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ORIGINAL RESEARCH
PEDIATRICS

MR Imaging Correlates for Molecular and Mutational
Analyses in Children with Diffuse Intrinsic Pontine Glioma

C. Jaimes, S. Vajapeyam, D. Brown, P.-C. Kao, C. Ma, L. Greenspan, N. Gupta, L. Goumnerova,
P. Bandopahayay, F. Dubois, N.F. Greenwald, T. Zack, O. Shapira, R. Beroukhim, K.L. Ligon,

S. Chi, M.W. Kieran, K.D. Wright, and T.Y. Poussaint

ABSTRACT

BACKGROUND AND PURPOSE: Recent advances in molecular techniques have characterized distinct subtypes of diffuse intrinsic
pontine gliomas. Our aim was the identification of MR imaging correlates of these subtypes.

MATERIALS AND METHODS: Initial MRIs from subjects with diffuse intrinsic pontine gliomas recruited for a prospective clinical trial
before treatment were analyzed. Retrospective imaging analyses included FLAIR/T2 tumor volume, tumor volume enhancing, the
presence of cyst and/or necrosis, median, mean, mode, skewness, kurtosis of ADC tumor volume based on FLAIR, and enhance-
ment at baseline. Molecular subgroups based on EGFR and MGMT mutations were established. Histone mutations were also deter-
mined (H3F3A, HIST1H3B, HIST1H3C). Univariate Cox proportional hazards regression was used to test the association of imaging
predictors with overall and progression-free survival. Wilcoxon rank sum, Kruskal-Wallis, and Fisher exact tests were used to com-
pare imaging measures among groups.

RESULTS: Fifty patients had biopsy and MR imaging. The median age at trial registration was 6 years (range, 3.3–17.5 years); 52% were
female. On the basis of immunohistochemical results, 48 patients were assigned to 1 of 4 subgroups: 28 in MGMT–/epidermal
growth factor receptor (EGFR)–, 14 in MGMT–/EGFR+, 3 in MGMT+/EGFR–, and 3 in MGMT+/EGFR+. Twenty-three patients had his-
tone mutations in H3F3A, 8 in HIST1H3B, and 3 in HIST1H3C. Enhancing tumor volume was near-significantly different across molecu-
lar subgroups (P= .04), after accounting for the false discovery rate. Tumor volume enhancing, median, mode, skewness, and
kurtosis ADC T2-FLAIR/T2 were significantly different (P# .048) between patients with H3F3A and HIST1H3B/C mutations.

CONCLUSIONS: MR imaging features including enhancement and ADC histogram parameters are correlated with molecular sub-
groups and mutations in children with diffuse intrinsic pontine gliomas.

ABBREVIATIONS: DIPG = diffuse intrinsic pontine glioma; EGFR = epidermal growth factor receptor; FDR = false discovery rate; PFS = progression-free sur-
vival; PG = postgadolinium; OS = overall survival

D iffuse intrinsic pontine glioma (DIPG) is a malignant brain tu-
mor that accounts for 75%–80% of brain stem tumors in chil-

dren.1 Despite medical therapy, these tumors have a poor prognosis,
with a median survival at 1, 2, and 3years of 41%, 15.3%, and 7.2%,
respectively.2 The 2016 World Health Organization classification of

brain tumors introduced the term “diffuse midline glioma, H3
K27M mutant” to describe these neoplasms due to the high preva-
lence of unique histone protein mutations that differ from those of
supratentorial (hemispheric) pediatric high-grade gliomas and adult
high-grade gliomas. While H3 K27M is the most common variant
detected, more recently, other distinct histone mutations have been
identified in DIPG, which appear to correspond to subgroups withReceived November 30, 2019; accepted after revision March 16, 2020.
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different prognosis and pathologic phenotypes.3 Identification of
these subgroups of tumors is important to appropriately counsel
families and tailor treatment strategies.

