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ORIGINAL RESEARCH
ADULT BRAIN

Comparison of MRI, MRA, and DSA for Detection of
Cerebral Arteriovenous Malformations in Hereditary

Hemorrhagic Telangiectasia
M. Vella, M.D. Alexander, M.C. Mabray, D.L. Cooke, M.R. Amans, C.M. Glastonbury, H. Kim, M.W. Wilson,

D.E. Langston, M.B. Conrad, and S.W. Hetts

ABSTRACT

BACKGROUND AND PURPOSE: Patients with hereditary hemorrhagic telangiectasia (HHT) have a high prevalence of brain vascular
malformations, putting them at risk for brain hemorrhage and other complications. Our aim was to evaluate the relative utility of
MR imaging and MRA compared with DSA in detecting cerebral AVMs in the HHT population.

MATERIALS AND METHODS: Of 343 consecutive patients evaluated at the University of California, San Francisco HTT Center of
Excellence, 63 met the study inclusion criteria: definite or probable hereditary hemorrhagic telangiectasia defined by meeting at
least 2 Curacao criteria or positive genetic testing, as well as having at least 1 brain MR imaging and 1 DSA. MRIs were retrospec-
tively reviewed, and the number of AVMs identified was compared with the number of AVMs identified on DSA.

RESULTS: Of 63 patients, 45 (71%) had AVMs on DSA with a total of 92 AVMs identified. Of those, 24 (26%) were seen only on DSA; 68
(74%), on both DSA and MR imaging; and 5 additional lesions were seen only on MR imaging. Of the 92 lesions confirmed on DSA, 49
(53.3%) were seen on the 3D-T1 postgadolinium sequence, 52 (56.5%) were seen on the 2D-T1 postgadolinium sequence, 35 (38.0%) were
seen on the SWI sequence, 24 (26.1%) were seen on T2 sequence, and 25 (27.2%) were seen on MRA. The sensitivity and specificity of
MR imaging as a whole in detecting AVMs then confirmed on DSA were 80.0% and 94.4%, respectively, and the positive and negative
predictive values were 97.3% and 65.4%, respectively.

CONCLUSIONS: This study reinforces the use of MR imaging as a primary screening tool for cerebral AVMs in patients with hereditary hem-
orrhagic telangiectasia and suggests that 3D-T1 postgadolinium and 2D-T1 postgadolinium performed at 3T are the highest yield sequences.

ABBREVIATION: HHT ¼ hereditary hemorrhagic telangiectasia

Hereditary hemorrhagic telangiectasia (HHT) is a rare, auto-
somal dominant disease characterized by the formation of

mucocutaneous, lung, brain, and visceral organ vascular malfor-
mations.1 Diagnosis of probable or definite HHT is defined by

meeting $2 of the Curacao criteria or testing positive for known

disease-causing mutations, including those in the endoglin
(ENG), activin A receptor like type 1 (ACVRL1), and SMAD fam-
ily member 4 (SMAD4) genes.1,2 Up to 23% of patients with HHT

develop cerebral vascular malformations, including brain arterio-
venous malformations, cavernous malformations, developmental

venous anomalies, capillary telangiectasias, vein of Galen malfor-

mations, arteriovenous fistulas, capillary vascular malformations,
and transitional or mixed malformations.3-6 Most of these lesions

are cerebral AVMs, which have the risk of potential rupture.4

Studies have reported the risk of rupture in patients with HHT
from 0.4% to 1.3% per year per patient or 0.3%–0.7% per year per

lesion.7,8 Given this risk, current guidelines recommend screen-

ing with cerebral MR imaging for all adults with possible or defi-

nite HHT and all children with possible or definite HHT within
the first 6months of life.1,9 These same guidelines suggest using

sequences with and without contrast as well as blood-sensitive

sequences but provide no further specific recommendations as to
which sequences are of the greatest utility.1,9
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While studies have proposed that specific MR images may be
beneficial in evaluating the presence of AVMs in non-HHT popula-
tions, there are limited data demonstrating the specific utility of
these sequences in screening for AVMs in patients with HHT.10-12

Because the HHT population is undergoing screening to detect

AVMs before they become clinically apparent, the AVMs this
screening test seeks to find may often be smaller or have different
characteristics compared with those seen on diagnostic exami-
nations of symptomatic patients with AVMs in the general popula-
tion.1,4 We, therefore, sought to evaluate the relative utility of diag-
nostic screening MR imaging and MRA as well as the utility of
specific MR imaging sequences compared with the criterion standard
of DSA in detecting cerebral AVMs within the HHT population.

