Center of Advanced Imaging. Twenty-seven HP (female/male = 18:9, mean age = 36.8 ± 14.3 years) were scanned annually for 2–4 years (2–4 scans per healthy participant), and 77 HP (female/male = 49:28, mean age = 54.5 ± 12.0 years) were scanned using this non-distortion-corrected MPRAGE sequence once in the observational study.

Image Postprocessing
All images were reoriented with fslnorient2std (https://www.rodocommentation.org/packages/fslr/versions/2.24.1/topics/fslnorient2std) to match the Montreal Neurological Institute 152 standard template, which only applies 0°, 90°, 180°, or 270° rotations (FSL; Analysis Group, FMRIB, 2019; Version 5.0.9; open source: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), and N4 bias field corrected (Advanced Normalization Tools; 2019; Version 0.0.8; open source: http://stnava.github.io/ANTs/). Longitudinal/rescan images were not coregistered because the SC region is not the center of registration, and in most coregistration pipelines, brain extraction is required, which cuts off the UCC.

Image Analysis
MUCCA was measured in all postprocessed MPRAGE images using the active surface method using Jim software (2019; Version 7.0; http://www.xinapse.com/Manual/cord_intro.html) at the C2/C3 intervertebral space level (MUCCA-Jim), where the mean of cross-sectional areas in 5 consecutive slices of each MPRAGE image were obtained by an experienced rater (C.C.). Three center-of-cord seeds were marked by the rater, 1 at the most superior section of the C2/C3 intervertebral space, 1 after moving 2 slices down (center of C2/C3 intervertebral space), and the last seed after moving 2 more slices down in the cervical cord. Jim Cord Finder tool was set to a nominal cord diameter of 10 mm, with the number of shape coefficients set to 20 coefficients, a default order of longitudinal variation of 6, and the “cord is hypointense to CSF” setting not checked (for a T1 image). The active surface model takes into account the angulation of the cord by calculating cross-sectional areas in a plane perpendicular to the local cord centerline. Unfolded cervical cord images from each MPRAGE image were created using the same 5 consecutive slices, in which the setting for “create an unfolded image of the spinal cord” was checked in the Spinal Cord Finder tool in Jim 7.0 so that during the calculation of the cross-sectional areas of the cord outline an unfolded image is automatically saved. The unfolded images are straightened cord centerline images, where cord image section planes are perpendicular to the straightened cord centerline. The unfolded cervical cord images were used as input for automatic MUCCA segmentation (MUCCA-SCT) using the Spinal Cord Toolbox (SCT; PropSeg; 2019; version 4.1.0 https://sourceforge.net/p/spinalcordtoolbox/wiki/correction_PropSeg/). The comparison of the 2 segmentation methods is valuable because the
semiautomatic Jim requires roughly 2–3 minutes of manual marking and quality checks per scan after reorienting to standard Montreal Neurological Institute space, while the automatic PropSeg requires only about 3 seconds of computation time after creating unfolded cervical cord images. If no unfolded cervical cord images are created, PropSeg is able to segment full cervical cords in roughly 15 seconds.

For interrater analysis, V.J. (trainee) measured MUCCA-Jim in the same MPRAGE scans from 1 healthy participant, using the same settings and methodology as described above.

Of the 308 rescan MRIs from 8 HP in the Day2day study, 37 (13%) distortion-corrected and 28 (9%) non-distortion-corrected MPRAGE scans were excluded from analyses due to motion artifacts and/or rescans in participant positioning in the scanner. From the ongoing observational cohort of 27 HP, we collected 66 longitudinal MRIs, of which 15 (7 HP, 23%) were excluded due to motion and/or metallic implant artifacts and/or differences in positioning in the scanner. In total, 28 HP with 600 longitudinal/rescan MPRAGE scans were included in statistical analysis.

Statistical Analysis

For age and sex comparison between HP from the Day2day study and our center, Kruskal-Wallis rank sum and χ^2 tests were performed, respectively. Group baseline MUCCAs calculated from different MR imaging scans were compared using an bootstrapped (from different MR imaging scans were compared using an per formed, respectively. Group baseline MUCCAs calculated of equality,24 smallest real difference (SRD),25 Bland-Altman corrected MPRAGE scans and from Jim versus SCT were per formed using the coefficient of variation (CoV) asymptotic test between MUCCAs derived from distortion- and non-distortion-corrected MPRAGE scans and from Jim versus SCT were performed using the coefficient of variation (CoV) asymptotic test of equality,26 smallest real difference (SRD),25 Bland-Altman limits of agreement, and paired t tests. The SRD (Equation 1) is a statistical method that estimates a true difference in measures (σ) when the rescan MUCCA-Jim was evaluated using a paired t test ($t = 10.98, P = < .001$). Fig 2 and On-line Fig 1 illustrate the differences between each rescan MUCCA.

Although CoVs from most non-distortion-corrected MPRAGE-derived MUCCA-Jims were lower than those derived from distortion-corrected derived MUCCA-Jims, it can be seen, along with Fig 1, that participants with a similar number of scans analyzed had similar CoVs from both types of scans (eg, participants 1, 2, 4, 5, 7, and 8). CoVs from a similar number of scans analyzed were mostly lower in non-distortion-corrected derived MUCCA-Jims, and because the mean follow-up scan time per healthy participant was 5.2 days, this finding suggests that these measures are more robust than those from distortion-corrected cerebral scans.

RESULTS

Cohort Demographics

Of the 28 participants with rescan MUCCAs, 21 (75%) were women, and of the 127 participants with cross-sectional MUCCAs, 99 (78%) were women. All relevant demographic data are shown in On-line Table 1.

There were significant differences between the cross-sectional HP‘ sex ($\chi^2 = 21.3, P = < .001$) and age ($\chi^2 = 33.1, P = < .001$) distributions. A significant difference in the baseline mean MUCCA-Jim when comparing rescan, longitudinal, and cross-sectional data from the Day2day and clinical participants ($F = 14.7, P = < .001$) was observed (On-line Table 1). However, little difference in the effect sizes of mean MUCCA-Jim derived from distortion- versus non-distortion-corrected MPRAGE scans was found (Fig 1).

Larger effect sizes from differences in MUCCA-Jim seemed to be the result of small sample sizes when subtracting the mean MUCCAs of a small cohort of 8 HP from the mean MUCCAs of 20 HP. However, when larger cohorts were compared, MUCCAs from distortion- and non-distortion-corrected MPRAGE scans (Day2day distortion-corrected cross-sectional and clinical non-distortion-corrected cross-sectional scans), a much smaller effect size was seen.

Rescan MUCCA from Distortion versus Non-Distortion-Corrected MPRAGE Sequences

Rescan MUCCA-Jims derived from the Day2day distortion- and non-distortion-corrected MPRAGE scans were compared. The CoVs in repeat MUCCAs for each participant are shown in the Table. An asymptotic test for the equality of the CoV between distortion- and non-distortion-derived MUCCA-Jim was non-significant (asymptotic test of equality $= < .001, P = .98$). The SRD range in distortion-corrected derived MUCCA-Jim was $\pm 3.5 \text{mm}^2 (\pm 4.8\% \text{of the mean group MUCCA})$, while it was $\pm 3.2 \text{mm}^2 (\pm 4.4\% \text{of the mean group MUCCA})$ for non-distortion-corrected derived MUCCA-Jim. Bland-Altman limits of agreement ($–2.9$ to 6.0mm^2) showed a predisposition for MUCCA-Jim to have a lower value when measured from non-distortion-corrected MPRAGE scans. This result was corroborated when the rescan MUCCA-Jim was evaluated using a paired t test ($t = 10.98, P = < .001$). Fig 2 and On-line Fig 1 illustrate the differences between each rescan MUCCA.

Rescan MUCCA from Semiautomatic-versus-Automatic Segmentation

Variability in non-distortion-corrected MPRAGE-derived MUCCA was tested using the semiautomatic Jim (MUCCA-Jim) and the fully automatic PropSeg (MUCCA-SCT) segmentation methods. The CoVs in MUCCA for each participant from the Day2day cohort are shown in On-line Table 2.
An asymptotic test for the equality of CoV between MUCCA-Jim and MUCCA-SCT was significant (asymptotic test of equality = 130.1, \(P < .001 \)). The SRD range for MUCCA-Jim was ±3.2 mm\(^2\) (±4.4% of the mean group MUCCA-Jim), while it was ±9.5 mm\(^2\) (±14.5% of the mean group MUCCA-SCT) for MUCCA-SCT. Bland-Altman limits of agreement (−2.3 to 16.0 mm\(^2\)) showed a predisposition for MUCCA-Jim to have a higher value than MUCCA-SCT, which was also evident when evaluating the rescan MUCCA-Jim and MUCCA-SCT with a paired \(t \) test (\(t = 24.42, P < .001 \)). Since PropSeg was optimized on MR imaging acquired with a spine coil instead of a head-neck coil, as used in this study, differences in the CSF to SC contrast-to-noise ratios may cause an underestimation of this segmentation method.\(^27\) On-line Figure 2 shows the Bland-Altman and paired \(t \) test results when comparing MUCCA-Jim and MUCCA-SCT, as well as sample segmentations by Jim and PropSeg.

Single- versus Multirater Rescan MUCCA-Jim

To evaluate the robustness of using nondistortion MPRAGE scans and semiautomatic software to measure the MUCCA, we performed an interrater analysis for the same participant with 50 weekly scans from the Day2day study. Rater 1 (C.C.) has several years of experience with MUCCA segmentation, while rater 2 (V.J.) has never segmented MUCCA before this study. The CoVs in rescan MUCCA-Jim for healthy participant the same HP from rater 1 and rater 2 were 1.38% and 1.64%, respectively. An asymptotic test for the equality of CoV was nonsignificant (asymptotic test of equality = 1.5, \(P = .23 \)). The ICC was 0.74, and the SRD range in MUCCA-Jim from the 2 raters was ±2.8 mm\(^2\) (±3.8% of the mean group MUCCA-Jim). The rescan MUCCA-Jim when compared using a paired \(t \) test still showed a significant difference (\(t = 4.54, P < .001 \)). On-line Figure 3 illustrates the paired \(t \) test comparison of rescan MUCCA-Jim, from the same participant, measured by 2 raters.