Radiogenomic techniques are emerging as valuable tools to
noninvasively characterize brain tumors and are increasingly im-
portant, given the evolving molecular landscape in pediatric
neuro-oncology. Although most data available to date pertain
to adult high-grade gliomas,4,5 radiogenomic techniques have
been successfully implemented to characterize atypical teratoid/
rhabdoid tumors6 and medulloblastomas.7 A challenge to molecu-
lar analysis of DIPGs is that historically, patients with these tumors
did not routinely undergo biopsy due to a perceived high likeli-
hood of morbidity associated with the procedure; consequently,
most imaging-based studies do not have pathologic or molecular
correlates.8 Despite this limitation, important imaging-based
prognostic factors have been described for DIPG. Jansen et al9

and Hoffman et al10 reported that ring enhancement was asso-
ciated with shorter survival. Chen et al11 reported worse out-
come in DIPGs with lower ADC values at baseline. Poussaint
et al12 reported that lower diffusion values on ADC histogram
analysis, high skewness, and enhancement were associated
with shorter survival. The association among these MR imag-
ing features, the molecular subgroups, and various histone
mutations has not been elucidated.

The purpose of this study was to investigate the relationship
between the molecular subgroup and histone mutations of DIPGs
and MR imaging features on anatomic sequences, and ADC histo-
gram analysis, using the baseline MR imaging from a prospective
clinical trial of children with newly diagnosed DIPG who under-
went biopsy.13

MATERIALS AND METHODS
Subjects
Patients for this study were recruited as part of an instituti-
onal review board (Dana Farber Cancer Institute)–approved,

Health Insurance Portability and Accountability Act–compliant,
multicenter clinical trial: Molecularly Determined Treatment of
Diffuse Intrinsic Pontine Gliomas (DIPG) (NCT01182350).
Prospective subjects had MR imaging that showed classic clinical-
imaging criteria of nonmetastatic DIPG, including an expansile and
infiltrative T1-isointense or -hypointense and T2-FLAIR and T2-
hyperintense mass centered within the pons, encompassing at least
50% of the pons with no or little contrast enhancement, which
could vary.14 Findings on clinical examination included multiple
cranial nerve neuropathies, long tract signs, and ataxia.14 Detailed
criteria for inclusion and exclusion are summarized in On-line
Table 1. The patients enrolled in the trial underwent a biopsy before
initiation of therapy; the biopsy target and approach were at the dis-
cretion of the neurosurgeon, with the goal of minimizing operative
risk.13 All subjects received local radiation therapy (59.4Gy) with
adjuvant bevacizumab, as per the standard of care. Subsequently,
patients were stratified into different treatment arms with erlotinib
and/or temozolomide at the start of radiation therapy based on
MGMT promoter methylation status and epidermal growth factor
receptor (EGFR) expression in tumor tissue obtained from surgical
biopsies.

Of 53 patients enrolled, 50 underwent biopsy and were
included in the analytic cohort of this study. Subjects without bi-
opsy were excluded from this analysis. We performed a retro-
spective review that included biopsy data (histone mutations,
molecular groups), MR imaging features on baseline MR imag-
ing, and clinical outcomes. The molecular analysis determined
theMGMTmethylation status and expression of EGFR; 4 catego-
ries were derived from molecular analysis: MGMT–/EGFR–,
MGMT–/EGFR+,MGMT+/EGFR–,MGMT+/EGFR+. Three his-
tone mutations were identified through whole-genome RNA
sequencing: H3F3A, HIST1H3B, and HISTH3C.3 Clinical end
points of the study were determined with longitudinal follow-up.
Overall survival (OS) was measured from the time of registration
to death or to last follow-up if censored. Progression-free survival
(PFS) was measured from the time of registration to progression
or death (whichever was first) or to the last follow-up if censored.

Image Analysis
The MR imaging of the brain used for analysis corresponded to the
baseline examination obtained before treatment and biopsy. Images
were obtained using 3T (n= 17) and 1.5T (n= 33) scanners. A
standard clinical protocol was used, which included the following:
sagittal T1, axial T2, precontrast axial T2-FLAIR, axial DTI (TR =
6500ms, TE = 88ms, section thickness = 2mm, b-values = 0 and
1000 s/mm2, 30 gradient directions), and postgadolinium (PG)
3D T1.

Volumetric data of various components of the tumor were
obtained by generating 3D ROIs on a Vitrea workstation (Vital
Images) on the anatomic sequences. Specifically, T2-FLAIR/T2
volume represents the volume of tissue (milliliter) with abnormal
T2 hyperintense signal on a 2D TSE T2-FLAIR sequence; for
cases in which T2-FLAIR was unavailable, this parameter was
estimated using a 2D T2 TSE sequence. Tumor volume enhanc-
ing represents the volume (milliliter) of enhancement within the
tumor estimated on the PG 3D T1 sequence.

