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ORIGINAL RESEARCH
ADULT BRAIN

Artificial Intelligence–Based 3D Angiography for
Visualization of Complex Cerebrovascular Pathologies

S. Lang, P. Hoelter, M. Schmidt, C. Strother, C. Kaethner, M. Kowarschik, and A. Doerfler

ABSTRACT

BACKGROUND AND PURPOSE: By means of artificial intelligence, 3D angiography is a novel postprocessing method for 3D imaging
of cerebral vessels. Because 3D angiography does not require a mask run like the current standard 3D-DSA, it potentially offers a
considerable reduction of the patient radiation dose. Our aim was an assessment of the diagnostic value of 3D angiography for vis-
ualization of cerebrovascular pathologies.

MATERIALS ANDMETHODS: 3D-DSA data sets of cerebral aneurysms (nCA ¼ 10), AVMs (nAVM ¼ 10), and dural arteriovenous fistulas
(dAVFs) (ndAVF ¼ 10) were reconstructed using both conventional and prototype software. Corresponding reconstructions have
been analyzed by 2 neuroradiologists in a consensus reading in terms of image quality, injection vessel diameters (vessel diameter
[VD] 1/2), vessel geometry index (VGI ¼ VD1/VD2), and specific qualitative/quantitative parameters of AVMs (eg, location, nidus
size, feeder, associated aneurysms, drainage, Spetzler-Martin score), dAVFs (eg, fistulous point, main feeder, diameter of the main
feeder, drainage), and cerebral aneurysms (location, neck, size).

RESULTS: In total, 60 volumes have been successfully reconstructed with equivalent image quality. The specific qualitative/quantitative
assessment of 3D angiography revealed nearly complete accordance with 3D-DSA in AVMs (eg, mean nidus size3D angiography/3D-DSA¼ 19.9
[SD, 10.9]/20.2 [SD, 11.2] mm; r¼ 0.9, P¼ .001), dAVFs (eg, mean diameter of the main feeder3D angiography/3D-DSA¼ 2.04 [SD, 0.65]/2.05 [SD,
0.63]mm; r¼ 0.9, P¼ .001), and cerebral aneurysms (eg, mean size3D angiography/3D-DSA¼ 5.17 [SD, 3.4]/5.12 [SD, 3.3]mm; r¼ 0.9, P¼ .001).
Assessment of the geometry of the injection vessel in 3D angiography data sets did not differ significantly from that of 3D-DSA (vessel
geometry indexAVM: r¼ 0.84, P¼ .003; vessel geometry indexdAVF: r¼ 0.82, P¼ .003; vessel geometry indexCA: r¼ 0.84, P ,.001).

CONCLUSIONS: In this study, the artificial intelligence–based 3D angiography was a reliable method for visualization of complex
cerebrovascular pathologies and showed results comparable with those of 3D-DSA. Thus, 3D angiography is a promising postpro-
cessing method that provides a significant reduction of the patient radiation dose

ABBREVIATIONS: AI ¼ artificial intelligence; CA ¼ cerebral aneurysm; dAVF ¼ dural arteriovenous fistula; 3DA ¼ 3D angiography; 3D-DSA ¼ 3D digital sub-
traction angiography; VD ¼ vessel diameter; VGI ¼ vessel geometry index; VRT ¼ volume rendering technique

DSA is the current criterion standard for diagnostics of the cere-
bral vasculature by acquisition of time-resolved 2D-DSA series

and 3D rotational angiography (3DRA).1-3 Especially for the

assessment of complex vascular anatomy, 3D-DSA improves under-
standing of pathologies and their spatial relationship to adjacent vas-
cular structures.4 Thus, 3D imaging has become an irreplaceable
element in the diagnostic work-up of cerebrovascular pathologies
such as cerebral aneurysms (CAs), AVMs, and dural arteriovenous
fistulas (dAVFs).5-8

Like conventional 2D-DSA series, 3D-DSA is based on the
subtraction of a non-contrast-enhanced mask volume (mask run)
from a contrast-enhanced volume (fill run), thereby allowing sep-
aration of vascular from nonvascular structures. The effective
patient dose for a noncollimated 3D-DSA acquisition is 0.9 mSv.9

