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ORIGINAL RESEARCH
HEAD & NECK

Radiomics Study of Thyroid Ultrasound for Predicting
BRAFMutation in Papillary Thyroid Carcinoma:

Preliminary Results
M.-r. Kwon, J.H. Shin, H. Park, H. Cho, S.Y. Hahn, and K.W. Park

ABSTRACT

BACKGROUND AND PURPOSE: It is not known how radiomics using ultrasound images contribute to the detection of BRAF muta-
tion. This study aimed to evaluate whether a radiomics study of gray-scale ultrasound can predict the presence or absence of B-
Raf proto-oncogene, serine/threonine kinase (BRAF) mutation in papillary thyroid cancer.

MATERIALS AND METHODS: The study retrospectively included 96 thyroid nodules that were surgically confirmed papillary thyroid
cancers between January 2012 and June 2013. BRAF mutation was positive in 48 nodules and negative in 48 nodules. For analysis,
ROIs from the nodules were demarcated manually on both longitudinal and transverse sonographic images. We extracted a total
of 86 radiomics features derived from histogram parameters, gray-level co-occurrence matrix, intensity size zone matrix, and shape
features. These features were used to build 3 different classifier models, including logistic regression, support vector machine, and
random forest using 5-fold cross-validation. The performance including accuracy, sensitivity, specificity, positive predictive value,
negative predictive value, and area under the receiver operating characteristic curve, of the different models was evaluated.

RESULTS: The incidence of high-suspicion nodules diagnosed on ultrasound was higher in the BRAF mutation–positive group than
in the mutation–negative group (P ¼ .004). The radiomics approach demonstrated that all classification models showed moderate
performance for predicting the presence of BRAF mutation in papillary thyroid cancers with an area under the curve value of 0.651,
accuracy of 64.3%, sensitivity of 66.8%, and specificity of 61.8%, on average, for the 3 models.

CONCLUSIONS: Radiomics study using thyroid sonography is limited in predicting the BRAF mutation status of papillary thyroid
carcinoma. Further studies will be needed to validate our results using various diagnostic methods.

ABBREVIATIONS: AUC ¼ area under the receiver operating characteristic curve; GLCM ¼ gray-level co-occurrence matrix; ISZM ¼ intensity size zone ma-
trix; K-TIRADS ¼ Korean Thyroid Imaging Reporting and Data System; mRMR ¼ minimum redundancy maximum relevance; PTC ¼ papillary thyroid carcinoma;
US ¼ ultrasound

Papillary thyroid carcinoma (PTC) is the most common type
of thyroid malignancy and accounts for the rapidly increasing

incidence of thyroid cancer worldwide.1,2 The B-Raf proto-onco-
gene, serine/threonine kinase (BRAF) mutation plays a central role

in the pathogenesis of PTC, promoting carcinogenesis through
the action of the mitogen-activated protein kinase pathway.3,4

The frequency of the BRAF mutation in PTC has been reported
to range from 29% to 83% and is known to be the most com-
mon genetic alteration in PTC.5,6 Many studies have reported
that the BRAF mutation is associated with poor clinicopatho-
logic outcomes, such as a high incidence of advanced clinical
stage, extrathyroidal extension, and increased recurrence.6-9

These results suggest that preoperative knowledge of the BRAF
mutation status can be helpful in categorizing patients as
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high risk and planning an appropriate treatment strategy.
According to 2015 American Thyroid Association guidelines,
active surveillance of PTC has emerged as a safe alternative to
surgical intervention in low-risk patient with PTCs.10 In this
era, preoperative knowledge of the BRAF mutation status can
be one of preoperative modulators for planning an appropri-
ate treatment strategy, such as the determination of an early
surgical intervention.