Real-World Data Confirmation

To validate the findings from our analysis of the Day2day study cohort, we compared, cross-sectionally, 50 Day2day HP MUCCA-Jim derived from distortion-corrected MPRAGE scans with 77 observational HP MUCCA-Jim derived from non-

FIG 1. Comparison of effect sizes of differences between baseline MUCCA-Jim derived from the participants with longitudinal Day2day distortion-corrected (DD) DD and Day2day non-distortion-corrected (DND), clinical non-distortion-corrected (CND), Day2day distortion-corrected cross-sectional, and clinical non-distortion-corrected cross-sectional (CNDC) MPRAGE scans. Vertical lines beside dot plots indicate SDs around the means.

Table: CoVs for each Day2day participant MUCCA-Jim derived from distortion- and non-distortion-corrected MPRAGE scans

<table>
<thead>
<tr>
<th>Participant</th>
<th>No. of Rescan MPRAGE Scans Collected</th>
<th>No. of Distortion-Corrected Derived MUCCAs Analyzed</th>
<th>CoV for Distortion-Corrected Derived MUCCA</th>
<th>No. of Non-Distortion-Corrected Derived MUCCAs Analyzed</th>
<th>CoV for Non-Distortion-Corrected Derived MUCCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>50</td>
<td>1.36</td>
<td>50</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>10</td>
<td>1.89</td>
<td>10</td>
<td>1.72</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>37</td>
<td>3.09</td>
<td>43</td>
<td>2.03</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>11</td>
<td>1.39</td>
<td>10</td>
<td>1.35</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>40</td>
<td>1.40</td>
<td>41</td>
<td>1.33</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>36</td>
<td>1.91</td>
<td>42</td>
<td>1.55</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>43</td>
<td>1.35</td>
<td>41</td>
<td>1.55</td>
</tr>
<tr>
<td>8</td>
<td>49</td>
<td>42</td>
<td>1.55</td>
<td>43</td>
<td>1.40</td>
</tr>
</tbody>
</table>
distortion-corrected MPRAGE scans. Again, we found that the CoV was smaller in MUCCAs derived from non-distortion-corrected versus distortion-corrected MPRAGE scans (9.5% versus 10.2%, respectively). However, the CoV values were not significantly different when tested with an asymptotic test for equality (asymptotic test of equality $\alpha = 0.10$, $P = .75$). A 2-sample t test showed a slight difference between MUCCA-Jim (derived from distortion-corrected: mean $= 76.6 \pm 7.8$ mm2; from non-distortion-corrected: mean $= 73.4 \pm 7.0$ mm2; $t = 2.32$, $P = .02$) from the 2 cohorts. Because the 50 HP from the Day2day study were all women with a small range in age, one would expect less variation in interparticipant MUCCAs in this cohort. However, our finding that there was a higher (though slightly higher) CoV in the MUCCA-Jim from this cohort suggests that a “normal range” of MUCCA may be larger when using distortion-corrected scans for SC atrophy evaluation.

We also tested rescan MPRAGE MUCCA-Jim from the observational cohort to evaluate the feasibility of using the raw MUCCA in a longitudinal, real-world setting. The CoVs in rescan MUCCA-Jim for each participant are shown in On-line Table 3. The SRD range for MUCCA-Jim was ± 2.4 mm2 ($\pm 3.1\%$ of the mean group MUCCA-Jim). The ICC for longitudinal MUCCA-Jim was 0.97. A paired t test of MUCCA-Jim measured between 2 consecutive imaging time points showed that the MUCCA were stable ($t = -1.04$, $P = .31$), as illustrated in Fig 3.

Sources of Exclusion from Analysis (MPRAGE Quality Control)

On inspection of large variations in consecutive MUCCA-Jim from the Day2day and observational cohort, several artifacts were identified to give inadequate rescan MUCCAs for comparison. Participants with largely variable MUCCAs most often had at least 1 of the following MR imaging qualities: 1) motion artifacts seen in the brain or neck region, 2) head and neck positions being different between sessions, and/or 3) metal implants in the mouth causing artifacts (eg, retainer, braces, and so forth). Head and neck positioning differences included head tilt angle and different levels of UCC included in the scan FOV. All of these qualities can be observed in postprocessed MPRAGE images, as shown in Fig 4.

DISCUSSION

We investigated rescan MUCCA variability in HP on the basis of the following: 1) scan settings for source MRIs, 2) segmentation software, 3) interrater bias, and 4) imaging artifacts. Rescan MUCCA was found to be less variable when measured from 3T, non-distortion-corrected cerebral 3D MPRAGE scans. We also showed that using a semiautomatic segmentation approach (Jim 7.0 Cord Finder Tool) gave a robust MUCCA in participants compared with fully automatic segmentation (SCT PropSeg) in
artifacts (session 1 MUCCA-Jim 53.1 mm²).

We found that raw MUCCA derived from distortion- or non-distortion-corrected using a phantom. MUCCA has been shown to be more robust when normalized with a factor calculated from a cylindric phantom that represents the UCC.17 However, we found that raw MUCCA derived from distortion-corrected MPRAGE scans yielded more variable (higher CoVs and SDs) within-participant rescan measures than those derived from non-distortion-corrected MPRAGE scans. This finding suggests that without an SC-specific phantom for distortion correction, non-distortion-corrected cerebral scans yield less variable and more robust raw MUCCAs for longitudinal SC atrophy evaluation. We would recommend, in retrospective studies, using non-distortion-corrected cerebral MPRAGE for higher longitudinal reproducibility, as seen from the results of our real-world clinical data. Furthermore, to reduce variability in repeat MUCCAs as much as possible, when using cerebral MPRAGE scans, we propose a strict quality control step before inclusion in a study, which involves the removal of participants with any metallic implants and scans that have any brain-movement artifacts. It would be also beneficial to standardize the positioning of patients in the scanner to achieve cervical cord placement as straight as possible and include a minimum number of vertebral levels.

We compared 2 common SC segmentation tools used to calculate the MUCCA: the semiautomatic Jim Cord Finder and the fully automatic SCT PropSeg. Jim uses an active surface method,20 and SCT uses an iterative propagation of a deformable adaptive contrast method.21 One study found good correlation between Jim and PropSeg using a normalization factor,28 while another study found a systematic difference in the 2 outputs.27 We confirmed this systematic bias in raw MUCCA, in which PropSeg yielded significantly smaller and more variable segmentations than Jim, with higher intraparticipant variability and low consistency in paired measures. Because we segmented MUCCAs using the exact same MR imaging slices for this analysis, our study shows that raw MUCCAs measured by these 2 methods are not comparable. SCT has another functionality, namely DeepSeg (https://github.com/neuropoly/spinalcordtoolbox), which is based on a convolutional neural network algorithm that segments the spinal cord, with the capability of also segmenting intramedullary multiple sclerosis lesions.29 This method was shown to better segment MR imaging scans, including the brain, than PropSeg; however, raw MUCCAs were still significantly different between DeepSeg and Jim.7 Thus, when one compares results from different studies using different segmentation methods, absolute MUCCA cannot be used; rather, we propose the evaluation of effect sizes from the change in the MUCCA from each study.

Many studies have used Jim for MUCCA segmentation, but they had either 1 experienced rater for multiple centers30 or no raters were mentioned.31 We found only a moderate intraclass correlation between MUCCAs segmented by 2 raters. The less experienced rater also had higher variability in the MUCCA, as evidenced by large differences in paired measures. These results highlight the need for disclosure of raters in MUCCA studies, standardized training of individuals performing SC segmentation, and/or using 1 rater for longitudinal studies.

We validated our findings in real-world clinical data. In distortion versus non-distortion MPRAGE-derived MUCCA, stability of the rescan MUCCA was shown to be a smallest real difference of roughly ±4% change. This is in line with a recent study that found high reproducibility of the MUCCA within 1 scanner with 1 measurement method, but no comparability among scanners or methods.27 One large metadata study found,
on average, that patients with multiple sclerosis lose 1.78%/year of their cervical SC area.16 We do not need to assume that SC atrophy during 1 year in HP would be zero; however, a large study with >1200 asymptomatic participants spanning 20–80 years in age found that in both men and women the C2/C3 intervertebral level cross-sectional area had a minimum decrease of about 1% and a maximum decrease of roughly 4.5% spanning several decades.22 Thus, we can be fairly certain that during the course of a 1-year follow-up, normal SC atrophy would, most likely, not surpass 1.5%. Our study shows that annual MUCCA may not give enough signal over noise; thus, we suggest that MUCCA be monitored for >24 months to assess SC atrophy.

The limitations of our study include the small sample size of HP scanned longitudinally. Because our study was performed with retrospective data, we could not evaluate dedicated SC sequences, which may give more robust SC atrophy measurements using fast, automated methods such as PropSeg or DeepSeg. A future direction would be to collect a large amount of healthy participant SC MR imaging for further longitudinal testing. It would be ideal to scan many HP with a wide age range, to truly validate whether there is an effect of age or sex on the MUCCA. One study did find an effect of age, sex, height, and weight on the lower cervical volume of HP, however, with very small effect sizes for their models.33 We were also not able to investigate the time of day of MR imaging acquisition or hydration levels of HP, which may lead to further fluctuations in the MUCCA. These factors have been found to affect brain morphometric measures34 and SC area.35 However, due to the robustness of our real-world longitudinal MUCCA analysis, we can postulate that these factors play a smaller role in MUCCA variability.

CONCLUSIONS

Our study illustrates some technical and rescan factors important in longitudinal SC atrophy studies using MUCCA: type and correction of source MR imaging, segmentation method, rater training, and MR imaging quality controls should be addressed, because all these factors contribute to increased rescan variability in the MUCCA. With these considerations, the MUCCA has the potential to be used in a longitudinal setting to evaluate and track SC atrophy.

ACKNOWLEDGMENTS

We would like to thank Dr Simone Kühn for her large contributions of high-quality data from the Day2day study. Also, we thank all participants who volunteered for these observational studies, the study nurses, MR imaging technicians (S. Pikol and C. Kraut), and residents who aided in collecting the clinical data.