Of this amount, the mask run accounts for about 50% of the total
radiation dose for both patients and investigators.10 Hence, a
reduction of the radiation dose required for 3D imaging of cere-
bral vessels is highly desirable.
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There are already, however, valuable considerations for dose
reduction, for example varying the scanning parameters (eg, scal-
ing down the dose per frame) for acquisition of both mask and
fill runs11,12 or even removing the mask run and separating opa-
cified vascular structures from soft tissue by adjusting thresholds
of the contrast-enhanced 3D data set (3DRA).13-15 While a varia-
tion of sensitive scanning parameters seems to be limited in terms
of a reliable reproduction of vessels, 3DRA based on thresholding
provides sufficient quality for evaluation of CAs. However, visual-
ization of small vessels with 3DRA highly depends on the homoge-
neity of the applied contrast medium bolus and is thus highly
susceptible to windowing.16

Recently, interesting approaches for dose-optimized 3D-DSA
imaging of the cerebral vasculature have been proposed. Novel
postprocessing techniques enable differentiation of vessels from
adjacent structures using artificial intelligence (AI) and require
only a single contrast-enhanced fill run.17,18 Consequently, these
AI-based algorithms provide dose savings of up to 50% and might
reduce a potential decrease in image quality caused by motion arti-
facts due to their immunity to misregistration.13 From a technical
perspective, precise classification of different types of tissue is of
central importance for these AI-based algorithms, whereby algo-
rithms with differentiation of 3 types of tissue such as vasculature
versus bone versus soft tissue17 and 2 types of tissue such as vascu-
lature versus nonvasculature18 have been reported, respectively.
Despite different classification strategies, both algorithms have
shown promising results for generating DSA-like 3DA with diag-
nostic quality in preliminary assessments.

So far, these AI-based algorithms have been exclusively eval-
uated using data sets either with CAs or without pathologic find-
ings. However, the diagnostic relevance of 3D-DSA applications is
the highest in complex vascular pathologies like AVMs and dAVFs
because 2D-DSA frequently has vascular overlap in these cases.

Hence, we present our experience with an AI-based 3DA pro-
totype by means of a case series of CAs, AVMs, and dAVFs. In
particular, our aim was to compare this prototypical 3DA tech-
nique classifying 2 types of tissue (vasculature versus nonvascula-
ture) with the current standard 3D-DSA in terms of quantitative
and qualitative parameters.

MATERIALS AND METHODS
Patient Selection
In a retrospective analysis, 3D-DSA data sets from 28 patients
(agemean ¼ 58.7 [SD, 12.56] years; nfemale/male ¼ 11:17) with
unruptured AVMs (nAVM ¼ 10), unruptured CAs (nCA ¼ 10),
and dural arteriovenous fistulas (ndAVF ¼ 10) were evaluated. All
data sets were acquired before treatment of the underlying condi-
tion in the ICA in 17 cases (57%), the vertebral artery in 9 cases
(30%), and the external carotid artery in 4 cases (13%). Informed
consent was obtained from all patients enrolled.

3D Angiography
The prototypical 3D angiography (3DA) refers to a novel post-
processing approach with the aim of generating DSA-like 3D vol-
umes with diagnostic image quality. In contrast to 3D-DSA, the
AI-based 3DA requires only a single contrast-enhanced run (fill
run) to differentiate vessels from adjacent structures.

From a technical perspective, the core of the 3DA technique
can be seen as a 3D segmentation task and is based on a classifica-
tion of contrast-enhanced vascular and nonvascular structures in
fill run data by applying a deep convolutional neural network19

specifically trained for this task before our evaluation. In particu-
lar, the convolutional neural network is trained to determine a
3D binary segmentation mask on the basis of the fill run data,
which can, in turn, be applied to the fill run data to generate a
DSA-like 3D volume. The chosen network architecture is con-
ceived as a fast 3D network with a small memory footprint. Thus,
a feed-forward 3D convolutional neural network using rectified
linear unit activations normalized through batch normalization20

was selected. Due to the binary nature of the classification task
(ie, distinguishing vascular and nonvascular structures), the bi-
nary cross-entropy was set as a loss function. The optimization is
based on the Adam optimization approach,21 an extension of the
classic stochastic gradient descent, using a batch size of 64. The
base learning rate was set to 0.01. To incorporate not only local
but also surrounding contextual information into the classifica-
tion, we used dilated convolutions.