Several studies have investigated whether gray-scale ultrasound
(US) findings could predict the presence of the BRAF mutation in
PTC and have reported controversial results. Kabaker et al11

reported that most of the suspicious US findings, including a
taller-than-wide shape, ill-defined margin, hypoechogenicity, calci-
fications, and absent halo were associated with BRAF mutation
positivity, and Hahn et al12 reported that hypoechogenicity and
nonparallel orientation were associated with BRAF mutation posi-
tivity. Conversely, other studies have found no close correlation
between suspicious US features and the BRAFmutation.9,13,14

With these various results, visual interpretation of US images
has limitations, including a high dependency on the radiologist’s
experience and interobserver variation. In addition, substantial
objective information from the image may not be evaluated
through visual interpretation. Radiomics, which automatically
extracts innumerable high-dimensional features from images, has
recently emerged and shows promising results for decision sup-
port.15 Previous studies have reported that histograms and texture
analyses of US are useful for differentiating benign and malignant
thyroid nodules.16-21 To our knowledge, there have been no pub-
lished studies aimed at identifying the presence of BRAF mutation
using radiomics features of US.

Therefore, the purpose of this study was to evaluate whether
radiomics study of gray-scale US could predict the presence or
absence of BRAFmutation in PTC.

MATERIALS AND METHODS
Patient Selection
The institutional review board of our institution (Samsung
Medical Center) approved this retrospective study. We retro-
spectively reviewed our institutional data base to identify
patients with surgically confirmed PTC who underwent preop-
erative thyroid US and successful DNA sequencing for BRAF
mutations between January 2012 and June 2013. The exclusion
criteria were as follows: 1) nodule diameter of,10mm in
small nodules because the ROI method has lower accuracy and
current guidelines do not recommend fine-needle aspiration
for nodules with a diameter of,10mm;22,23 2) lack of precise
correlation between pathology, the BRAF mutation study, and
US findings in patients with multiple nodules; and 3) both
transverse and longitudinal US images not being available.
Finally, this study included a total of 96 PTCs from 96 patients
(mean age, 44.9 6 13.2 years; range, 19–77 years). The final
surgical diagnoses and BRAF mutation results of the thyroid
nodules were analyzed.

US Examinations and Image Evaluation
All patients underwent preoperative thyroid US using an
iU22 Vision 2010 machine (Philips Healthcare, Seattle,

Washington) with a commercially available 7- to 12-MHz
linear-array transducer. All scans were performed by 1 of 7
radiologists with between 2 and 15 years of experience in
thyroid US. Longitudinal and transverse images were
obtained for each nodule.

One radiologist (M.-r.K.) retrospectively reviewed preopera-
tive US and assessed image features, and another radiologist
(J.H.S.) with 15 years of experience in thyroid US supervised this
step. According to the Korean Thyroid Imaging Reporting and
Data System (K-TIRADS),22 all thyroid nodules were evaluated
for internal content, echogenicity, shape, orientation, margin,
and calcifications. The final category assessment was divided into
5 categories according to the K-TIRADS as follows: category 1,
no nodule; category 2, benign nodule; category 3, low-suspicion
nodule; category 4, intermediate-suspicion nodule; and category
5, high-suspicion nodule.

Radiomics Feature Analysis
The most representative transverse and longitudinal images of
each tumor were selected for radiomics feature extraction. An
ROI in the thyroid tumor was delineated manually along the
border of each tumor on representative US images using
MRIcron software (http://www.mricro.com/mricron) by 2
radiologists (M.-r.K. and J.H.S.). The intraclass correlation
coefficient was computed to assess the reproducibility of fea-
tures using 2 sets of ROIs. The first set of ROIs was used for
the radiomics analysis.

A total of 86 radiomics features were extracted using
open-source radiomics software, Py-Radiomics (https://
www.radiomics.io/pyradiomics.html).24 Forty-three fea-
tures were computed for each technique (transverse and
longitudinal images). Features computed from both orienta-
tions were considered. The features were grouped into shape
(6 features), histogram-based (19 features), intensity size
zone matrix (ISZM, 2 features), and gray-level co-occur-
rence matrix (GLCM, 16 features). The histogram-based
features were computed from 64-bin histograms calculated
over the intratumoral intensity range. The GLCM features
assess textural information and reflect intratumoral hetero-
geneity using a 2D histogram with 64 bins. A total of 8 mat-
rices corresponding to eight 2D directions with an offset of
1 were computed and then averaged to yield a single matrix.
The averaged matrix was used to compute the GLCM fea-
tures. The ISZM features were also related to texture using
blobs of similar intensity and differing sizes. We con-
structed a 32 � 256 matrix in which the first dimension was
binned intensity and the second dimension was the size of
the blobs. Further details regarding the features are given in
On-line Tables 1–3.