Disclosures: Michael Scheel—UNRELATED: Patents [Planned, Pending or Issued]: patent for 3D printing method: Royalties: from education books from Elsevier. Alexander Brandt—RELATED: Grant: BMVFW, Comments: Neu2 ADVISORS*; UNRELATED: Patents [planned pending or issued]: Retinal Image Analysis, Multiple sclerosis serum biomarkers, perceptive visual computing; Stock/stock options: Mottagnosis GmbH Nocturne GmbH. Friedemann Paul—OTHER RELATIONSHIPS: FP has received research support from Bayer, Novartis, Biogen Idec, Teva, Sanofi-Aventis/Genzyme, Merck Serono, Alexion, Chugai, Arthur Arnstein Foundation Berlin, Guthy Jackson Charitable Foundation and the US National Multiple Sclerosis Society; has received travel funding and/or speaker honoraria from Bayer, Novartis, Biogen Idec, Teva, Sanofi-Aventis/Genzyme and Merck Serono; and has consulted for Sanofi Genzyme, Biogen Idec and MedImmune; none of this is related to the present study. *Money paid to the institution.

REFERENCES

Renal Excretion of Contrast on CT Myelography: A Specific Marker of CSF Leak

S. Behbahani, J. Raseman, H. Orlowski, A. Sharma, and R. Eldaya

ABSTRACT

BACKGROUND AND PURPOSE: The purpose of this study was to evaluate the sensitivity and specificity of renal/ureteric opacification on postmyelographic CT as a sign of CSF leak.

MATERIALS AND METHODS: We performed a retrospective review of postmyelographic CT scans from 49 consecutive patients seen between January 2008 and August 2018 with imaging and/or clinical findings related to intracranial hypotension. Each scan was evaluated by both a neuroradiology fellow and a board-certified neuroradiologist for the presence of contrast in the renal excretory system. A similar assessment was also performed on 90 consecutive control subjects who underwent CT myelography for alternative indications.

RESULTS: Among the 49 patients with suspected CSF leak, 21 (43%) had an overt CSF leak on postmyelographic CT (group 1) and 28 (57%) did not (group 2). Overall, renal contrast was identified in 7/49 patients (14.3%): 5 (24%) patients in group 1, and 2 (7%) patients in group 2. Renal contrast was not seen in any of the 90 controls on postmyelographic CT.

CONCLUSIONS: Renal contrast was exclusively seen in patients with a clinically or radiographically suspected CSF leak. Given its 100% specificity, identification of this finding should prompt a second look for subtle myelographic contrast extravasation or an underlying CSF-venous fistula. Our results suggest that this sign may be considered an additional diagnostic criterion for CSF leak in the absence of an identifiable leak.

ABBREVIATIONS: CTM = CT myelogram; CVF = CSF-venous fistula; ICH = intracranial hypotension

Spinal CSF leaks resulting in intracranial hypotension are an important and common cause of chronic postural, and often debilitating, headaches in young and middle-aged individuals. Causes of spinal CSF leak include iatrogenic (operation, epidural injections, and fluoroscopically guided spinal interventions) or noniatrogenic traumatic injury to the dura, degenerative changes (ie, osteophytes), and the recently described CSF-venous fistula (CVF). Imaging plays a central role both in establishing the diagnosis of intracranial hypotension and in identifying the location of a CSF leak. However, despite the advances in imaging, the number of cases without an identifiable cause remain high and can reach 46%–55% of cases in spontaneous intracranial hypotension (SIH). For optimal management of these patients, it is important that a firm diagnosis of intracranial hypotension and underlying CSF leak be established, even in the absence of an overt CSF leak.

Schievink et al have proposed 3 diagnostic criteria for spontaneous CSF leak and intracranial hypotension, which are independently diagnostic: A, B, and C. Criterion A is demonstration of spinal CSF leak on any spinal imaging. Criterion B is demonstration of cranial MR imaging related to intracranial hypotension such as a subdural fluid collection and brain sagging plus the presence of at least 1 of the following: low opening pressure (60 mm H2O or less), spinal meningeal diverticulum, or improvement of symptoms after epidural blood patching. Criterion C is the presence of all of the following or the presence of orthostatic headache and at least 2 of the following: low opening pressure (60 mm H2O or less), spinal meningeal diverticulum, and/or improvement of symptoms after epidural blood patching.

CT myelography is often used to establish the source of spinal CSF leak, given its wide availability and relative ease of interpretation across different subspecialties compared with...
MR myelography and radionuclide cisternography. We have anecdotally observed opacification of the renal excretory system on CT myelograms obtained in patients with a suspected CSF leak. The purpose of this retrospective study was to assess whether the opacification of the renal excretory system could be used as an additional diagnostic sign of underlying CSF leak on CT myelograms (CTMs).

MATERIALS AND METHODS

An approval from the institutional review board at the Washington University in Saint Louis was obtained for this Health Insurance Portability and Accountability Act–compliant retrospective case-control research project.

Patient Selection

From our spine procedure data base, all consecutive adult patients (older than 18 years of age) who had undergone CT myelography between January 2008 and August 2018 in the setting of imaging and/or clinical findings of intracranial hypotension were included (Table 1). We additionally included 90 consecutive controls (Table 1) in whom lumbar CT myelography had been performed for indications other than suspected CSF leak. Patients who had received intravenous iodinated or gadolinium-based contrast within 48 hours preceding myelography were excluded. Studies that did not include the CT images of the lumbar spine or kidneys were also excluded. Indications for myelography in the control group were back pain (n = 79), radiculopathy (n = 4), spinal stenosis (n = 3), lower extremity weakness (n = 2), scoliosis (n = 1), fracture (n = 1), postfusion hardware failure (n = 1), and myelopathy (n = 1).

The 49 cases with imaging and/or clinical signs concerning for a spinal CSF leak that met the inclusion but not exclusion criteria were divided into 2 groups: Group 1 patients had CTM evidence of a CSF leak, and group 2 patients did not have any CTM evidence of a CSF leak. Group 2 was further assessed with respect to the presence or absence of imaging evidence of intracranial hypotension (ICH) on cranial MR imaging or a fluid collection on spinal MR imaging. These groups were then further evaluated for a response to the epidural blood patch and other pertinent clinical information.

Imaging Review and Statistical Analysis

Each CTM had initially been interpreted by a neuroradiology fellow and a board-certified neuroradiologist to evaluate a CSF leak. A neuroradiology fellow and a neuroradiology attending physician re-assessed these imaging studies for evidence of renal contrast, as evidenced by subjective visual recognition of opacification of the renal excretory system (ie, calyces, renal pelvis, ureters, or urinary bladder). In addition, the average Hounsfield unit of renal pelvises was calculated by averaging the Hounsfield unit of each renal pelvis as determined by placing a circular ROI measuring between 8 and 10 mm within it. ROIs were placed centrally unless an off-center location had to be selected due to the presence of streak artifacts or partial collapse of the central aspect of the renal pelvis. The Hounsfield unit value was not recorded if the small size of the renal pelvis or the presence of artifacts prevented placement of an ROI of >8 mm.

Both readers recorded the location of the CSF leak and epidural collection if they were present. They also reviewed other pertinent clinical and imaging records for categorization of patients based on the diagnostic criteria proposed by Schievink et al. The time from the start of the procedure (ie, initial fluoroscopic image obtained before access to the intrathecal space) to the time when the CT for the CTM was performed was recorded for all patients.

The mean and SD were calculated for the Hounsfield unit of the central aspect of the renal pelvis. The Hounsfield unit value was not recorded if the small size of the renal pelvis or the presence of artifacts prevented placement of an ROI of >8 mm.

RESULTS

Of the 49 total patients with imaging and/or clinical signs concerning for a spinal CSF leak, 41 patients demonstrated clinical symptoms of headaches, orthostatic headaches, chronic headaches, and/or positional headaches with the remainder demonstrating various nonspecific symptoms of back pain, gait problems, falls, and so forth.

Direct evidence of CSF leak on CTM was seen in 21 patients (Fig 1, group 1: 7 men; mean age, 47.7 years; and 14 women; mean age, 45.8 years). Of these, 12 (57%) demonstrated cranial MR imaging findings of intracranial hypotension (Fig 2), whereas 5 (23%) did not. The remaining 4 patients did not have MR imaging of the brain. In 16/21 group 1 patients, an intraspinal epidural CSF leak was seen. The leak was foraminal in location in remaining 5 cases. Renal contrast on the CT myelogram was seen in 5/21 (23%) group 1 patients (On-line Table).

Those patients with a clinically suspected CSF leak without confirmatory evidence on CTM (group 2) included 8 men (average age, 37.9 years) and 20 women (average age, 55.5 years). Of these 28 patients, 8 patients met criterion B for the diagnosis of ICH and spinal CSF leak. Of the remaining 20 patients, 10 met neither criterion B nor C for the diagnosis of spinal CSF leak or ICH, and the other 10 could not be characterized using the criteria due to a lack of MR imaging or clinical data.
Only 2/28 (7.1%) patients in group 2 demonstrated renal contrast, both of whom met criterion B as demonstrated by MR imaging evidence of ICH as well as clinical symptom improvement with the epidural blood patch procedure. The first patient underwent an additional nuclear medicine examination for evaluation of a CSF leak, which demonstrated findings consistent with persistent CSF leak, confirming the diagnosis (On-line Table).

None of the controls demonstrated any renal or ureteric opacification on CT (Fig 3).

Successful measurement of Hounsfield units of the renal collecting system could be performed in 68 controls and 34 patients (including 7 in whom the presence of excreted contrast in the collecting system was visually evident). Patients in whom myelography was performed to look for CSF leaks had higher mean Hounsfield units of the renal pelvices compared with the control group (Table 2, P < .001). Even patients without visually evident opacification of the renal collecting system had higher mean Hounsfield units compared with the control group (Table 2, P < .001).

The time between intrathecal contrast administration and CT examination ranged between 45 and 74 minutes with a mean of 57 minutes for our cases positive for renal contrast. The average time from the first fluoroscopy image obtained to the CT scan was 57 minutes in the patients with a suspected CSF leak and without renal contrast and 58 minutes in the control group. There was no statistical difference for the fluoroscopy-to-CT scan time interval among all 3 groups, with the P values for cases positive for renal contrast and the control group being .94, the control group and suspected CSF leak without contrast being .81, and suspected CSF leak without contrast and contrast-positive cases being .89.