Analogous to an application in 1D scenarios such as generat-
ing audio waveforms (as proposed in van den Oord et al22), the
concept of dilated convolutions can be applied to multidimen-
sional application scenarios23 as well. The network features 4 con-
volutional layers with 8 filters each, a kernel size of 5 � 5 � 5
voxels, and a dilation rate of 2. The final layer features a kernel
size of 3 � 3 � 3 voxels with 1 result filter that constitutes the
classification result. The advantage of this formulation is that the
proposed algorithm is fully convolutional and allows a volume of
arbitrary size (eg, 512 � 512 � 512 voxels) to be used as input to
the classification. Furthermore, the chosen architecture allows a
reasonable trade-off, especially for larger 3D volumes between
the application run time and classification quality. Key aspects of
the network architecture are illustrated in Fig 1.

In total, 98 retrospectively selected 3D-DSA data sets (free
from metal or motion artifacts) covering a variety of conditions
(to prevent overfitting) represented the training data for the 3DA
algorithm. The training process was based on the presentation of
both extracted contrast-enhanced runs (fill runs) and complete
3D-DSA volumes (containing mask and fill runs) to the deep
convolutional neural network, aiming at a suitable classification
between contrast-enhanced vascular and nonvascular structures,
ie, the segmentation of the vascular structures in a 3D volume.
For each individual data set used for the training of the 3DA algo-
rithm, vascular extraction (ie, the derivation of a 3D binary seg-
mentation mask) was performed by thresholding the subtracted
3D-DSA volumes. To determine a reasonable threshold, we con-
sidered the filling of the vasculature as well as the exclusion of
undesirable influences (such as inconsistencies, image artifacts,
noise, and so forth). To cover a sufficient variety of potentially
suitable thresholds (eg, comparable with the personal preferences
of multiple different clinical experts for a specific volume), we
also included multiple thresholding choices simultaneously in the
training process. Finally, this form of augmentation is intended
to provide a better overall performance of the 3DA algorithm.

For the classification, randomly selected patches with a size of
31� 31� 31 voxels were applied from the presented 3D volumes
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during the training. The chosen size of the patches is the mini-
mum input size for the network and results in a single-voxel
response. The motivation for this choice was to foster random-
ness during the training, which, in turn, can contribute to the
robustness and quality of the resulting classifier. All parameters
were determined using hyperparameter tuning. Note that during
the application of the prototypical 3DA method, the processing
was not patch-based but was performed on an entire volume data
set. Subsequent multimodal testing and validation of the proto-
typical algorithm of this classification were performed with sepa-
rate 3D-DSA data sets. No data set of the training or validation
was part of our series for evaluation of 3DA in cases of AVMs,
CAs, and dAVFs.

Data Acquisition and Postprocessing
3D-DSA was acquired using a biplane flat panel detector angio-
graphic system (Artis zee biplane; Siemens). By means of stand-
ard angiographic methods, a 5F catheter was positioned in the
proximal ICA, external carotid artery, or vertebral artery to
obtain 3D-DSA data sets using the standard acquisition protocol
(5-second 3D-DSA) as provided by the manufacturer. Here, an
initial rotational scan (native mask run) is followed by a second
rotational scan (contrast-enhanced fill run) of 5 seconds each.
Each run yields 133 projections (rotational angle = 200°). The de-
tector dose per projection image is selected as 0.36 mGy (70 kV,
1240 � 960 detector elements with 2 � 2 binning of pixels, pro-
jection on a 30 � 40 cm flat panel size, with increment of 1.5°/
frame, a frame-rate of 30 frames/s). According to our protocol, a
manual injection of contrast was initiated 1 second before the be-
ginning of the fill run, maintained for 6 seconds, and stopped af-
ter the C-arm system had covered the complete rotation angle.
The total contrast volume was 15mL of Imeron 300 (iopamidol;
Bracco).