Due to the lack of external validation data, we applied 5-fold
cross-validation to separate our data into training and test sets
to reduce overfitting. Models were built using the training set
only and tested on a left-out test set. Each model was trained
using 80% of the data (n = 77) and later tested on the
remaining 20% of the data (n = 18). Feature selection was
performed using minimum redundancy maximum rele-
vance (mRMR) from the training set.25 The number of
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chosen features of mRMR was set using a grid search
between 3 and 11. Within the cross-validation, the opti-
mal number of features was chosen on the basis of the
maximum performance in the test set on average for the 3
classifiers (On-line Figure). The selected features were
used as input to train 3 different classifier models, includ-
ing logistic regression, support vector machine using the
linear kernel, and random forest with 50 trees. As for tun-
ing the hyperparameters of the support vector machine,
we tried different kernels, including linear, quadratic, and
radial basis functions for the support vector machine, and
linear kernel worked the best. The random forest classifier
has feature-selection capabilities. However, the other 2
models, logistic regression and support vector machine,
do not have such capabilities. We adopted an external fea-
ture-selection procedure (ie, mRMR) so that all 3 models

were subjected to the same feature-selection procedure.
The trained classifiers were further tested on a left-out
test fold. Because we adopted 5-fold cross-validation, we
repeated the procedures of feature selection, model train-
ing, and testing steps 5 times, each time leaving out a dif-
ferent test fold. The performance of the classifier models
was assessed on the basis of accuracy, sensitivity, specific-
ity, positive predictive value, negative predictive value,
and area under the receiver operating characteristic curve
(AUC).

Statistical Analysis
To compare BRAF mutation–positive and –negative PTCs, we
analyzed categoric variables using a x 2 or Fisher exact test, while
continuous variables were analyzed using a Student t test. A P
value, .05 was considered statistically significant.

RESULTS
The clinical, pathologic, and imaging
findings of 96 patients are shown in
Tables 1 and 2. Among the total of 96
patients, 78 were women (mean age,
45.1 6 13.9 years; range, 19–77 years)
and 18 were men (mean age, 43.9 6

10.2 years; range, 21–62 years).
The 96 nodules consisted of 48

BRAF mutation–positive PTCs and 48
BRAF mutation–negative PTCs. Clinical
characteristics, including patient age and
sex, were not significantly different. The
mean tumor size was 1.73 6 0.85 cm
(range, 1–6 cm). The mean tumor size
was not significantly different between
the 2 groups (BRAF mutation–positive
group: 1.59 6 0.57 cm; BRAF muta-
tion–negative group: 1.87 6 1.05 cm,
P¼ .12). Central and lateral lymph node
metastases were not significantly differ-
ent (P ¼ .15 and P ¼ 1.00, respectively).
Among US characteristics, echogenicity
was significantly different between the 2
groups (P ¼ .012). BRAF mutation
positive groups significantly showed
nonparallel orientation (P ¼ .007)
(Table 2). The incidence of K-TIRADS
category 5 (high suspicion) was higher
than that of K-TIRADS 3 (low suspi-
cion) or 4 (intermediate suspicion) in
the BRAF mutation–positive group
(P ¼ .004). The intraclass correlation
coefficient of 86 features was a mean of
0.89 6 of 0.09 as shown in On-line
Table 4.