DISCUSSION

CSF leak is a source of substantial patient morbidity and remains a challenging diagnosis. While most patients present with typical postural headaches, a subset of patients present with vague or atypical symptoms that can result in a delay in diagnosis. Additionally, not all patients demonstrate the classic intracranial or spinal MR imaging findings of ICH. The acknowledgment of such diagnostic challenges and yet the need for rapid and definitive diagnosis of CSF leak and ICH have recently led to increased use of and dependence on imaging to establish the diagnosis with incorporation of imaging in the diagnostic criteria of ICH.4,11
Reliance on imaging to detect spinal sources of CSF leak will continue to increase, given the recent evidence suggesting that most spontaneous intracranial hypotension can be predominantly attributed to spinal sources (mechanical tears, CVFs, and leaking nerve root sleeves) and the increased rate of detection of a CSF leak with dynamic CT myelography. Despite these advances, detection of the site of CSF leak continues to remain elusive, and in some cases, establishing the diagnosis of CSF leak or ICH remains uncertain.

The primary goal of imaging of patients with positional headaches or suspected ICH is to establish the diagnosis of CSF leak, and if possible, the source of the leak. Our study suggests that visualization of contrast within the renal collecting system or ureters (renal contrast) on CT myelography can serve to firmly establish the diagnosis of a CSF leak. Contrast opacification of the renal collecting excretory system was 100% specific for CSF leak. This subjective visual assessment was further confirmed objectively by a statistically significant difference between the mean Hounsfield unit in the collecting system between the control group and group 2. The objective measurement of the collecting system Hounsfield unit further adds validity to this finding and can, in combination with the visual assessment, serve as an additional sign of CSF leak.

Renal and ureteric renal opacification was noted in patients across multiple pathophysologies, including traumatic dural tears, degenerative mechanical tears, CVF, and no identifiable CSF leak source. Renal and ureteric contrast opacification was also noted in patients with and without brain MR imaging findings of ICH and in patients with or without spinal fluid collections on MR imaging (slow or fast leak). This consistency across multiple pathophysologies and positive or negative MR imaging findings supportive of CSF leak and/or ICH combined with 100% specificity makes this finding excellent for confirmation of a leak and an extremely valuable marker for occult spinal CSF leaks. As a result, renal contrast on CT myelography can be used as a definitive predictor or a major component of the diagnostic criteria for CSF leak.

Kinsman et al have recently shown similar results with renal contrast on CT myelography only detected in patients with spontaneous intracranial hypotension. However, in their study, renal contrast visualization was highly correlated with the presence of CSF venous fistulas in patients with spontaneous intracranial hypotension and was noted less frequently in patients with dural tears. This finding differs from those in our retrospective study because our study found that only 1 of the 7 cases was due to a CSF-venous fistula. However, because both studies are limited by power, studies with larger numbers of case series or a large-volume literature meta-analysis are needed to estimate the relative proportion of each etiology before associating this specific finding with a particular pathophysiology of CSF leak.

The underlying pathophysiology of this finding remains unclear. A potential explanation is the presence of direct communication between CSF and the venous system and, thus, rapid clearance of contrast by the collecting system as noted in CVF. However, the lack of consistency of this finding in all patients with CVF suggests an additional mechanism for this finding. Also, the presence of this finding, in our series and of that of Kinsman et al, in patients without CVF further supports additional factors contributing to the rapid renal clearance of CSF in selective patients with CSF leak. An interesting observation in our study is that subjective contrast opacification of the renal system on CT myelography was detected only in patients meeting the Schievink diagnostic criteria A or B, with none seen in patients meeting criterion C. This finding was similar to that of Kinsman et al because their study showed contrast opacification in patients with a detected leak on CT myelography (criterion A), patients with findings of ICH (criterion B), and patients with CVF.

![Renal Contrast on CT Myelogram](image)

FIG 3. Contrast seen in the renal excretory system (renal contrast) in dark gray and total cases in each group in light gray.

Table 2: Mean Hounsfield unit values of the renal collecting systems for each group

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean HU in Right Renal Pelvis</th>
<th>Mean HU in Left Renal Pelvis</th>
<th>Mean HU in Renal Pelvis *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>68</td>
<td>3.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Clinical- or imaging-suspected CSF leak</td>
<td>27</td>
<td>11.7</td>
<td>13.0</td>
</tr>
<tr>
<td>with no contrast visualized in the renal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>collecting system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspected CSF leak with contrast visualized</td>
<td>7</td>
<td>132.8</td>
<td>128.5</td>
</tr>
<tr>
<td>in the collecting system</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The mean for each group was rounded to the next whole number for simplification.
Quantitative Hounsfield unit assessment revealed significant differences between the control group (average 3 Hounsfield units) and patients with suspected CSF leak without visually apparent renal contrast (average of 12 Hounsfield units). There was also a significant difference between the mean Hounsfield unit of the collecting system between groups 1 and 2. This may indicate that the extent of renal contrast excretion occurring by the time a postmyelogram CT is obtained is also a function of how much contrast ends up extravasating from the thecal sac. While arguing for measuring Hounsfield units of the renal pelvis, it also suggests the possible role of techniques such as dual-energy CT myelography in bringing out these inherent subtle contrast differences.20,21

Recognition of this sign has important implications in the management of patients with suspected ICH. It is well-recognized that identification and localization of a CSF leak can sometimes require multiple imaging studies, especially in patients who end up being diagnosed with CVF. Our results suggest that recognition of renal contrast on CT myelography should prompt a thorough review of CT myelography for subtle signs of CSF leak, and if not found, an active pursuit with additional imaging, including digital subtraction myelography to look for underlying pathology including a CVF or focal dural tear, should be performed.3,10,22

Limitations and Future Research
While our study highlights an important finding that can aid in establishing the diagnosis of spinal leak, prompting a search for a leak source in subtle or occult cases, we acknowledge several limitations. The first limitation was the relatively small sample size of the patient population. While we acknowledge that the sensitivity of our study for detection of CSF leak may be low, given the high specificity of the positive findings and the relatively large control group, these were not thought to limit the significance of the finding. Furthermore, the high specificity of this finding may prove helpful when applied to larger populations of patients. However, the small sample size limits association of this finding with specific CSF leak pathophysiology. Second, the recorded time between intrathecal contrast injection and the CT examination start was longer than the actual interval between the 2 examinations because the myelographic examination start was recorded from the first fluoroscopic acquisition rather than from the time of intrathecal contrast injection. However, this difference was not a significant limitation because the time interval between the 2 examinations remained relatively short and there was no significant difference in the time interval among all 3 groups. Third, a direct CSF leak was not detected on CT myelography in many of the cases; this finding may have been, at least partially, due to a combination of interval resolution of the presumed spinal CSF leak between initial symptom presentation and CTM acquisition and/or clinical misdiagnosis. Last, in the study design, the attending neuroradiologist and neuroradiology fellow who designed and completed this retrospective project were not blinded to the study and data collection. However, the conclusion derived by this nonblinded review is firmly supported by the objective, quantitative Hounsfield unit measurements.

CONCLUSIONS
Renal contrast was exclusively seen in the presence of CSF leak. Given its 100% specificity, identification of this finding should prompt a closer second look for subtle myelographic contrast extravasation or an underlying CVF. Our results suggest that this sign may be considered as an additional diagnostic criterion for CSF leak in the absence of an identifiable leak. This could be used in conjunction with known diagnostic criteria of CSF leak in SIH.4

REFERENCES
2. Schievink WI. Spontaneous spinal cerebrospinal fluid leaks and intracranial hypotension. JAMA 2006;295:2286–96 CrossRef Medline

Long-Term Outcome of Patients with Spinal Dural Arteriovenous Fistula: The Dilemma of Delayed Diagnosis

F. Jablawi, G.A. Schubert, M. Dafotakis, J. Pons-Kühnemann, F.-J. Hans, and M. Mull

ABSTRACT

BACKGROUND AND PURPOSE: The impact of various radiologic and clinical features on the long-term outcome in spinal dural arteriovenous fistulas is still unclear; thus, they are the purpose of this study.

MATERIALS AND METHODS: We retrospectively analyzed our medical data base for all patients treated for spinal dural arteriovenous fistula in our institution between 2006 and 2016. Patient age, neurologic status at the time of diagnosis, the duration of symptoms from onset to diagnosis, and follow-up information were evaluated. The extent of medullary T2WI hyperintensity, intramedullary contrast enhancement, and elongation of perimedullary veins on MR imaging at the time of diagnosis were additionally analyzed.

RESULTS: Data for long-term outcome analysis were available in 40 patients with a mean follow-up of 52 months (median, 50.5 months; range, 3–159 months). The mean age at the time of diagnosis was 69.27 ± 9 years (median, 71 years; range, 53–84 years) with a male predominance (n = 32; 80%). The mean duration of symptoms was 20.2 months (median, 10 months; range, 1–120 months). Shorter duration of symptoms at the time of diagnosis was significantly correlated with better outcome of symptoms (P < .05).

CONCLUSIONS: Spinal dural arteriovenous fistulas are characterized by interindividually variable clinical presentations, which make a determination of specific predictors for long-term outcome more difficult. Fast and sufficient diagnosis might result in a better outcome after treatment. The diagnosis of spinal dural arteriovenous fistula remains markedly delayed, reflecting an ongoing lack of knowledge and awareness among treating physicians of this rare-but-serious disease.

ABBREVIATIONS: AL-score = Aminoff-Logue disability score; CE-MRA = contrast-enhanced MRA; sdAVF = spinal dural arteriovenous fistula

Spinal dural arteriovenous fistulas (sdAVFs) usually become symptomatic in elderly men, who are affected 5 times more often than women. Symptoms caused by sdAVF comprise gait disturbances with or without paresis, sensory disturbances in the lower extremities, pain, and sphincter and erectile dysfunctions. An estimation based on a series assessed previously in RWTH Aachen University Hospital revealed an incidence rate for sdAVF of up to 5–10 million per year in the general population.

The predictive value of several radiologic and clinical factors in patients with sdAVF has been controversially discussed in the past. The existence of a plethora of case series implies a lack of universal consensus on possible predictors for long-term outcome.

Because sdAVF is a particularly rare disease and is frequently misdiagnosed for several months to years, gathering a sufficient number of patients for a meaningful analysis is an inherent challenge. At the same time, gathering long-term outcome data of a predominantly elderly and comorbid patient population is associated with several logistic difficulties. Moreover, a comparative analysis of various studies to dramatically increase sample size is hampered by relevant variations in diagnostic and therapeutic strategies in different referral centers. Thus, our current study aims to fill this gap by providing clinical and radiologic features as well as follow-up information of a considerable cohort of microsurgically treated sdAVFs.