Both mask and fill runs of the acquired 3D-DSA data sets
were transferred to a dedicated workstation (syngo X Workplace;
Siemens) running both commercially available software for con-
ventional 3D-DSA postprocessing and an additional software
prototype plug-in for the 3DA postprocessing. Reconstruction of
the 3D-DSA volumes was performed using data derived from
both runs, whereas reconstruction of 3DA volumes was accom-
plished using only data from the fill runs.

According to standardization, we used conventional recon-
struction parameters for both 3DA and 3D-DSA (kernel type:
edge-enhanced; characteristics: smooth; 512 � 512 image
matrix).

Image Evaluation
The image quality of all data sets was evaluated for parameters
that could compromise the diagnostic value using a 5-fold
grading-scale (Table 1). The 3D-DSA and 3DA reconstructions
were assessed in a consensus reading by 2 experienced neuroradi-
ologists (6 and 10 years of clinical experience) blinded to the type
of reconstruction (based on either the subtraction technique or
the AI algorithm).

FIG 1. Key aspects of the chosen network architecture. In addition to
the in- and output of the network, kernel sizes, dilation rates, number
of filters, and activation function (ie, rectified linear unit [ReLu]) are
shown. Conv3D indicates 3D convolutional neural network.
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Assessment of 3DA and 3D-DSA Reconstructions
Vessel Geometry Index. For all 3DA- and 3D-DSA data sets, the
maximum transversal diameters of the injection vessels (in milli-
meters; vessel diameter [VD]1/VD2) were measured in multipla-
nar reconstructions. Respecting the three-dimensionality of these
data sets, the ratio of VD1 and VD2 was defined as the vessel ge-
ometry index (VGI = VD1/VD2).18 Measurements of the anterior
and posterior circulation were performed at the C4 segment of
the ICA and the V4 segment of the vertebral artery, respectively.
If branches of the external carotid artery were involved, the maxi-
mum transversal diameter of the proximal external carotid artery
was measured. See Fig 2 for an illustrative measurement of VD1
and VD2 at the ICA.

AVMs. The degree of agreement between the 3DA and 3D-DSA
data sets of the AVMs was evaluated with a combination of
MPR/MIP/VRT images from both types of reconstructions. As
qualitative parameters, involvement of eloquent brain areas, ori-
gin of the main feeder, venous drainage (superficial, deep,
mixed), and the presence of venous varix or stenosis were deter-
mined. Moreover, the number of feeders, the presence and num-
ber of aneurysms on feeding arteries, the number of intranidal
aneurysms, and the maximum diameter of the nidus were deter-
mined as quantitative parameters. On the basis of these data,
Spetzler-Martin scores were also determined.

dAVFs. The degree of agreement between the 3DA and 3D-DSA
data sets of the dAVFs was also evaluated with a combination of
MPR/MIP/VRT images from both types of reconstructions. As
qualitative parameters, the origin of the main feeder (eg, middle/
posterior meningeal artery, ophthalmic artery, ascending pharyngeal

artery), the localization of the fistulous
point (anterior/middle/posterior cranial
fossa), the primary vessel of venous
drainage (vein or sinus), and drainage
of the fistula into a dural sinus (trans-
verse sigmoid, petrous, superior sagittal,
and straight sinuses) were recorded. As
a quantitative parameter, the maximum
diameter of the main feeder was also
obtained.

CAs. The degree of agreement between
the 3DA and 3D-DSA data sets of the
CAs was also evaluated with a combi-
nation of MPR/MIP/VRT images from
both types of reconstructions. As quali-
tative parameters, the localization (par-
ent artery) of the aneurysm and its
neck configuration were recorded. As
quantitative parameters, the maximum
diameter of aneurysmal sac and the
number of aneurysmal blebs were also
noted.

Statistical Analysis
Statistical analysis was performed

using commercially available software (SPSS Statistics, Version
20; IBM).

Because of their noncontinuous character, qualitative parame-
ters (eg, location of the pathology and so forth) were analyzed
using descriptive statistics.