We adopted 5-fold cross-validation;
thus, the selected features varied from
fold to fold. There were 2 features that
were selected .3 times: the mean

Table 1: Clinical and tumor characteristics of study population

BRAF (+) PTC (n= 48) BRAF (2) PTC (n= 48) P Value
Age (mean) (yr) 46.9 6 13.8 42.8 6 12.4 .13
Sex .27

M 11 (22.9) 7 (14.6)
F 37 (77.1) 41 (85.4)

Tumor size (mean) (cm) 1.59 6 0.57 1.87 6 1.05 .12
Central lymph node metastasis .15

No 16 (33.3) 24 (50.0)
Yes 32 (66.7) 24 (50.0)

Lateral lymph node metastasis ..99
No 38 (79.2) 38 (79.2)
Yes 10 (20.8) 10 (20.8)

Table 2: Relationship between BRAF mutation and US imaging characteristics by visual
assessment of papillary thyroid carcinomas

BRAF (+) PTC (n= 48) BRAF (2) PTC (n= 48) P Value
Internal content .16

Solid 46 (95.8) 41 (85.4)
Predominantly solid 2 (4.2) 7 (14.6)

Echogenicity .012
Markedly hypoechoic 20 (41.7) 8 (16.7)
Hypoechoic 23 (47.9) 26 (54.2)
Isoechoic 5 (10.4) 13 (27.1)
Hyperechoic 0 (0.0) 1 (2.1)

Shape .08
Irregular 12 (25.0) 20 (41.7)
Round to oval 36 (75.0) 28 (58.3)

Orientation .007
Nonparallel 26 (54.2) 13 (27.1)
Parallel 22 (45.8) 35 (72.9)

Margin .66
Spiculated/microlobulated 35 (72.9) 31 (64.6)
Ill-defined 4 (8.3) 6 (12.5)
Smooth 9 (18.8) 11 (22.9)

Calcification .33
No 18 (37.5) 16 (33.3)
Microcalcification 19 (39.6) 22 (45.8)
Macrocalcification 6 (12.5) 9 (18.8)
Rim calcification 5 (10.4) 1 (2.1)

Final K-TIRADS category .004
3 (Low suspicion) 1 (2.1) 3 (6.3)
4 (Intermediate suspicion) 9 (18.8) 22 (45.8)
5 (High suspicion) 38 (79.2) 23 (47.9)
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(histogram) of the longitudinal image and informational measure
of correlation (GLCM) of the longitudinal image. We reported
the mean values of the performance metric along with confidence
intervals over the 5 folds in On-line Table 5. The averages for the
3 classifier models were as follows: accuracy, 64.3% (range,
63.68%–64.68%); sensitivity, 66.8% (range, 64.67%–70.89%);
and specificity, 61.8% (range, 58.22%–64.67%). The receiver
operating characteristic of the 3 models yielded a relatively low
AUC of 0.65 on average (range, 0.6446–0.6562) (Figure).

We also performed a different feature-selection approach (ie,
Pearson correlation–based feature selection) to see if it led to bet-
ter performance. We computed the correlation between all possi-
ble pairs of features, and if the correlation exceeded 0.5, we kept
the feature that had a higher correlation with the mutation status
for a given pair of features. After feature selection, 3 models were
trained and tested. The results of 3 classifiers using a simple
Pearson correlation–based feature selection are given in On-line
Table 6. Results showed that training performance was better
than those using the mRMR feature selection, but test perform-
ance was worse, which implied that models were overfitting. The
averages for the 3 classifier models were as follows: accuracy,
58.6% (range, 56.16%–60.42%); sensitivity, 63.9% (range,
60.44%–66.89%); and specificity, 53.8% (range, 52.22%–56.67%).
The receiver operating characteristic of the 3 models yielded a rel-
atively low AUC of 0.61 on average. The test performance in
terms of AUC showed the lower bound of the confidence interval
as 0.52, slightly above the chance level (ie, 0.50).

DISCUSSION
Since the introduction of radiomics, many previous studies have
tried to investigate the relationship between image characteristics
and genetic mutations in various malignancies, including lung,
colon, brain, and breast cancers.26-29 They proposed a CT- or MR
imaging–based radiomics model to detect gene mutation status
as a noninvasive method. These models were useful to predict the
presence of gene mutations in malignancies.