MATERIALS AND METHODS
This retrospective study was approved by the institutional revi-
ew board and performed in compliance with Health Insurance
Portability and Accountability Act. All patients evaluated at the
University of California, San Francisco HHT Center of Excellence
as of January 2017 were screened for inclusion in this study
(n¼ 343). The medical charts of these patients were retrospectively
reviewed, and demographic data including age, sex, Curacao crite-
ria, genetic testing results, and the presence of patient-reported
neurologic symptoms were collected, along with information on
cerebral imaging to evaluate inclusion in this study.

Inclusion criteria for the study were probable or definite HHT
as defined by meeting at least 2 Curacao criteria or positive genetic
testing as well as having at least 1 brain MR imaging and 1 cerebral
DSA with images available for viewing on our PACS. Of the 343

patients reviewed, 246 met the study
definition of probable or definite HHT,
and of those, 63 patients had both sets
of imaging available for our review and
therefore met the full inclusion criteria.

All available MR imaging and
MRA images for these 63 patients
were retrospectively reviewed by a
fellowship-trained neuroradiologist
(M.D.A.), a subset of the studies (38
total) was reviewed by a second fellow-
ship-trained neuroradiologist (M.C.M.),
and any discrepancies between the 2
readers were adjudicated by a third
fellowship-trained neuroradiologist
(S.W.H.). All readers were blinded to
the official reports. These readers eval-
uated each MR imaging study as a
whole and recorded the total number of
AVMs identified for each patient as well
as on which sequences the AVMs were
visible (3D-T1-weighted postgadoli-
nium, 2D-T1-weighted postgadolinium,
MRA, T2-weighted, SWI). Because
these MRIs were performed at many
different institutions (with patients
later being referred to University of
California, San Francisco) and on dif-
ferent types and field strengths (0.7T,
1.16T, 1.5T, and 3T) of MR imaging
machines, there was no standardized
set of sequences for the evaluated
MRIs and MRAs. The cerebral DSA

Table 1: Demographics of patients included in the study
Demographics

Total No. of patients n¼ 63
Female sex 41/63 (65%)
Age at time of MR imaging (mean) (yr) 36 6 20
Curacao score
1 1/63 (2%)a

2 18/63 (29%)
3 20/63 (32%)
4 24/63 (38%)

HHT-causing mutation
ENG 23/63 (37%)
ACVRL1 5/63 (8%)
Variant of unknown significance 2/63 (3%)
Family member positive 6/63 (10%)
Negative genetic testing 9/63 (14%)
No genetic testing available 18/63 (29%)

Neurologic symptoms
Present 50/63 (79%)
Absent 13/63 (21%)

a Genetically confirmed HHT.

FIG 1. Multiple brain AVMs in HHT: positive on MR imaging, MRA, and DSA. A 5-year-old boy with a
frontopolar cerebral AVM (white arrow) demonstrated on SWI MR imaging (A), 3D postgadolinium T1
(B), time-resolved dynamic contrast-enhanced MRA (C), and DSA (D). A smaller AVM (white arrow-
head) is suggested by hypointensity on SWI (A), enhancement on 3D postgadolinium T1 (B), and
enhancement and subtle arteriovenous shunting on DSA (D). The smaller AVM is not seen onMRA (C).
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images for all 63 cases were reviewed by a fellowship-trained neu-
rointerventional radiologist (S.W.H.) who determined and
recorded the total numbers of cerebral AVMs visible on DSA.

Once the totals were compiled, true- and false-positive rates of
cerebral AVM detection were determined for each identified
lesion, with DSA being used as the criterion standard. These data
were then used to determine which MR imaging sequences had
the highest rates of true-positive cerebral AVM detection. In addi-
tion, the sensitivity, specificity, and positive and negative predictive
values of MR imaging as a whole (including all available sequences
with and without gadolinium and including MRA if available) and
each sequence individually were calculated. For these calculations,
a true-positive screening MR imaging or sequence was considered
to be one that showed any possible AVM even if the exact number
of AVMs did not match the number seen on cerebral DSA.