Quantitative parameters from both groups (eg, vessel diame-
ters, VGIs, diameter of the AVM nidus, diameter of the main
dAVF feeder, and diameter of aneurysmal sac) were tested for nor-
mal distribution using the D’Agostino-Pearson test (if P. .05,
normality was accepted) and were compared using the Pearson
correlation coefficient (r) and a paired t test (P), respectively. Any
other quantitative parameters (eg, number of AVM feeders, aneur-
ysms on AVM feeding arteries, number of intranidal aneurysms,
number of aneurysmal blebs, and so forth) were analyzed using de-
scriptive statistics.

RESULTS
Image Quality
The 3DA and 3D-DSA reconstructions (n¼ 60), respectively,
were all of diagnostic quality with a low number of cases with
reduced image quality due to motion artifacts (3DA: nexcellent ¼
23, ngood¼ 7; 3D-DSA: nexcellent¼ 23, ngood¼ 7).

Qualitative and Quantitative Assessment of 3D-DSA and
3DA Reconstructions
VGI. In all 3DA and 3D-DSA reconstructions, measurement of
vessel diameters was successfully performed (n3DA ¼ 60,
n3D-DSA ¼ 60), and the acquired values for AVMs, dAVFs, and
CAs did not show significant differences. Concordantly, the cor-
responding VGIs did not differ significantly as well. See Table 2
for details.

Table 1: Image quality
Grade Characteristics
4 Excellent (high contrast, no artifacts)
3 Good (high contrast; minimal artifacts, eg, due to movement or implants)
2 Compromised (eg, noticeable movement artifacts and/or reduced homogeneity of

the vessel contrast)
1 Heavily compromised (low contrast and/or strong movement artifacts)
0 Not diagnostic (vasculature is not differentiable due to heavy artifacts and/or

missing contrast)

FIG 2. Sample measurement of the vascular dimensions of an ICA (C4 segment) in a 3D-DSA data
set. The maximum vessel diameters have been assessed for both 3D-DSA and 3DA in 2 projections
each (VD1 and VD2) using multiplanar reconstructions. A, Sagittal orientation of the C4 segment. B,
Coronary orientation of the C4 segment. C, Finally, both vessel diameters allow the calculation of the
VGI (VGI¼ VD1/VD2).
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AVMs. In total, 10 data sets acquired via the ICA (nright ¼ 4, nleft ¼
1) and vertebral artery (nright ¼ 3, nleft ¼ 2) and having 10 AVMs
were successfully postprocessed and evaluated. Qualitative

assessment of the corresponding 3DA
and 3D-DSA data sets revealed identi-
cal results concerning the involvement
of eloquent brain areas (n3DA/3D-DSA ¼
8), origin of the main feeder (3DA/3D-
DSA: nposterior cerebral artery ¼ 6, nMCA ¼
3, nanterior cerebral artery ¼ 1), and drain-
age (3DA/3D-DSA: nsuperficial ¼ 4, ndeep
¼ 4, nmixed ¼ 2) and pathologies of ve-
nous vessels (3DA/3D-DSA: nvenous
pouch ¼ 4). The number of arterial
feeders (n3DA/3D-DSA = 16) and associ-

ated flow-related (n3DA/3D-DSA ¼ 3) and intranidal aneurysms
(n3DA/3D-DSA ¼ 3) was rated identically for both modalities.
Measurement of the nidus size in 3DA reconstructions (mean, 19.9
[SD, 10.9]mm) showed a strong correlation (r¼ 0.9/P¼ .001) to
3D-DSA (mean, 20.2 [SD, 11.2]mm). The Spetzler-Martin score
was rated identically for AVMs in 3DA and 3D-DSA reconstruc-
tions (3DA/3D-DSA: nSpetzler-Martin score 1 ¼ 1, nSpetzler-Martin score 2 ¼
4, nSpetzler-Martin score 3¼ 5). For an illustrative case see Fig 3.