To our knowledge, this is the first study to apply radiomics in
the estimation of BRAF mutation in patients with PTC. We eval-
uated the ability of radiomics, using various machine learning
approaches, to help predict the presence of the BRAFmutation in
patients with PTC. In our study, BRAF-mutated PTCs tended to
show nonparallel orientation and marked hypoechogenicity, sim-
ilar to findings in some previous studies.12,13 Although visual
assessment of thyroid nodules suggested that high-suspicion find-
ings on US were significantly more frequent in BRAF-mutated
PTCs, radiomics demonstrated that all classification models failed
to show excellent performance for predicting the presence of
BRAFmutation in PTCs.

Radiomics is usually performed using tomographic images,
including CT, MR imaging, or PET images because these modal-
ities can acquire 3D volume data and data acquisition can be
standardized by setting scan parameters of the machines so that
they are identical.15 US has several limitations in quantitative
analysis in contrast to tomographic images: Only 2D data can be
acquired through this technique along with lack of representative
features due to a limited amount of image data, operator depend-
ency, and dependency on US machines.30 These factors may have

affected our results. However, US is the most widely used stand-
ard imaging tool in thyroid pathology and is very helpful in dis-
criminating between malignant and benign thyroid nodules.
Until now, a number of studies have been published that have
reported that quantitative features extracted from US images
have favorable results.16-21 Further studies with a larger amount
of data will be necessary.

In our study, 3 different classifiers were applied to demon-
strate the effectiveness of the chosen features. A simple model,
such as logistic regression, has few parameters and is interpreta-
ble; conversely, complex models, such as support vector machine
and random forest, are difficult to interpret and have many pa-
rameters. No superiority among the classifiers was noted in this
study, and the difference among the AUCs of the 3 classifiers was
very small; this finding indicates that choosing any classifier did
not affect the overall performance. One possible reason for this
result could be that the selected features were not very effective;
thus, the results remained comparable regardless of the simple or
complex classifier model.

In many studies using machine learning, the performance of
the unseen test set tends to be lower than that of the training set
because data overfitting might occur in the training set. In particu-
lar, using too many trees in the random forest classifier might
inflate the performance measures in the training set.31 We con-
ducted a Pearson correlation, one of the other ways to perform fea-
ture selection. Results showed that training performance increased,
but test performance decreased; these findings imply that the
selected features overfitted the training data.

Two features, mean (histogram-based feature) and informa-
tional measures of correlation (texture feature) of the longitudinal
image, were selected .3 times. Thus, they were important fea-
tures to explain the BRAF mutation. There was a relatively small
overlap between the 2 features when we computed a Pearson cor-
relation (r¼ 0.15 with P ¼ .14). The mean value reflects echoge-
nicity of the ROI, which is compatible with our visual assessment

FIGURE. Heatmap showing the correlation of radiomics features
with BRAF mutation prediction after feature selection using mRMR.
Red indicates higher correlation relative to blue.
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of US images.16 The informational measure of correlation is
related to the heterogeneity of the ROI and thus could have a
potential correlation with pathology. BRAF genetic alterations
coexist in thyroid tumors in which some cells provide a basis for
mutation and others do not have mutations, forming intratumor
heterogeneity. Intratumor heterogeneity may foster tumor evolu-
tion and adaptation.32,33

Our study had several limitations. First, this was a retrospective
study from a single institution, which introduces the possibility of
selection bias. Additionally, the small datasets in our study made it
difficult to achieve reliable results. With added samples, applying
deep learning approaches combined with electronic medical
records might be possible; this process might improve the overall
performance. Second, although preoperative US was performed
with the same US machine set with similar parameters to avoid
equipment-based variability, this feature and patient-related factors
may still have influenced the pixel intensity of US images.30 Third,
we focused on predicting the BRAF status of patients with papillary
thyroid cancer. Our main goal was not to contrast healthy controls
and patients with papillary thyroid cancer. Still, including healthy
controls would lead to less positive bias. Last, the lack of external
validation data is also a limitation of this study. Our results from
this study need to be further validated in a larger dataset to better
assess their potential clinical use.

CONCLUSIONS
Our preliminary study shows that radiomics study of thyroid US
was limited in predicting BRAFmutation in PTC.
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