MATERIALS AND METHODS

We retrospectively analyzed our medical data base for all patients treated for sdAVF at RWTH Aachen University Hospital between 2006 and 2016.
The diagnosis of sdAVF was performed on the basis of the following criteria: 1) myelopathic symptoms, including gait disturbances with or without vegetative urinary dysfunctions; 2) findings of congestive myelopathy with or without engorged perimedullary veins on MR images; and 3) angiographic confirmation of an sdAVF.

Clinical data including patient age, neurologic status at diagnosis, and duration of symptoms from onset to diagnosis were assessed by the treating physicians and re-evaluated for this study. Radiologic data were electronically available and reviewed accordingly. Clinical data were obtained by chart review and/or telephone survey.

We routinely aim to perform an early postoperative MR imaging during the inpatient stay, 3–6 months after discharge, and annually in the first three years after treatment for all patients with sdAVFs. In case of persistence or deterioration of clinical symptoms and/or radiologic findings indicative of congestive myelopathy, we additionally perform spinal MRA and DSA to rule out residual or recurrent fistulas.

Neurologic status at time of diagnosis and at last follow-up was assessed using the Aminoff-Logue disability score for gait (AL-score) (Table). The long-term outcome was assessed on the basis of changes of the AL-score across time and was rated as improved, stable, or aggravated. To analyze the significance of the duration of symptoms on long-term outcome, we categorized the time from onset to diagnosis as follows: 1) ≤6 months, 2) 7–18 months, and 3) >18 months. The extent of medullary edema, intramedullary contrast enhancement, and engorgement of perimedullary veins on MR imaging at diagnosis was recorded and rated according to the number of affected vertebral levels. The location of the sdAVF verified by spinal DSA was categorized as follows: 1) thoracic: T3–T9; 2) thoracolumbar: T10–L4; and 3) deep lumbosacral: below L4.

Statistics
Data were expressed as means ± SD and median and range. Correlation analysis and group comparisons were performed with nonparametric statistics. Data analysis was performed with SPSS Statistics for Windows, Version 25.0 (IBM, Released 2017, Armonk, New York.)

RESULTS
A total of 59 patients with sdAVFs were identified. Data for long-term outcome analysis were available in 40 patients, with the remaining 19 patients being lost to follow-up due to unknown changes of address (n=11) or incomplete clinical and radiologic data (n=8). Twenty-eight (70%) of these 40 patients were referred to our center from elsewhere due to clinically and radiologically suspected spinal arteriovenous pathology with nonconclusive MR imaging and/or DSA examinations. All 28 patients underwent at least 1 spinal MR imaging, and 17 of them underwent at least 1 spinal DSA before admission to our institution.

After angiographic visualization of the sdAVF in our center, all 40 patients were treated via microsurgical disconnection of the intradural drainage vein. Only 1 patient was found to have a residual fistula on early postoperative DSA, which was occluded surgically 2 days after the initial operation. Procedure-related complications were observed in 2 (5%) patients. One patient developed a wound infection, and 1 patient was treated for postoperative CSF leakage.

Clinical Features
The mean age at diagnosis (n=40) was 69.27 ± 9 years (median, 71 years; range, 53–84 years) with a male predominance (n=32, 80%). The mean duration of symptoms from onset to diagnosis was 20.2 months (median, 10 months; range, 1–120 months). Gait disturbances were present in all 40 patients. Paraparesis was observed in various manifestations in 29/40 (73%) patients. Another 11/40 (27%) patients had ataxia or neurogenic claudication without overt paresis in the lower extremities. The mean AL-score for gait at diagnosis was 3 ± 1.6 (median, 3; range, 0–5).

Radiologic Findings
Preoperative MR imaging (n=40) and additional spinal contrast-enhanced MRA (CE-MRA) (n=34) examinations were available for this analysis. Medullary edema was detected in 35/40 (88%), extending, on average, over 5.5 ± 3 vertebral levels (median, 6 vertebral levels; range, 1–12 vertebral levels). Intramedullary contrast enhancement was observed in 30/40 (75%), on average extending over 4 ± 2.4 vertebral levels (median, 4 vertebral levels; range, 1–8 vertebral levels). Engorged perimedullary veins in the thoracic and/or thoracolumbar region were observed in all 40 patients, with a mean extent of 7.5 ± 4.6 vertebral levels (median, 7 vertebral levels; range, 1–18 vertebral levels). On DSA, 17 sdAVFs were located in the thoracic, and 19, in the thoracolumbar region. Four fistulas were located in the deep lumbosacral region.

Long-Term Outcome
After a mean follow-up of 52 ± 37 months (median, 50.5 months; range, 3–159 months), the mean AL-score was 2.5 ± 1.8 (median, 3; range, 0–5). Clinical follow-up outcome was improved in 21/40 (53%), stable in 11/40 (28%), and aggravated in 8/40 (20%) patients. Chances for good long-term outcome were not influenced by patient age (P=.152) or by the neurologic status at diagnosis (P=.324) (Fig 1). A longer duration of symptoms from onset to diagnosis was significantly associated with worse long-term outcome (P=.008). Patients with a shorter clinical course (≤6 months) had an improvement of their gait disturbances up to 1 grade on the AL-score (Fig 1). No significant correlation was observed...
FIG 1. A, Boxplot demonstrates the correlation between long-term outcome and neurologic status at diagnosis evaluated by the AL-score and dichotomized into mild: AL-score 0–1; moderate: AL-score 2–3; and severe: AL-score: 4–5. B, Scatterplot demonstrates the relationship between long-term outcome and patient age at diagnosis. C, Boxplot demonstrates the correlation between long-term outcome and the duration of symptoms at diagnosis. The x-axis indicates the initial and follow-up AL-scores.
FIG 2. Scatterplot demonstrates the relationship between long-term outcome and extension of medullary edema (A), intramedullary contrast enhancement (B), and perimedullary vein enlargement at diagnosis (C). The x-axis indicates the initial and follow-up AL-scores.
between long-term outcome and the extent of medullary edema ($P = .638$), intramedullary contrast enhancement ($P = .425$), and engorgement of the perimedullary veins ($P = .672$) (Fig 2). There was also no relationship between the fistula location and the long-term outcome in our cohort.

Long-term follow-up MR imaging examinations were available for 21 patients with a mean follow-up of 14.5 ± 11.6 months (median, 12 months; range, 1–44 months). All 21 patients demonstrated a regression of the medullary venous congestion, reflecting a sufficient interruption of the arteriovenous shunt.

DISCUSSION

Clinical Features

Among all analyzed clinical factors in our current cohort, only a shorter duration of symptoms before treatment (≤ 6 months) was associated with a better long-term outcome. Patient age and the neurologic status at diagnosis had no influence on the long-term outcome.

Most surprising, the most stunning finding among patients in our current cohort was the long duration of symptoms of almost 2 years from onset to definite diagnosis. This was unchanged

Illustrative Case

A 56-year-old woman presented with progressive gait disturbances during the past 4 months. Neurologic examinations at the time of admission showed spinal ataxia, proximal accentuated paraesthesia, and hypoesthesia below T10. In the initial CE-MRA in our center, T2WI and T1WI showed centro-medullary edema and contrast enhancement extending from the T10 vertebral level to the conus medullaris (Fig 1). Arterialized perimedullary veins were detected in the thoracic region dorsally as well as ventral to the myelon. Further MRA sequences suggested an arteriovenous shunt at the level of the T11 segmental artery. The subsequent DSA was primarily focused on this region. A sdAVF could be identified at the level of the left T11 nerve root receiving arterial supply via radiculomeningeal branches of the left T11 segmental artery. The venous drainage into the perimedullary venous plexus occurred via the elongated left T11 radicular vein (Fig 3). After left-sided hemilaminectomy at the T11 vertebral level, the hypervascularized fistula zone and the elongated radicular drainage vein were identified. The drainage vein was disconnected via clip ligation (Fig 4). In the annual follow-up examinations after treatment, gait disturbances and paraesthesia had improved markedly. MR images showed a complete regression of medullary congestion (Fig 5).
compared with an older cohort from our group (91 patients diagnosed between 1988 and 2002, mean duration of symptoms of 20 ± 19 months; \(P = .533\)). Moreover, to the best of our knowledge, a mean duration of symptoms of >1 year has never been reported in any of the large representative series in the literature.4,5,9

Because high-quality MR imaging/MRA and DSA are more readily available currently than in the past, we assume that our actual observation is reflecting an ongoing lack of awareness and experience in dealing with this rare disease of nonspecific clinical and radiologic presentations. This may also explain the relatively high rate of patients who were referred to our center with nonconclusive clinical and radiologic findings (28/40), despite repetitive MR imaging and/or DSA examinations performed in their local hospitals.

In the early phase of the disease, the diffuse symptoms of sdAVF are commonly confused with more frequent disease entities such as spinal degenerative diseases or polyneuropathy. In cases with the above-mentioned, nonspecific symptoms but a lack of typical findings of degeneration or polyneuropathy, we recommend imaging the whole spine with T2WI. Whenever a medullary congestion with or without elongated perimedullary vessels is present, further spinal MRA and/or DSA examinations should be considered.

Radiologic Findings

There is a universal consensus in the literature that medullary venous hypertension is the basic pathomechanism behind the symptomatology of sdAVF. If the fistula is left untreated, induced congestive myelopathy usually progresses to medullary ischemia, leading to disturbances of the spinal cord-blood barrier.10 These pathophysiologic changes induce typical-but-nonspecific medullary edema and contrast enhancement with or without engorgement of perimedullary veins on MR images.1,11

Regardless of the treatment technique, the prognostic impact of initial neuroradiologic findings on long-term outcome in patients with sdAVFs is still a matter of dispute.12,13 Hetts et al14 demonstrated in a series of 31 patients, a positive correlation between early functional recovery after treatment and the extent of elongated perimedullary veins at diagnosis. In a cohort of 65 patients treated either microsurgically or endovascularly with a mean follow-up of 6 months reported by Cenzato et al,15 sdAVFs in the lower thoracic segments (T9–T12) were associated with more severe symptoms but tended to improve more after treatment. Midthoracic (above T9) and lumbar (below T12) fistulas in their series were associated with a lower incidence of improvement.15 In contrast, Dhandapani et al16 reported a higher improvement rate in patients with sdAVFs below the T9 level in 22 microsurgically treated patients within a mean follow-up of 7 months.