dAVFs. In total, 10 data sets, acquired via the ICA (nright¼ 2, nleft¼
1), external carotid artery (nright ¼ 2, nleft ¼ 2), and vertebral artery
(nright¼ 1, nleft¼ 2) with 10 dAVFs were successfully postprocessed
and evaluated. Qualitative assessment of the corresponding 3DA
and 3D-DSA data sets revealed identical results concerning the ori-
gin of the main feeder (3DA/3D-DSA: nophthalmic artery ¼ 3, nmiddle

meningeal artery ¼ 3, nposterior meningeal artery ¼ 3, nascending pharyngeal artery

¼ 1), localization of the fistulous point (3DA/3D-DSA: nanterior cra-
nial fossa ¼ 2, nmiddle cranial fossa ¼ 4, nposterior cranial fossa ¼ 4), primary
vessel of drainage (3DA/3D-DSA: nvein ¼ 9, nsinus ¼ 1), and drain-
age of the fistula (3DA/3D-DSA: ntransverse sigmoid sinus ¼ 3, nsuperior
sagittal sinus¼ 3, nstraight sinus¼ 4). Measurement of the maximum di-
ameter of the main feeder in the 3DA reconstructions (mean, 2.04
[SD, 0.65]mm) showed a strong correlation (r¼ 0.9/P¼ .001) to
3D-DSA (mean, 2.05 [SD, 0.63]mm). For an illustrative case see
Fig 4.

CAs. In total, 10 data sets, acquired via the ICA (nright ¼ 4, nleft ¼
5) and vertebral artery (nright ¼ 1) and having 10 CAs, were suc-
cessfully postprocessed and evaluated. Qualitative assessment of
the corresponding 3DA and 3D-DSA data sets revealed identical
results concerning the identification of the parent vessel (3DA/3D-
DSA: nAanterior communicating artery¼ 2, nMCA¼ 4, nICA¼ 3, nbasilar ar-
tery ¼ 1) and the aneurysmal neck configuration (3DA/3D-DSA:
nsmall ¼ 3, nmedium ¼ 2, nlarge ¼ 5). Measurement of the maximum
diameter of the aneurysmal sac in the 3DA reconstructions (mean,
5.17 [SD, 3.4]mm) showed a strong correlation (r¼ 0.9/P¼ .001)
to 3D-DSA (mean, 5.12 [SD, 3.3]mm). The number of aneurysmal
blebs was equivalent in both types of reconstructions (3DA/3D-
DSA: n¼ 3). For an illustrative case see Fig 5.

DISCUSSION
3D imaging of neurovascular pathologies is invaluable in diagnos-
tics and therapy. So far, 3D-DSA with an established acquisition
protocol and efficient postprocessing is regarded as standard.
Approximately 50% of the radiation dose required for a 3D-DSA

Table 2: VD and VGI
Parameter 3DA (Mean) 3D-DSA (Mean) r P
VD1AVM 3.82 (SD, 0.47)mm 3.81 (SD, 0.55)mm 0.988 ,.001
VD2AVM 3.97 (SD, 0.60) mm 3.94 (SD, 0.59)mm 0.984 ,.001
VGIAVM 0.96 (SD, 0.04) mm 0.97 (SD, 0.03)mm 0.835 .003
VD1CA 4.39 (SD, 0.84) mm 4.34 (SD, 0.87)mm 0.998 ,.001
VD2CA 4.61 (SD, 0.81) mm 4.54 (SD, 0.85)mm 0.996 ,.001
VGICA 0.95 (SD, 0.04) mm 0.95 (SD, 0.03)mm 0.955 ,.001
VD1dAVF 4.24 (SD, 0.72) mm 4.22 (SD, 0.77) mm 0.993 ,.001
VD2dAVF 4.44 (SD, 0.780)mm 4.43 (SD, 0.81) mm 0.992 ,.001
VGIdAVF 0.95 (SD, 0.02)mm 0.95 (SD, 0.02)mm 0.824 .003

FIG 3. Illustrative case 1. Sample visualization of a right-sided AVM
with 3D-DSA (A) and the AI-based 3DA (B) using VRT. 3DA (B) shows
both feeding arteries originating from the MCA and the nidus and
drainage via superficial veins, equivalent to 3D-DSA. Not only the
flow-associated aneurysm of the MCA bifurcation (red arrow) but
also the venous ectasia adjacent to the nidus is comparably visualized
without loss of information using 3DA.