Table 1: Baseline patient characteristics (n= 50)

Patient Characteristic
No. (%) or

Median (Range)
No. of MR imaging studies 50 (100)
Sex
Male 24 (48)
Female 26 (52)

Median age at registration (range) (yr) 6 (3.3–17.5)
Molecular subgroups
MGMT–/EGFR– 28/48 (58)
MGMT–/EGFR+ 14/48 (29)
MGMT +/EGFR– 3/48 (6)
MGMT +/EGFR+ 3/48 (6)
Unassigned 2

Mutational statusa

Any histone mutation 34/49 (69)
Wild-type 15/49 (31)

Histone mutation (among patients with any
histone mutations)a

H3F3A 23/34 (68)
HIST1H3B 8/34 (24)
HIST1H3C 3/34 (9)

Median follow-up time (range) (mo) 10.9 (0.4–33.4)
a One patient with both H3F3A and HIST1H3B histone mutations was excluded.
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To perform ADC histogram analysis, we registered the ADC
maps to the anatomic sequence of interest (T2-FLAIR/T2 and PG
T1) using tools from the FSL library (http://www.fmrib.ox.ac.uk/
fsl),15 as described by Poussaint et al.12 Briefly, we transformed
the b= 0 (and subsequently the ADC map) into the space of the
individual anatomic sequences. Subsequently, 3D ROIs were cre-
ated using the thresholding feature in Fiji (http://fiji.sc/),16 an
Open Source (https://opensource.org/) distribution of Java mod-
ules along with ImageJ software (National Institutes of Health);
we then extracted the values from every pixel from the ADC map
within the corresponding ROI.

We applied a uniform threshold to the ADC maps, ranging
from 600 to 2600� 10�6 mm2/s to differentiate solid tumor from
cyst/necrosis. ADC histograms were then generated using a uni-
form bin width of 10 mm2/s. Histogram metrics used for statisti-
cal analysis were mean, median, mode, skewness, and kurtosis of
these histograms.

Statistical Analysis
Clinical and demographic variables were summarized using de-
scriptive statistics. Continuous measures were summarized using
medians and ranges, and categoric measures were summarized

FIG 1. Prognostic differences in subjects with H3F3A (n= 23) versus HIST1H3B/C (n= 11) tumors. A, Kaplan-Meier curve shows a trend that
approaches significance in OS between H3F3A versus HIST1H3B/C tumors. B, Kaplan-Meier curve shows no significant difference in PFS between
H3F3A versus HIST1H3B/C tumors.
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using frequencies and proportions. Kaplan-Meier curves were used
to summarize OS and PFS for all patients. Univariate Cox propor-
tional hazards regression was used to test the association of imaging
predictors with OS and PFS. The Wilcoxon rank sum and Kruskal-
Wallis tests were used to compare continuous imaging features
among groups. The Fisher exact test was used to compare categoric
imaging features among groups. When applicable, the presence of
enhancement (defined as patients with tumor volume enhancing
.0mL) was recorded as a binary measure and used for

subanalyses. Due to the low number
of H3.1 mutations (HIST1H3B = 8,
HIST1H3C = 3), we grouped them
into a single category and compared
them with H3F3A mutations. For
each outcome tested, we calculated the
false discovery rate (FDR) using the
Benjamani-Hochberg method to ac-
count for multiple hypothesis tests.
Tests with a calculated FDR of # 10%
were considered statistically significant
after FDR adjustment.17 R version
3.5.0 (http://www.r-project.org) and
SAS version 9.4 (SAS Institute) were
used for statistical analyses.

RESULTS
Patients
Of the 50 patients who underwent bi-
opsy, all had baseline MR imaging
studies. The median age at time of
enrollment was 6 years (range, 3.3–
17.5 years). Twenty-six (52%) subjects
were female, 48 (96%) were success-
fully assigned to a molecular subgroup
(2 unassigned), and 34 (68%) patients
had (single) identifiable histone muta-
tions (Table 1). One subject was
excluded from subsequent analysis
due to the concurrent presence of 2
histone mutations.

Tumor Enhancement and Survival
The presence of enhancement (hazard
ratio= 3.2; 95% CI , 1.5–7.0; P= .003)
was associated with decreased OS after
FDR adjustment (On-line Fig A and
On-line Table 2). OS was not associ-
ated (P $ .07) with T2-FLAIR/T2
volume, tumor volume cyst/necrosis,
the presence of necrosis, tumor vol-
ume enhancing (subset of patients
with enhancing tumorof .0 mL),
ADC_FLAIR histogram metrics, or PG
ADC enhancement histogram metrics
after FDR adjustment.