Compared with the rather short follow-up periods in these studies, our current analysis had a mean follow-up of 52 ± 37 months and showed no correlation between the extensions of medullary edema, centro-medullary contrast enhancement, or elongation of perimedullary veins, and the long-term outcome. Also, the fistula location showed no influence on the long-term outcome in our analysis.

We assume that the chronic pathologic arterialization of the spinal venous system could induce irreversible changes of medullary venous outflow that may significantly affect the functional recovery, even after sufficient interruption of the arteriovenous shunt.2,17

In a previous analysis by our group, we found that the elongation of perimedullary veins on MR images is more dominant in the earlier phase of this disease.2 These dilated veins may maintain the medullary venous outflow, reflecting a better compensation of the medullary venous hypertension and result in a better outcome if the sdAVF was sufficiently diagnosed and treated in this phase of the disease. A sufficient visualization of the spinal venous system is, however, still associated with major diagnostic difficulties. It could clarify several unclear aspects of this disease and should be the subject of further studies.

Limitations

Our study has several limitations. First, because our institution is a tertiary referral center for spinal vascular diseases, there is a
high risk of referral bias in our current analysis, resulting in a longer duration from symptom onset to diagnosis. Another risk of bias is the retrospective approach of this study, which may provoke speculative interpretation of our data to some extent. Another limitation is that we retrospectively determined the Aminoff-Logue disability scale through chart review. The AScore itself has a limited value in the interpretation of neurologic status.

CONCLUSIONS
Spinal dural arteriovenous fistulas are characterized by interindividually variable clinical presentations that make a determination of specific predictive factors for the long-term outcome more difficult. Our current analysis implies the importance of early diagnosis for a better neurologic outcome. However, despite major developments in neuroradiologic noninvasive diagnostic tools in the past decades, the diagnosis of sdAVF remains markedly delayed. Our current study may raise the awareness of neurologists of this rare disease and emphasize the importance of early diagnosis in these patients.

References
1. Thron AK. Applications in spinal dural AV fistulas. In: Thron AK. Vascular Anatomy of the Spinal Cord: Radioanatomy as the Key to Diagnosis and Treatment. 2nd ed. Cham: Springer-Verlag International Publishing; 2016
Differentiation between Tuberculous and Pyogenic Spondylodiscitis: The Role of the Anterior Meningovertebral Ligament in Patients with Anterior Epidural Abscess

S.B. Strauss, S.R. Gordon, J. Burns, J.A. Bello, and S.E. Slasky

ABSTRACT

BACKGROUND AND PURPOSE: Differentiation between tuberculous and pyogenic spondylodiscitis is a diagnostic challenge because imaging often does not reliably distinguish the 2 entities and percutaneous biopsies are often culture-negative. The purpose of this study was to determine whether violation of the anterior meningovertebral ligament in the setting of anterior epidural abscess discriminates between these entities.

MATERIALS AND METHODS: This was a retrospective cohort study of all patients with acid-fast bacillus testing and anterior epidural abscess diagnosed on spinal MR imaging between May 2014 and September 2019, with a final diagnosis of tuberculous or pyogenic spondylodiscitis. Six cases of tuberculous spondylodiscitis (mean age, 45.5 years; 80% male) and 35 cases of pyogenic spondylodiscitis were evaluated (mean age, 56.6 years; 49% male). Demographic characteristics were recorded. Cases were assessed for anterior meningovertebral ligament destruction on MR imaging, as demonstrated by the shape of the epidural collection. Segmental location of the infection was also assessed. Independent 2-sample t tests and χ² tests of independence were performed to evaluate the significance of the difference between the groups.

RESULTS: Five of 6 (83.3%) cases of tuberculous epidural abscess had an intact anterior meningovertebral ligament, and 0/35 cases of pyogenic epidural abscess demonstrated an intact ligament (P < .001). The presence of an intact anterior meningovertebral ligament had 83.3% sensitivity and 100% specificity for tuberculous spondylodiscitis, a 100% positive predictive value, and a 97.2% negative predictive value.

CONCLUSIONS: The presence of an intact anterior meningovertebral ligament has high sensitivity and specificity for tuberculous spondylodiscitis–associated epidural abscess, though these results should be validated in a larger sample.

BACKGROUND

Infectious spondylodiscitis is an infection of the vertebral body and intervertebral disc and can be classified as either granulomatous (eg, mycobacterial and fungal), pyogenic (other bacterial organisms), or parasitic depending on responsible pathogen and the host response.1 There may be associated paraspinal soft-tissue infection or epidural abscess, though this is not required for a diagnosis of infectious spondylodiscitis. Staphylococcus aureus is the causative organism in >75% of cases of bacterial spondylodiscitis,2 resulting from either hematogenous spread or direct extension from trauma or adjacent infection.3 Granulomatous spondylodiscitis, specifically tuberculous (TB) spondylodiscitis, is less common than pyogenic spondylodiscitis, with an estimated incidence of only 0.05/100,000 in the United States,4 though the incidence is higher in endemic regions.5 Differentiation of pyogenic and tuberculous spondylodiscitis is critical because early, targeted treatment can decrease mortality and long-term neurologic morbidity.

The posterior longitudinal ligament is apposed to the posterior vertebral body with direct fixation to the outer annulus fibrosis of the intervertebral disc. At the level of the mid vertebral body, there is a midline, sagittally oriented septum (meningovertebral ligament) anchoring the posterior longitudinal ligament to the periosteum, effectively dividing the anterior epidural space into 2 discrete compartments to the right and left of the midline septum (Fig 1).6,7 The anatomy and composition of the multiple meningovertebral ligaments in both the anterior and posterior epidural spinal compartments were well-delineated in a study...
using data from in vivo imaging, postmortem anatomy, and microscopy, in which they were found to comprise compact collagen attached to an area of thickened vertebral body periosteum. Geers et al demonstrated that the polygonal, stellar, or y-shaped deformation of the dural sac seen in patients with epidural lipomatosis is attributable to the presence of meningovertebra ligaments. These ligaments, and particularly the anterior meningovertebra ligament, are variably affected by pathology involving the epidural space. Kim et al demonstrated that whereas epidural hematoma and pyogenic infection disrupt the ventral meningovertebra ligament, a neoplasm leaves this anterior septum intact. The purpose of this study was to determine whether the identification of the ventral meningovertebra ligament on MR imaging can help differentiate between TB and pyogenic spondylodiscitis. It is thought that unlike pyogenic spondylodiscitis, TB spondylodiscitis spares the intervertebral disc in the setting of early infection because it lacks the proteolytic enzymes necessary to breach the disc. We hypothesize that similarly, TB spondylodiscitis will not affect the anterior meningovertebra ligament in the setting of anterior epidural abscess.

MATERIALS AND METHODS

This Health Insurance Portability and Accountability Act–compliant retrospective cohort study was performed with approval of the institutional review board of Montefiore Medical Center. We identified all patients who had MR imaging of the cervical, thoracic, or lumbar spine between May 2014 and September 2019 performed in the inpatient or emergency department setting who also had any acid-fast bacillus lab test performed (culture or stain, derived from abscess, body fluid, blood culture, bone marrow, CSF, respiratory, tissue, or wound) using the Looking Glass clinical analytics (Streamline Health, Atlanta, Georgia). Four hundred seventy-one patients were identified, of whom 85 had epidural abscess as per the radiology report. Final pathology and chart review were performed, and cases were further classified as either pyogenic or TB spondylodiscitis established by positive culture or gram stain. Cases were excluded if there was a dorsal epidural abscess alone without ventral involvement (n = 11), postoperative/post traumatic infection (n = 5), no definite final diagnosis (patient lost to follow-up or died) (n = 3), no organism identified on culture (n = 14), phlegmon rather than organized abscess on imaging (n = 11), or final pathology demonstrated a noninfectious process (n = 1). The remaining 40 patients demonstrating a ventral epidural collection at the level of the vertebral body were included in the study. Demographics recorded included age, sex, and ethnicity and are provided in Table 1.

Spinal MRIs were acquired at multiple inpatient sites in our institution, using various 1.5T and 3T imaging systems including 1.5T Achieva, 1.5T Ingenia, 3T Intera, and 3T Ingenia MR imaging scanners (Philips Healthcare, Best, the Netherlands). Gadavist (gadobutrol) 0.1 mmol/kg (Bayer Schering Pharma, Berlin, Germany) intravenous contrast was administered. MR imaging sequences reviewed for each patient included axial and sagittal T2WI and T1WI with and without contrast. The imaging review was conducted by a team consisting of a Certificate of Added Qualification board-certified neuroradiologist (S.E.S. with 14 years’ experience) and a fourth-year radiology resident (S.B.S. with 4 years’ experience) using consensus review; a third Certificate of Added Qualification board-certified neuroradiologist (J.B. with 13 years’ experience) adjudicated the differences when consensus could not be reached. The third reviewer was necessary in 3 cases. All reviewers were blinded to the final diagnosis. A unanimous determination was made regarding whether the anterior meningovertebra ligament was intact versus violated.

An intact anterior meningovertebra ligament was defined as an epidural abscess at the level of the vertebral body with an umbilicated, bilobed, or unilobed appearance (Figs 2 and 3), whereas a destroyed ligament was defined as a collection along the posterior aspect of the vertebral body with a

Table 1: Demographic and clinical characteristics

<table>
<thead>
<tr>
<th></th>
<th>M Tuberculosis (n = 5)</th>
<th>Pyogenic (n = 35)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean) (SD, range) (yr)</td>
<td>45.5 (29.6, 11.4–82)</td>
<td>56.6 (15.8, 11.4–76)</td>
<td>.45</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>.19</td>
</tr>
<tr>
<td>Male (No.) (% total)</td>
<td>4 (80%)</td>
<td>17 (49%)</td>
<td></td>
</tr>
<tr>
<td>Female (No.) (% total)</td>
<td>1 (20%)</td>
<td>18 (51%)</td>
<td></td>
</tr>
<tr>
<td>Race/ethnicity (self-reported)</td>
<td></td>
<td></td>
<td>.97</td>
</tr>
<tr>
<td>White</td>
<td>2 (40%)</td>
<td>9 (26%)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>2 (40%)</td>
<td>14 (40%)</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>0</td>
<td>6 (17%)</td>
<td></td>
</tr>
<tr>
<td>Other/unknown</td>
<td>1 (20%)</td>
<td>6 (17%)</td>
<td></td>
</tr>
<tr>
<td>Duration of symptoms (mean) (SD, range) (days)</td>
<td>31.6 (23.6, 9–56)</td>
<td>22 (16, 1–67)</td>
<td>.15</td>
</tr>
</tbody>
</table>

For categoric variables, the frequency (No.) and percentage are reported. For continuous variables, the mean (SD) are reported.
dorsally convex midline apex and direct communication between the right and left compartments of the epidural space (Fig 4). Thus, the anterior meningovertebral ligament was not directly visualized, but rather, its status was inferred on the basis of the shape of the anterior epidural abscess. In addition, the segmental location of the anterior epidural abscess (cervical, thoracic, or lumbar) was recorded.