FIG 4. Illustrative case 2. Sample visualization of a left-sided dAVF
with 3D-DSA (A) and the AI–based 3DA (B) using VRT. 3DA (B) offers
comparable visualization of the influx of the fistula via the dilated
middle meningeal artery and the drainage of the fistula via an ectatic
cerebral vein compared with 3D-DSA (A).
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acquisition is necessary for acquisition of a mask; alone, the mask
contains no clinically useful vascular information. Moreover, the
subtraction technique is susceptible to artifacts due to misregistra-
tion of the mask and fill runs. Thus, AI-based algorithms like 3DA
requiring only a single contrast-enhanced run have been developed
for obtaining a maskless 3DA. This reduces the radiation dose and
may also improve image quality by eliminating the eventuality of
intersweep motion. Because AI-based algorithms have already
been validated for vessels without pathologic findings18 and for
CAs,17 the potential of this technique for generating DSA-like
3DAs with diagnostic quality has already been demonstrated.
However, 3D imaging is needed most in AVMs and dAVFs.
Hence, an assessment of 3DA with regard to complex pathologies
is imperative before clinical implementation.

In our series, 3DA as a novel prototypical postprocessing tech-
nique was performed successfully for all data sets by differentiating
2 types of tissue (vasculature versus nonvasculature) and was suita-
ble for visualization of CAs, AVMs, and dAVFs. When we took
specific characteristics of these pathologies into account, our quan-
titative and qualitative analyses of 3DA demonstrated excellent
agreement with standard 3D-DSA reconstructions. Even though
3DA has not left the prototype stage yet, future clinical application
seems promising because no loss of information has been observed.
As a result of the clinical implementation of 3DA, the effective
patient dose required for 3D imaging of the cerebral vasculature
would be reduced by approximately 50%: Based on usual dose val-
ues for a 3D-DSA acquisition ranging from 0.3 to 0.9 mSv (depend-
ing on the extent of collimation), 0.15–0.45 mSv per acquisition
may be saved, respectively. Although an estimated dose reduction
below average values of 0.35 mSv per acquisition might not sub-
stantially impact a patient’s associated lifetime cancer risk, reliable
dose savings would be achievable through the use of 3DA.

Previously, Montoya et al17 have demonstrated that their AI-
based algorithm (3D deep learning angiography [3D-DLA]) pre-
cisely extracts the vascular anatomy in a DSA-like manner in a se-
ries of 62 data sets. The authors analyzed the quality of vessel
separation from adjacent bone and soft tissue in 3D-DLA by
quantitative and qualitative parameters in cases with cerebrovas-
cular abnormalities. 3D-DLA provided a vasculature classifica-
tion accuracy of 98.7%, high-quality bone removal, and reduced
misregistration artifacts caused by intersweep motion. Although

the authors provided image examples of CAs, there was no state-
ment regarding the exact composition of their patient cohort
(cases were selected in a random fashion). Moreover, a dedicated
assessment of CAs concerning qualitative (eg, configuration) and
quantitative (eg, size) parameters has not been performed.
Nevertheless, the authors demonstrated that 3D-DLA is applica-
ble to vascular pathologies. Because the analysis of Montoya et
al17 exclusively allows conclusions about CAs, our detailed evalu-
ation covering CAs, AVMs, and dAVFs is another important
component to assess the value of AI-based algorithms in this
context and to prepare their future clinical implementation.
However, all AI-based algorithms depend directly on the chosen
network architecture. Provided that appropriate data sets (in par-
ticular 3D-DSA data sets of adequate quality) have been used for
training the network, we fully agree that AI-based algorithms
such as 3D-DLA or 3DA have the potential to simultaneously
improve the image quality and reduce the radiation dose.