Higher tumor volume enhancing
(P= .02) and the presence of enhance-

ment (P= .06) showed a strong trend with decreased PFS but were
not significant after FDR adjustment (On-line Fig B and On-line
Table 2). T2-FLAIR/T2 tumor volume (P= .07) also showed a trend
toward a significant association with decreased PFS.

Molecular Subgroup Analysis
There were differences in tumor volume enhancing across the 4
molecular subgroups within the subset of patients with tumor
volume enhancing of .0mL, but the test was not significant

FIG 2. Differences in tumor volume enhancing and ADC histogram parameters between histone
mutations. A, H3F3A-mutated tumor shows lower tumor volume enhancing (0.08mL), lower
ADC_FLAIR mode (1099 � 10�6 mm2/s), higher ADC_FLAIR skewness (1.41), and higher ADC_FLAIR
kurtosis (4.39), relative to (B) a HIST1H3B-mutated tumor (tumor volume enhancing: 3.61mL;
FLAIR_ADC mode: 1558 � 10�6 mm2/s; FLAIR_ADC skewness: �0.039; and FLAIR_ADC kurtosis:
0.33).
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after FDR adjustment (P = .04; n= 30) (On-line Table 3). All
MGMT+ tumors showed enhancement, most MGMT–/EGFR+
tumors (77%) showed enhancement, and 54% of MGMT–/
EGFR– tumors showed enhancement (On-line Table 3). The 3
MGMT+/EGFR– tumors had the highest tumor volume
enhancing values, occasionally an order of magnitude higher
than those of other molecular groups, including the MGMT
+/EGFR+ tumors. No other factor analyzed showed a signifi-
cant association with molecular groups, including ADC histo-
gram metrics.

Histone Mutation Analysis
Subjects with HIST1H3B/C tumors showed a trend toward
improved OS that bordered on significance (P= .0501) com-
pared with subjects with H3FA3 tumors (Fig 1). There was no
difference in PFS (P = .22) between subjects with H3FA3 and
HIST1H3B/C tumors.

Tumor volume enhancing (in a subset of patients with enhanc-
ing tumor volumesof .0mL, P= .048), median ADC_FLAIR
(P= .03), and mode ADC_FLAIR (P= .02) were significantly higher
in tumors with HIST1H3B/C mutations. Skewness ADC_FLAIR
(P= .009) and kurtosis ADC_FLAIR (P= .03) were significantly
higher in tumors with H3F3A mutations. H3F3A mutations had
lower ADC values compared with HIST1H3B tumors (Fig 2 and
Table 2).

A comparison of ADC T2-FLAIR/T2 mean, median, and
mode; skewness; and kurtosis did not show differences
between wild-type tumors and grouped histone mutation
(H3F3A and HIST1H3B/C) tumors (Table 3). Kaplan-Meier
analysis also failed to demonstrate significant differences in
OS or PFS between wild-type and grouped histone-mutated
tumors (Fig 3).

DISCUSSION
Even though MR imaging has traditionally played a central role in
the evaluation andmonitoring of patients with DIPG, little is known
regarding the biologic and molecular correlates of imaging features
such as the presence of enhancement, low diffusivity, and findings
on ADC histogram analysis.12,18 Recently, more centers are per-
forming biopsies for DIPG, which has permitted identification of
molecular subgroups with distinct clinical characteristics.3,19-21 This
work demonstrates the feasibility of a radiogenomic approach to
investigate differences among various tumor groups. Specifically, we
identified significant differences in volume of enhancing tumor
between molecular subgroups and differences in volume of enhanc-
ing tumor and ADC histogram parameters across tumors with dif-
ferent histone mutations. We followed a previously validated
approach for patients with DIPG, thus, minimizing the risk of intro-
ducing methodologic bias in our analysis.12

Molecular characteristics of brain tumors are now widely
accepted as important diagnostic criteria for many entities as well as
independent prognostic markers.22,23 Castel et al3 investigated the
molecular profile of DIPG in 91 children and identified 2 distinct
subgroups with mutations in H3.3 (H3F3A) and H3.1 (HIST1H3B/
C) histone variants. Tumors with H3F3A mutations had a worse
prognosis, with a poor response to radiation therapy and earlier
relapse compared with HIST1H3B/C mutated tumors.20 Similar to
the observations by Castel et al, we found a strong trend toward
shorter OS in patients with H3F3A mutations relative to
HIST1H3B/C, though this did not reach statistical significance,
likely due to the smaller sample size in our study.