Statistical analyses were performed using SPSS (Versions 24 and 25; IBM, Armonk, New York). Demographic and imaging characteristics were compared between the groups with TB spondylodiscitis and pyogenic spondylodiscitis. A χ^2 test of independence was used to assess significant difference in race/ethnicity between the 2 groups and segmental location of epidural abscess. Independent 2-sample t tests were performed to test for significant differences between the 2 groups in age. Sensitivity, specificity, and positive and negative predictive values were determined, and their confidence intervals were calculated using the Jeffreys method with EpiTools epidemiological calculators (2019 Ausvet; http://epitools.ausvet.com.au/content.php?page=home).

RESULTS

The demographic features of patients with TB spondylodiscitis and pyogenic spondylodiscitis are shown in Table 1. There were no significant differences between the 2 groups in age, sex, race/ethnicity, or segmental location of anterior epidural abscess. All patients included in the study had laboratory confirmation of the pathogen. Eighteen of 35 (51%) patients classified as having pyogenic osteomyelitis had laboratory confirmation of the pathogen based on biopsy, and 17/35 (49%) patients classified as having pyogenic osteomyelitis had confirmation of the pathogen based on positive blood cultures. The biopsy results are summarized in Table 2. Several patients had >1 pathogen isolated. Of note, one of the patients with TB spondylodiscitis had 2 separate abscesses at remote spinal levels, which were counted as 2 different abscesses.

Prevalence of imaging features associated with tuberculous and pyogenic anterior epidural abscesses in the studied cohort are detailed in Table 3. There was a significant difference between the 2 groups in terms of the appearance of the meningovertebral ligament, with 5/6 (83.3%) cases of tuberculous-associated anterior epidural abscess demonstrating an intact meningovertebral ligament, and 0/35 (0%) cases with pyogenic osteomyelitis--associated infection demonstrating an intact meningovertebral ligament ($P < .001$). The single case of tuberculosis with a destroyed meningovertebral ligament also demonstrated extensive vertebral body collapse (75% loss of vertebral body height). The presence of an intact anterior meningovertebral ligament had 83.3% sensitivity (95% confidence interval, 44.2%–98.1%), 100% specificity (95% confidence interval,
Several prior studies have examined imaging features that differentiate pyogenic from TB spondylodiscitis. Features favoring TB infection over typical pyogenic infection include intervertebral disc space sparing, posterior element involvement, extensive paraspinal soft-tissue involvement, multiple vertebral body involvement, a heterogeneous vertebral body enhancement pattern, and subligamentous spread.1,5,13,14 The status of the anterior meningo-vertebral ligament represents a novel addition to the existing body of literature and may serve as collateral information in cases in which both diagnoses are being entertained.

The anterior meningo-vertebral ligament has been shown to have an impact on the spread of disease in the context of noninfectious pathology. In the setting of degenerative disease, the anterior meningo-vertebral ligament limits transverse migration of extruded disc material.8 Schellinger et al10 initially described progressive destruction of this midline septum in the setting of infection and neoplasm, and Kim et al16 showed that a unilobed or bilobed appearance of a ventral epidural collection had a 76%–82% sensitivity and 73%–80% specificity in identifying neoplastic compared with nonneoplastic anterior epidural space lesions, including hematoma and infection. Hong et al17 noted that TB associated anterior paraspinal abscess of the thoracic spine will not encase the intercostal arteries due to an inability to breach the anterior longitudinal ligament. In the current study, the observed destruction of the anterior midline meningo-vertebral ligament in the setting of pyogenic spondylodiscitis is consistent with that previously reported; the observed preservation of the ligament in TB suggests that mycobacterial infection behaves more similar to neoplasm than to trauma or bacterial infection.

The pathophysiologic basis of the observed effects on the anterior meningo-vertebral ligament is likely related to the unique features of the microorganism. An explanation commonly given for the observed sparing of the intervertebral disc during early stages of infection is that TB characteristically lacks proteolytic enzymes.16–18 Additionally, as an aerobic organism,\textit{M tuberculosis} requires greater arterial supply to survive and is therefore more slow-growing than other infectious organisms.19 Taking up to 11.2 months before clinical signs present, compared with 6.4 months in patients with pyogenic spondylodiscitis.1 Lack of proteolytic enzymes is an important factor that may explain why \textit{M tuberculosis} infection typically spares the anterior meningo-vertebral ligament. Although the meningo-vertebral ligament varies in thickness between different spinal segments, increasing in thickness at the level of the lumbar spine, we found no significant difference between the pyogenic and TB cases in terms of segmental involvement.

There are several limitations to this study. First, the sample size is limited, with only 15% of total cases positive for tuberculosis. However, this limitation reflects the relatively low prevalence of tuberculosis in the studied population. The relatively high number of pyogenic cases improves the specificity and negative predictive value of this finding, while reducing the sensitivity and positive predictive value. Of note, the search criteria used to develop the cohort included only patients who underwent acid-fast bacillus testing. Therefore, while we did not capture all epidural abscesses in our institution during the study period; the study specifically addresses those cases in which both pyogenic and TB

Table 2: Pyogenic Biopsy and Culture Results

<table>
<thead>
<tr>
<th>Organisms Isolated</th>
<th>No.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus species</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Streptococcus species</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Other: Klebsiella, Bacillus cereus, Proteus, Hemophilus species, Enterococcus, Enterobacter</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

93%–100%), 100% positive predictive value (95% confidence interval, 62.1%–1%), and 97.2% negative predictive value (95% confidence interval, 88%–1%) for TB spondylodiscitis.

Table 3: Imaging features associated with TB-versus-pyogenic anterior epidural space abscess

<table>
<thead>
<tr>
<th>Location</th>
<th>M Tuberculosis (n = 6)</th>
<th>Pyogenic (n = 35)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior septum violated</td>
<td>1 (16.7%)</td>
<td>35 (100%)</td>
<td><.001</td>
</tr>
<tr>
<td>Location</td>
<td>1 (16.7%)</td>
<td>35 (100%)</td>
<td><.001</td>
</tr>
<tr>
<td>Cervical</td>
<td>0</td>
<td>5 (14.3%)</td>
<td>0.90</td>
</tr>
<tr>
<td>Thoracic</td>
<td>4 (66.7%)</td>
<td>8 (22.9%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Lumbar</td>
<td>1 (16.7%)</td>
<td>19 (54.3%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Thoracolumbar</td>
<td>1 (16.7%)</td>
<td>1 (2.9%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Lumbosacral</td>
<td>0</td>
<td>2 (5.7%)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

DISCUSSION

\textit{Mycobacterium tuberculosis} is a Gram-positive acid-fast bacillus, which can primarily infect bone or secondarily spread to the axial skeleton via the Batson venous plexus from remote sites of disease. Several patterns of vertebral body infection are described in \textit{M tuberculosis} spondylodiscitis, including central, anterior, posterior, and paradiscal. Tuberculosis occurs more often in the thoracic spine, followed by the lumbar spine.10 Late in the disease, osteolysis results from bone necrosis, causing spinal instability and the typical gibbus deformity to develop.10 Epidural abscess may be present in TB spondylodiscitis, particularly in association with paraspinal infection and can be difficult to differentiate from pyogenic osteomyelitis in the absence of other stereotypical features.10

Differentiation between pyogenic and TB spondylodiscitis is often a diagnostic challenge because few imaging features are shown to reliably distinguish the 2 entities. Moreover, approximately 43%–70% of percutaneous biopsies are culture-negative in the setting of pyogenic and TB spondylodiscitis, even with high clinical and radiologic suspicion, with only marginally improved percentages reported for open biopsies.11,12 In this study, we found that preservation of the anterior meningo-vertebral ligament had high sensitivity (83.3%) and specificity (100%) for the diagnosis of tuberculous infection in the setting of anterior epidural abscess, though these results must be interpreted with some degree of caution given the small sample size. The single case of culture-positive TB infection with a destroyed anterior meningo-vertebral ligament also demonstrated extensive vertebral body height loss (75% loss of vertebral body height). We postulate that the vertebral body damage itself was likely responsible for injury to the anterior meningo-vertebral ligament, rather than primary destruction due to the infection.
infections were differential considerations and in which a radiologic sign might be of greatest utility in discriminating the 2 organisms. Finally, although all studies were performed at the same institution, not all studies were performed on the same scanner or with identical parameters, and the variability in image quality may potentially impact interpretation.

CONCLUSIONS
The presence of an intact anterior meningovertebral ligament on spinal MR imaging has high specificity, sensitivity, and negative predictive value for the diagnosis of TB spondylodiscitis, though these results remain to be validated in a larger sample. Attention to this subtle imaging feature might facilitate early pathogen-directed treatment and ultimately reduce morbidity and the length of stay in the setting of otherwise inconclusive clinical parameters.

ACKNOWLEDGMENTS
We thank Dr Victoria Chernyak for her contributions to data mining and Dr Kenny Ye for his assistance with statistical analysis.

REFERENCES
In the past 2 decades, intraoperative MRI (ioMRI) has been implemented in surgery for pituitary tumors, low-grade gliomas, epilepsy, and deep brain stimulation. In neuro-oncological surgery, the adjunct of ioMRI improves the extent of resection, which eventually results in improved overall and progression-free survival. However, despite encouraging results, there are no specific sequences dedicated to ioMRI to our knowledge.

In the neuroradiologist’s point of view, one of the main difficulties is to find the most useful and time-effective sequence to guide the surgeon in determining the existence of residual tumor tissue. Often, multiple series before and after the administration of a contrast agent are used. In our opinion, this time-consuming step is not compatible with a surgical context in which time for imaging is limited. This restricts the neuroradiologist, especially in complex cases. One potential solution might reside in the use of so-called synthetic imaging (SyntheticMR; SyntheticMR, Linköping, Sweden), which allows us to obtain 1) different types of contrast, and 2) quantitative information, such as T1 and T2 mapping of the tissues.