Most interesting, “simple” thresholding of a single contrast-
enhanced data set is another remarkable option to generate DSA-
like images for 3DRA.13 Similar to AI-based approaches, 3DRA is
not based on the subtraction technique and does not require a
mask run. Consequently, the radiation dose can be almost halved
compared with 3D-DSA. Simultaneously, 3DRA does not have
susceptibility for misregistration artifacts or for intersweep
motion and may improve image quality. So far, 3DRA has been
evaluated in cases of CAs and was a valuable method for their
preinterventional assessment. Because of its accuracy in these
cases, the clinical implementation of 3DRA has already been
achieved. However, 3DRA is based on modifying thresholds for the
contrast-enhanced 3D data to provide differentiation of vascular
from nonvascular structures.14 As a consequence, poorly opacified
vessels (eg, perforators) are potentially harmed by this reconstruc-
tion process and are in danger of not being visualized.16 Therefore,
we must assume that in general, 3DRA is limited regarding visual-
ization of complex arteriovenous pathologies. Nevertheless, 3DRA
significantly contributes to a reduction of the radiation dose
required for the diagnostic work-up of CAs. However, our results
indicate that 3DA as an AI-based algorithm is not restricted in
terms of visualization of the angioarchitecture of an AVM or
dAVF. In fact, our experience concerning visualization of very small
vessels like perforating arteries with 3DA is in complete accordance
with previously published data.17,18 Hence, 3DA provides signifi-
cant benefits because of its broad field of applications.

Also, direct manipulation of scanning parameters can be an
effective concept for realizing significant dose reductions regard-
ing 3D-DSA acquisitions. Pearl et al11,12 demonstrated that sim-
ple downscaling of the applied dose is not necessarily associated
with poor image quality. In the end, the authors worked out a
low-dose protocol that both leads to a relevant dose reduction
(up to 30%) and preserves diagnostic quality of the 3D-DSA data
sets. However, any manipulation of scanning parameters caused
statistically significant alterations regarding the representation of
the vascular geometry and is potentially associated with loss of rele-
vant information. In the clinical routine, this inconsistency is only
tolerable to a certain extent and might be disadvantageous, espe-
cially in complex cases. Nevertheless, the work of Pearl et al is
highly relevant for the evolution of AI-based algorithms. As soon

FIG 5. Illustrative case 3. Sample 3D visualization of an irregular aneu-
rysm of the anterior communicating artery in VRT reconstructions
using 3D-DSA (A) and 3DA (B). Despite differences concerning the
reconstruction algorithm, AI-based 3DA (B) provides all relevant infor-
mation on the aneurysmal configuration equivalent to 3D-DSA.
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as we learn to combine low-dose protocols with AI-based algo-
rithms, we will be able to take full advantage of both dose-saving
techniques. Therefore, future research should focus on the devel-
opment of clinically applicable dose-reduced single-run protocols.

Limitations
Although clinically useful 3DA was achieved from all data sets, our
analysis has limitations. First, it was limited by the small sample
size. Moreover, our retrospective series included only preopera-
tive/preinterventional cases of vascular pathologies; it does not
address the qualification of the prototypical 3DA to visualize me-
tallic implants (eg, embolization material). Additionally, our series
did not include cases with heavily compromised image quality (eg,
motion artifacts) and contrast variations (eg, data sets with varying
contrast media dilutions). Nevertheless, our analysis exclusively
evaluated 1 specific AI-based algorithm for vessel recreation, classi-
fying 2 types of tissue (vasculature versus nonvasculature). Thus,
the results concerning the diagnostic value of the proposed 3DA
algorithm can be transferred only to other AI-based angiographic
algorithms with comparable characteristics. In fact, further investi-
gations focusing on these issues are required to assess the full clini-
cal applicability of this new method.

CONCLUSIONS
The investigated AI-based 3DA algorithm used in cases of com-
plex AVMs, dAVFs, and CAs and obtaining DSA-like 3D vol-
umes provided the same utility as conventionally reconstructed
3D-DSA volumes. Moreover, because this method does not rely
on the subtraction technique, AI-based 3DA offers a significant
reduction of the effective patient radiation dose. Thus, the clinical
implementation of this promising postprocessing algorithm
should be pursued.

Disclosures: Christian Kaethner—UNRELATED: Employment: Siemens, Comments:
full-time employee. Markus Kowarschik—UNRELATED: Employment: Siemens,
Comments: full-time employee.
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