ADC histogram analysis revealed differences across histone
mutations, with H3F3A-mutated tumors having lower ADC T2-
FLAIR/T2, higher skewness, and higher kurtosis than HIST1H3B/
C-mutated tumors. This finding suggests that histogram metrics

Table 2: Association of imaging predictors and variant histone mutation (H3F3A versus HIST1H3B/C) (n= 34)

Imaging Parameters (Median) (Range) No.
Variant Histone Mutation

H3F3A (n= 23) HIST1H3B and HIST1H3C (n= 11) Wilcoxon P
FLAIR/T2 tumor volume 33 35.1 (10.7–70.9) 40.3 (11.6–63) .4
Tumor volume cyst/necrosis (mL) in
patients with cyst/necrosis

16 0.8 (0.07–8.1) 2.1 (0.09–4.1) .8

Presence of necrosis (yes vs no) in patients
with enhancing tumor volume.0

22 11/16 (69%) 5/6 (83%) .6a

Tumor volume enhancing (mL) in patients
with enhancing tumor volume.0

22 2.5 (0.08–12.4) 6.3 (3.6–15.2) .04b

Presence of enhancement (yes vs no) 31 16/21 (76%) 6/10 (60%) .4a

Mean ADC_FLAIR � 10�6 mm2/s 31 1306 (893.9–1915.2) 1411 (1168.8–2098.3) .06
Median ADC_FLAIR � 10�6 mm2/s 31 1260 (906.7–1913) 1370 (1189.4–2146.0) .03b

Mode ADC_FLAIR � 10�6 mm2/s 31 1257 (895.5–1886.4) 1396 (1150.8–2214.4) .02b

Skewness ADC_FLAIR 29 1 (�0.6–2.0) 0.03 (�1.3–0.9) .009b

Kurtosis ADC_FLAIR 29 1.8 (�0.3–8.2) 0.3 (�1.1–2.4) .03a

a Fisher exact test P value.
b Test is significant after FDR adjustment,.1.

Table 3: Association of imaging predictors with mutational status (any histone mutation versus wild-type) (n= 49)
Imaging Parameters (Median) (Range) No. Any Histone Mutation (n= 34) Wild-Type (n= 15) Wilcoxon P

Mean ADC_T2-FLAIR/T2 � 10�6 mm2/s 45 1360 (893.9–2098.3) 1327 (1040.4–1838.5) .9
Median ADC_T2-FLAIR/T2 � 10�6 mm2/s 45 1309 (906.7–2146.0) 1316 (952.0–1925.7) .9
Mode ADC_T2-FLAIR/T2 � 10�6 mm2/s 45 1311 (895.5–2214.4) 1342 (893.8–1965.4) .99
Skewness ADC_T2-FLAIR/T2 42 0.5 (�1.3–2.0) 0.8 (�0.9–2.8) .4
Kurtosis ADC_T2-FLAIR/T2 42 1.1 (�1.1–8.2) 2.0 (�0.1–9.0) .1

878 Jaimes May 2020 www.ajnr.org



may help differentiate tumors that have the H3F3A mutation,
which carries a worse prognosis, from those with HIST1H3B/C
mutations.3,20,24,25 Poussaint et al12 found that tumors with lower
preradiotherapy mean, median, and mode ADC FLAIR (analogous
to T2-FLAIR/T2 in our study) had shorter PFS and that tumors
with higher skewness and kurtosis had shorter OS and PFS.
Although that study did not include pathologic or molecular analy-
sis of the tumors, the findings consistently indicated that ADC his-
togrammetrics can identify tumors with more aggressive biology; it
is therefore possible that some of the tumors with these ADC

histogram features in the study by
Poussaint et al may have had H3F3A
mutations.

The differences in ADC and ADC
histogram parameters among histone-
mutated tumors is likely multifactorial.
As postulated by Poussaint et al,12

Lober et al,26 Zukotynski et al,27 Chen
et al,11 and Lobel et al28 on prior stud-
ies of DIPG, and by Nowosielski et al29

on studies of adult high-grade gliomas,
the lower diffusivity and increased kur-
tosis possibly reflect higher cellularity,
which could be related to the more
aggressive biology of H3F3A-mutated
tumors. Additionally, Castel et al3

reported that the H3.1 tumors had an
enrichment in genes associated with
glioblastoma with edema, which corre-
lated with exuberant extracellular
edema in their histologic analysis; these
factors may also contribute to overall
higher ADC and lower skewness/kur-
tosis in H3.1-mutated tumors. A dif-
ference between the study by
Poussaint et al12 and the current
study is that we did not find an
association of ADC histogram metrics
with PFS or OS, which could be related
to a larger sample size in the former
study, which analyzed approximately 3
times as many patients. However, the
significant trends we observed showed
an association of other adverse prog-
nostic factors with the more aggressive
(H3F3A) tumors.