RESULTS
Of the 63 patients evaluated, 65% were women, and the average
age at the time of the evaluated MR imaging was 36 6 20 years,
with a range of 1–77 years (Table 1). The Curacao scores ranged
from 1 to 4 because some included patients meeting only a single
criterion had positive genetic testing. A total of 39 of the 63
patients underwent genetic testing for known HHT-causing gene
mutations, the results of which are listed in Table 1. A total of 24
patients had not undergone genetic testing at the time of the study,
6 (9%) of whom had family members who tested positive for
known disease-causing mutations. Self-reported neurologic symp-
toms ranging from headaches, dizziness, and paresthesias to syn-
cope, seizures, transient ischemic attacks, and strokes were seen in
79% of patients. Two patients had clinically evident AVM rupture
on presentation, both of whom were younger than 12 years of age.

Of the 63 patients whose imaging was evaluated, a total of
45 (71%) were found to have at least 1 cerebral AVM on crite-
rion standard DSA imaging. A total of 92 individual cerebral
AVM lesions were identified in these patients’ cerebral DSAs.
Of the identified lesions, 24 (26%) were seen only on cerebral
DSA, 68 (74%) were seen on MR imaging and cerebral DSA,
and 5 additional lesions were identified only on MR imaging.
Examples of these lesions can be seen in Figs 1–4. Table 2
describes the percentage of total lesions seen on MR imaging as
a whole as well as each evaluated sequence compared with the
total number of lesions seen on MR imaging (n¼ 73) and DSA
(n¼ 92). The lesions seen on MR imaging ranged from 2 to
55mm. The sensitivity and specificity of MR imaging (includ-
ing all available sequences with and without gadolinium) as a
screening technique used to detect at least 1 cerebral AVM,
which was then confirmed on criterion standard cerebral DSA,
were 80.0% and 94.4%, respectively, and the positive and nega-
tive predictive values were 97.3% and 65.4%, respectively
(Table 3).

Of the 63 MRIs evaluated, 54 (86%) included postgadolinium
imaging, while the other 9 (14%) were noncontrast only. Table 4
describes additional characteristics of the MRIs performed, includ-
ing the field strength and frequency of each type of sequence as
well as the spatial resolution ranges for each sequence type. Of the
3 studies not performed on a 1.5T or 3T magnet, 1 was performed
on a 0.7T magnet, 1 was listed as a 1.16T magnet, and 1 had the
magnet strength information missing from the DICOM data. The
sensitivity, specificity, and positive and negative predictive values
of each of the sequences evaluated as well as MR imaging as a
whole and MR imaging based on magnet strength are shown in
Table 3.

FIG 2. Small cerebellar AVM in HHT: positive on MR imaging, negative on MRA, and positive on DSA. A 49-year-old woman with a cerebellar
hemispheric AVM (white arrow) not apparent on TOF-MRA (A) but apparent with microhemorrhage on SWI (B), on 3D postgadolinium T1 (C),
and on DSA (D–F). DSA (D and F) additionally distinguishes the AVM nidus (white arrow) from the AVM draining vein (black arrowhead).
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Of the patients evaluated, 50 had MRAs performed as part of
their overall MR imaging examinations. Of these 50 MRAs, 26
(52%) were performed on a 1.5T magnet, 23 (46%) were per-
formed on a 3T magnet, and 1 was reported as being performed
on a 1.16T magnet. The sensitivity and specificity of MRA alone as
a screening technique used to detect at least 1 cerebral AVM,
which was then confirmed on criterion standard cerebral DSA,
were 50.0% and 92.9%, respectively, and the positive and negative
predictive values were 94.7% and 41.9%, respectively (Table 3).

The sensitivity, specificity, and positive
and negative predictive values of each
type of MRA can also be found in
Table 3. Of note, the 2 postgadolinium-
only MRA studies both yielded false-
negative results, though the statistical
significance of this finding is unclear,
given the paucity of this type of case. In
none of the 50 cases in which MRA
was performed were there AVMs that
were seen only on the MRA sequence
and not on at least 1 additional
sequence.