The use of SyntheticMR in low-grade tumors could represent a real shift of paradigm. Due to edema, air, blood, and immediate postoperative changes, these lesions do not allow a clear delimitation of the tumor border solely by visual analysis, and remaining tumor may thus be missed. Having multiple contrasts in a single sequence by using SyntheticMR may aid the interpretation, in a reduced acquisition time (7 min). The quantitative values may also be of great interest; indeed, synthetic imaging provides several types of cartography, such as cerebral cortex, CSF, white matter, and other tissues, as shown in Fig 1. Quantitative values of T1, T2, and proton density of the tissues are also available. It has already been shown that relaxation rates can be used to grade gliomas, but, at that time, there were no sequences with short acquisition times. Recently, this finding was confirmed with an MR fingerprinting technique. The latter sequence is under development and therefore, not fully available, contrary to SyntheticMR.

In Fig 2, we show that T2 measured with SyntheticMR in the case of a World Health Organization grade I left occipital meningioma is different between the lesion and the cerebral cortex. In our opinion, this principle could be used to help delineate remnant tumor tissue also in low-grade tumors.

We, therefore, think that SyntheticMR could be beneficial for ioMRI by providing multiple contrasts and relaxation-rate quantification to give a reliable interpretation of the presence of residual tumor, thus improving patient care.

Disclosures: None.

ACKNOWLEDGEMENT
The authors thank IMRIS. The SyntheticMR sequence (MDME) was provided by Karolinska University Hospital, developed in collaboration with Synthetic MR AB and Frederik Testud, Siemens Healthcare AB, Sweden.

REFERENCES

![M.I. Vargas](Division of Neuroradiology)
![B.M.A. Delattre](Division of Radiology)
![P. Vayssiere](Division of Neurosurgery)
![M. Corniola](Division of Neurosurgery)
![T. Meling](Division of Neurosurgery)

Please address correspondence to Maria Isabel Vargas, MD, Division of Diagnostic and Interventional Neuroradiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland; e-mail: maria.i.vargas@hcuge.ch

http://dx.doi.org/10.3174/ajnr.A6373
FIG 1. Intraoperative Synthetic MR cartographies illustrating gray matter (green in A), CSF (blue in B), white matter (pink in C), and edema (yellow in D).
FIG 2. Region of interest in the tumor (A), showing decreased T2 values in rapport to gray matter (B) and, on the contrary, TI values similar to the gray matter.
Comments on “Prolonged Microgravity Affects Human Brain Structure and Function”

This letter addresses the article, “Prolonged Microgravity Affects Human Brain Structure and Function.” To investigate whether brain structural changes (which can be observed after long-term space missions) are associated with alterations in motor or cognitive function, Roberts et al\(^1\) retrospectively analyzed brain MR images of National Aeronautics and Space Administration astronauts to quantify pre- to postflight alterations in brain structure. They showed that brain structural changes were linked to changes in cognitive and motor test scores as well as the development of spaceflight-associated neuro-optic syndrome. However, due to the small sample size and number of comparisons, they suggested that their findings should be interpreted with caution.

Although this article has certain strengths, it has at least 1 major shortcoming that stems from ignoring the key point that in long-duration deep space missions, astronauts are exposed to multiple stressors ranging from psychological stress due to the confined environment to ionizing radiation and gravitational changes. It is not well-understood whether these stressors impact the central nervous system only individually or in combination (ie, synergistically). However, what we are fully aware of is the key role of space radiation on human brain function, according to Parihar et al\(^2\). “The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel.” Cucinotta et al\(^3\) have also confirmed galactic cosmic ray (GCR)-induced alterations in astronauts’ cognitive function, “Galactic cosmic rays may alter astronauts, cognition during space missions.” Cucinotta et al also reported that exposure to GCRs can be associated with increased risk of CNS disorders, “GCR[s] may increase central nervous system risks including Alzheimer disease.” Most important, Krukowski et al\(^4\) reported that novel pharmaceutical agents are being explored for their ability to protect memory function in rodents exposed to simulated cosmic radiation, “Now neuroscientists have identified a potential treatment for the brain damage caused by cosmic rays, a drug that prevents memory impairment in mice exposed to simulated space radiation.” In summary, this omission has possibly affected the validity of the findings of the study conducted by Roberts et al\(^1\).

Disclosures: James Welsh—UNRELATED: Grant: I have a Small Business Innovation Research grant from the National Institutes of Health, but it is related to proton radiography and proton beam CT scanning. Consulting Fee or Honorarium: I am an advisor to TAE Life Sciences for boron neutron capture therapy. Membership: Coqui Pharma, Comments: I have received no financial remuneration; Employment: Department of Veterans Affairs, Comments: This is my primary employer; Patents (Planned, Pending or Issued): I hold a patent for a method to reduce adverse effects of reirradiation by adjusting the effective dose rate. So far, I have received no financial benefit; Royalties: Prometheus Books, Comments: I am the author of Sharks Get Cancer, Mole Rats Don’t: How Animals Might Hold the Key to Cancer Immunity. This was published in 2016. *Money paid to the institution.

REFERENCES

J.J. Bevelacqua
Bevelacqua Resources
Richland, Washington

J. Welsh
Department of Radiation Oncology
Edward Hines Jr VA Hospital
Hines, Illinois

S.M.J. Mortazavi
Diagnostic Imaging Department
Fox Chase Cancer Center
Philadelphia, Pennsylvania

S.M.J. Mortazavi
Medical Physics Department
School of Medicine
Shiraz, Iran

http://dx.doi.org/10.3174/ajnr.A6387
We thank Drs Bevelacqua, Welsh, and Mortazavi for their interest in our article, "Prolonged Microgravity Affects Human Brain Structure and Function." We disagree, however, that we have ignored the multiple unique features of the spaceflight environment to which astronauts are exposed and that “this omission has possibly affected the validity of the findings.”

As we stated in the article, many factors affect individual astronaut performance. These factors include psychological stress, gravitational changes, and radiation exposure as highlighted in the letter of Drs Bevelacqua, Welsh, and Mortazavi. Other unique characteristics of the spaceflight environment include elevated carbon dioxide levels, cephalad fluid shifts, and unique microbial habitats among others. Any of these factors may act individually or in synergy to result in the changes in brain structure and cognitive function that we have documented in astronauts after spaceflight.

Our study highlights the need for further investigations of human brain adaptation to spaceflight to disentangle the relative contribution that each factor, including radiation exposure, may have on brain health. This work will be important in guiding the development of effective countermeasures protecting brain function in support of future human spaceflight.

http://dx.doi.org/10.3174/ajnr.A6400
The authors regret that in the article “MR Imaging Features of Histologically Diagnosed Supratentorial Primitive Neuroectodermal Tumors and Pineoblastomas in Correlation with Molecular Diagnoses and Outcomes: A Report from the Children’s Oncology Group ACNS0332 Trial” (*AJNR Am J Neuroradiol* 2019;40:1796–1803), an item in Table 3 was inadvertently changed from “0.080” to “0.80” when annotating proofs. The corrected table is reproduced below.

http://dx.doi.org/10.3174/ajnr.A6406

Table 3: MR imaging features by tumor group (all patients, n = 56)

<table>
<thead>
<tr>
<th>Group</th>
<th>PBL/ET</th>
<th>Non-ET</th>
<th>P Value</th>
<th>All Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (cm)</td>
<td></td>
<td></td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>3.6</td>
<td>6.2</td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td>Minimum</td>
<td>1.1</td>
<td>2.7</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>Maximum</td>
<td>9.1</td>
<td>9.3</td>
<td></td>
<td>9.3</td>
</tr>
<tr>
<td>% Enhancement</td>
<td></td>
<td></td>
<td>.17a, .080b</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0–25</td>
<td>3</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>25–75</td>
<td>6</td>
<td>7</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>>75</td>
<td>27</td>
<td>9</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Margins</td>
<td></td>
<td></td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Well-defined</td>
<td>37</td>
<td>13</td>
<td>68.4</td>
<td>50</td>
</tr>
<tr>
<td>Ill-defined</td>
<td>0</td>
<td>6</td>
<td>31.6</td>
<td>6</td>
</tr>
<tr>
<td>Presence of edema</td>
<td></td>
<td></td>
<td><.001c</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>32</td>
<td>5</td>
<td>26.3</td>
<td>37</td>
</tr>
<tr>
<td><2 cm from tumor margin</td>
<td>4</td>
<td>13</td>
<td>68.4</td>
<td>17</td>
</tr>
<tr>
<td>>2 cm from tumor margin</td>
<td>1</td>
<td>5.3</td>
<td>2</td>
<td>3.6</td>
</tr>
<tr>
<td>Presence of cyst/necrosis</td>
<td></td>
<td></td>
<td>.22</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>12</td>
<td>3</td>
<td>15.8</td>
<td>15</td>
</tr>
<tr>
<td>Present</td>
<td>25</td>
<td>16</td>
<td>84.2</td>
<td>41</td>
</tr>
<tr>
<td>Presence of calcification or hemorrhage</td>
<td></td>
<td></td>
<td>.26</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>16</td>
<td>5</td>
<td>26.3</td>
<td>21</td>
</tr>
<tr>
<td>Present</td>
<td>21</td>
<td>14</td>
<td>73.7</td>
<td>35</td>
</tr>
<tr>
<td>DWI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bright</td>
<td>28</td>
<td>15</td>
<td>78.9</td>
<td>43</td>
</tr>
<tr>
<td>Dark</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Intermediate</td>
<td>5</td>
<td>3</td>
<td>15.8</td>
<td>8</td>
</tr>
<tr>
<td>Artifact or not available</td>
<td>3</td>
<td>5.3</td>
<td>4</td>
<td>7.1</td>
</tr>
<tr>
<td>Metastasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracranial</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Spinal</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Intracranial and spinal</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>None</td>
<td>25</td>
<td>19</td>
<td>100.0</td>
<td>44</td>
</tr>
<tr>
<td>All patients</td>
<td>37</td>
<td>19</td>
<td>100.0</td>
<td>56</td>
</tr>
</tbody>
</table>

Note: — indicates no data available.

Comparison of none versus 0%–25% versus 25%–75% versus >75%.

Comparison of >75% versus ≤75%.

Comparison of absent versus present.