We did not identify differences in
mean, median, mode ADC histogram
parameters, or survival between wild-
type histone tumors and H3K27M-
mutated tumors (collectively), consist-
ent with the results from a study
published by Aboian et al.30 Similarly,
the study by Castel et al3 did not iden-
tify differences in survival between
wild-type tumors and histone-mutated
tumors (collectively). Chen et al31

found lower ADC in the tumor and peritumoral regions of
patients with H3K27M mutations compared with wild-type
tumors; however, the patient population analyzed in that study is
vastly different, possibly accounting for the discrepancy. For
instance, the study by Chen et al included H3K27M tumors out-
side of the brain stem (spinal cord) and included substantially
older subjects (most of subjects were older than 18 years of
age).31

In our cohort, higher tumor volume enhancing had a significant
association with shorter OS and PFS, as has been shown in

FIG 3. Prognostic differences in subjects with any histone mutation (n= 34) versus wild-type (n= 15)
tumors. A, Kaplan-Meier curve shows no significant difference in OS between mutant versus wild-
type tumors. B, Kaplan-Meier curve shows no significant difference in PFS between mutant versus
wild-type tumors.
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multiple prior studies.12,18 We also observed significant differ-
ences across molecular subgroups in tumor volume enhancing.
Specifically, MGMT+ tumors (EGFR– and EGFR+) showed
enhancement regardless of their EGFR status, most MGMT–/
EGFR+ tumors showed enhancement, and slightly more than
50% of MGMT–/EGFR– tumors showed enhancement. These
findings suggest that a radiogenomic approach could contrib-
ute to identifying specific mutations in tumors and could help
individualize therapy to target the oncogenic pathways
involved.19,21,32 Differences in tumor volume enhancing were
also observed between tumors with H3F3A and HIST1H3B/C
mutations, a finding that has not been previously reported in the
literature.

Most interesting, higher tumor volume enhancing, which is
thought to have a negative prognostic association, was higher in
HIST1H3B/C tumors, which have a better prognosis compared
with H3F3A tumors.3 We believe that this observation is likely
related to the higher expression of genes responsible for angiogene-
sis in H3.1-mutated tumors, and these findings correlate with pre-
liminary observations described by Castel et al3 in a subanalysis of
their radiologic data. Our sample size was too small to perform a
subgroup analysis between enhancing and nonenhancing tumors
for each histone mutation; additional work is needed to further elu-
cidate the implications of differences in enhancement in tumors
with different histone mutations.24 This complex landscape suggests
that a multiparametric approach may be useful when evaluating
DIPG, because multiple genetic pathways (including MGMT,
EGFR, histone) probably account for the pleomorphic MR imaging
appearance and clinical course of these tumors, and these factors
likely interact with each other to determine the clinical course.33

There are several limitations to this study. First, we conducted our
analysis on a small sample size from a single prospective clinical trial.
Consequently, our results are preliminary observations that need to
be corroborated in a larger separate cohort. Due to the small sample
size, we were unable to explore the prognostic implications of differ-
ences in enhancement and ADC histogram metrics within individual
molecular subgroups and histone variants. Although we identified
group differences in diffusion metrics, ADC histogram analysis, and
enhancement, the exact biologic substrates for these were not
explored. More detailed genetic analyses being performed on this
cohort of patients may uncover biologic explanations for these differ-
ences. Finally, we analyzed only the baseline MR imaging and did not
analyze the changes in any of the baseline parameters with treatment
on subsequent MRIs. ADC histogram metrics and tumor enhancing
volume could potentially serve as valuable markers of treatment
response.

CONCLUSIONS
MR imaging features including enhancement and ADC histo-
gram metrics are correlated with molecular subgroups and his-
tone mutations in children with DIPG. Noninvasive markers that
allow identification of molecular subgroups of DIPG could help
prognosticate survival and guide therapy. Future studies in a
larger cohort are required to verify these findings.
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