DISCUSSION
While current guidelines suggest that
MR imaging be used as a screening tool
for cerebral AVMs in patients with
HHT, there are limited data on the ac-
curacy of MR imaging in screening this
particular patient population. Our study
demonstrates that compared with the
criterion standard DSA, MR imaging is
relatively sensitive and specific when
used to find cerebral AVMs in this pop-
ulation, with a sensitivity of 80.0%,
specificity of 94.4%, and a negative pre-
dictive value of 65.4%. These data
reflect the overall sensitivity and speci-
ficity of MR imaging as a screening
technique, including all MR imaging
sequences evaluated with and without
gadolinium. This finding is similar to
the reported 80%–95% sensitivity of
MR imaging in detecting medium-to-
large cerebral AVMs in the non-HHT
population reported in the literat-
ure.11-13 Our data, on the other hand,
suggest that MRA alone (either TOF,
postgadolinium, or a combination) as a
screening technique is less optimal in
the HHT population, with a sensitivity
and specificity of 50.0% and 92.9%,
respectively, and a negative predictive
value of 41.9%. This finding is further
supported by the fact that there were no
cases in which a lesion was detected
only on an MRA sequence and not on

other sequences as well, suggesting that the addition of MRA to the
overall MR imaging did not affect the sensitivity and specificity of
MR imaging as a whole. This study supports MR imaging perform-
ing well as a screening tool for brain AVMs in the HHT population
seen at our Center of Excellence, while MRA should not be used as
a sole screening tool for cerebral AVMs in this population.

Our data also suggest that of the MR imaging sequences ana-
lyzed, postcontrast imaging sequences were the most useful in
detecting cerebral AVMs with 3D-T1 postgadolinium and 2D-T1

FIG 3. Multiple brain AVMs in HHT: positive on MR imaging, MRA, and DSA. A 23-year-old woman
with 2 brain AVMs identified on MRA, 7 brain AVMs identified on MR imaging, and 11 identified on
DSA. Selected images demonstrate a left basal ganglia AVM (white arrow) on 3D-postgadolinium
T1 (A), left ICA lateral DSA (B), left ICA anterior-posterior arterial phase DSA (E), and magnified left
ICA anterior-posterior capillary phase DSA (F). Note that the angioarchitecture of the basal gan-
glia AVM is best seen on DSA (E and F), including a high-grade stenosis of the deep draining vein
of the AVM (black arrow). Although 3D-postgadolinium T1 image of the right hemisphere (C)
demonstrates 1 cortical AVM (black arrowhead), right ICA lateral DSA (D) demonstrates 2 cortical
AVMs; the more anterior of these lesions (hashed arrow) was only apparent on DSA.
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postgadolinium sequences showing up to 56.5% of lesions later
confirmed on cerebral DSA and 71.2% of those seen on MR imag-
ing. These postgadolinium MR imaging sequences also showed
good sensitivity and negative predictive values (86.2% and 69.2%,
respectively, for 3D-T1 postgadolinium and 75.0% and 60.9%
respectively, for 2D-T1 postgadolinium), which are desirable in a
good screening test. While MRA on its own and more specifically

TOF-MRA alone showed poor sensitiv-
ity and negative predictive values, sug-
gesting that these sequences would be
poor screening tests, the studies that
included both TOF and postcontrast
MRA showed improved sensitivity and
negative predictive values (70.0% and
75.0%, respectively, for the combina-
tion of TOF and postgadolinium MRA
compared with 47.8% and 25.0%,
respectively, for TOF-MRA alone),
suggesting that the addition of postga-
doliniumMRAmay improve the utility
of this sequence.

In addition, our study suggests that
3T MR imaging is superior to 1.5T MR
imaging, with a sensitivity of 85.7%
and specificity of 100.0% compared
with 72.7% and 92.9% in 3T versus
1.5T, respectively. While the MRIs per-
formed on other field strengths also
appeared to have high sensitivity and
specificity, there were too few of these
cases to draw firm conclusions.

Our study obviously has several
limitations, the most important of
which is the heterogeneity of the MR
imaging studies that were evaluated.
Because these studies came from many
different sites, there was variation in
the MR imaging magnet strength and
the exact sequences performed; thus,
we chose to stratify the sequences in
the most general way possible rath-
er than by individual manufacturer’s
sequence type. This heterogeneity of
scanners and sequences may, therefore,
lead our data to somewhat underesti-
mate the true detection capability of
these sequences. Additional studies eval-
uating a prospective cohort of patients
with HHT all scanned on the same
scanners with the same standardized
protocol of imaging sequences may help
to confirm the true sensitivity of each of
these sequences in this population.

Whereas MR imaging is a nonin-
vasive test used to screen patients with
HHT for brain AVMs, DSA is an inva-
sive test used to confirm findings on

MR imaging and go beyond those findings to risk-stratify
patients. Predicting the likelihood of future brain AVM rupture is
the focus of many academic studies and is of paramount impor-
tance to individual patients and their physicians as they decide
whether to treat any particular brain AVM. Susceptibility-
weighted MR imaging sequences have demonstrated utility in
detecting microhemorrhage within sporadic brain AVMs; this

FIG 4. Cerebral vascular lesion in HHT: positive on MR imaging and negative on MRA and DSA. A
72-year-old man previously treated with gamma knife radiosurgery for a left frontal AVM. T2 MR
imaging (A) demonstrates gliosis in the superior frontal gyrus but no apparent AVM vessels, post-
gadolinium 2D-T1 MR imaging (B) demonstrates an enhancing lesion in the superior frontal gyrus,
and left ICA anterior-posterior (C) and lateral (D) DSA demonstrate no AVM.

Table 2: Number of AVMs seen on each evaluated MR image compared with the total
number seen on each technique

Sequence

Total No. of
AVMs Seen on

Given
Sequence

Percentage of all
AVMs Seen on MR
Imaging (n= 73)

Percentage of
all AVMs Seen
on DSA (n= 92)

Total AVMs seen on MR imaging 73 100.0% 79.3%
3D-T1 Postgad 49 67.1% 53.3%
2D-T1 Postgad 52 71.2% 56.5%
SWI 35 47.9% 38.0%
T2 24 32.9% 26.1%
MRA 25 34.2% 27.2%

Note:—Postgad indicates postgadolinium.
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finding is a predictor of future AVM rupture.14 DSA can demon-
strate detailed angioarchitectural features of AVMs that connote
a higher risk of future rupture that are often not discernable on
MR imaging, including feeding artery aneurysms, nidal aneur-
ysms, and venous outflow stenosis.15,16

Our practice has been to perform DSA on patients with HHT
who have either a brain hemorrhage or a potential brain AVM
identified on screening MR imaging. Thus, another fundamental
limitation of our study is that DSA is typically performed on
patients who have a suspicious finding on MR imaging or MRA,
not on patients who have normal MR imaging andMRA findings,
thus likely undercounting the number of potential cerebral vascu-
lar malformations identifiable by DSA. There are, of course, small
neurovascular lesions that may not be apparent on brain MR
imaging but can be detected on DSA. In the HHT population, it
would be expected that many of these very small malformations
would be capillary vascular malformations that do not have arteri-
ovenous shunting as opposed to nidus-type AVMs that do, by def-
inition, have arteriovenous shunting. Although capillary lesions
likely have a lower risk of hemorrhage than shunting lesions, the
rupture rate of small shunting AVMs remains unknown.

Detection of such lesions, thus, remains
important for clinical decision-making.
Some patients and physicians choose
treatment even of small unruptured
brain AVMs to prevent future cerebral
hemorrhage, particularly if there are
angioarchitectural high-risk features,
lesional microhemorrhage, genetic
predisposition, or a family history of
brain AVM hemorrhage.

CONCLUSIONS
This study reinforces the use of MR
imaging as a primary screening tool for
cerebral AVMs in patients with HHT
and suggests that a combination of post-

gadolinium sequences, specifically 3D-T1 postgadolinium and 2D-
T1 postgadolinium, has the highest yield for brain AVM detection
in patients with HHT and that MRA, and in particular TOF-MRA,
alone is not sensitive enough to be used as a sole screening tool.
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