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ORIGINAL RESEARCH
PEDIATRICS

Automating Quantitative Measures of an Established
Conventional MRI Scoring System for Preterm-Born Infants

Scanned between 29 and 47 Weeks’ Postmenstrual Age
L. van Eijk, M. Seidel, K. Pannek, J.M. George, S. Fiori, A. Guzzetta, A. Coulthard, J. Bursle, R.S. Ware,

D. Bradford, S. Rose, P.B. Colditz, R.N. Boyd, and J. Fripp

ABSTRACT

BACKGROUND AND PURPOSE: Conventional MR imaging scoring is a valuable tool for risk stratification and prognostication of outcomes,
but manual scoring is time-consuming, operator-dependent, and requires high-level expertise. This study aimed to automate the regional meas-
urements of an established brain MR imaging scoring system for preterm neonates scanned between 29 and 47weeks’ postmenstrual age.

MATERIALS AND METHODS: This study used T2WI from the longitudinal Prediction of PREterm Motor Outcomes cohort study and the
developing Human Connectome Project. Measures of biparietal width, interhemispheric distance, callosal thickness, transcerebellar diame-
ter, lateral ventricular diameter, and deep gray matter area were extracted manually (Prediction of PREterm Motor Outcomes study only)
and automatically. Scans with poor quality, failure of automated analysis, or severe pathology were excluded. Agreement, reliability, and
associations between manual and automated measures were assessed and compared against statistics for manual measures. Associations
between measures with postmenstrual age, gestational age at birth, and birth weight were examined (Pearson correlation) in both cohorts.

RESULTS: A total of 652 MRIs (86%) were suitable for analysis. Automated measures showed good-to-excellent agreement and good reli-
ability with manual measures, except for interhemispheric distance at early MR imaging (scanned between 29 and 35weeks, postmenstrual
age; in line with poor manual reliability) and callosal thickness measures. All measures were positively associated with postmenstrual age
(r¼ 0.11–0.94; R2 ¼ 0.01–0.89). Negative and positive associations were found with gestational age at birth (r ¼ –0.26–0.71; R2 ¼ 0.05–0.52)
and birth weight (r ¼ –0.25–0.75; R2 ¼ 0.06–0.56). Automated measures were successfully extracted for 80%–99% of suitable scans.

CONCLUSIONS: Measures of brain injury and impaired brain growth can be automatically extracted from neonatal MR imaging,
which could assist with clinical reporting.

ABBREVIATIONS: DGMA ¼ deep gray matter area; dHCP ¼ developing Human Connectome Project; GA ¼ gestational age at birth; ICC ¼ intraclass corre-
lation coefficient; LoA ¼ 95% limits of agreement; LVD ¼ lateral ventricular diameter; PMA ¼ postmenstrual age; PPREMO ¼ Prediction of PREterm Motor
Outcomes study; SEM ¼ standard error of measurement; TEA ¼ term-equivalent age

Conventional brain MR imaging scoring of preterm infants
classifies injury and impaired growth and contributes to

risk stratification and neurodevelopment outcome prognosis.1

Preterm infants are at risk of adverse motor,2,3 cognitive,2,4 and be-
havioral outcomes.2,5,6 Although survival rates for premature birth

have improved7,8 and cerebral palsy rates are declining,9,10

long-term developmental impairments remain concerning.7,8,11

Neuroimaging is becoming more common in preterm infants
before discharge from the neonatal intensive care unit and offers an
opportunity for early prognosis. Near term age, the brain undergoes
rapid growth.12,13 Abnormalities identified during this period have
potential as predictors of neurodevelopment in children born pre-
term14 and can help identify infants at risk of subsequent motor
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and cognitive delay. Early detection of these infants allows the effi-
cacy of potential early treatments to be assessed.

A recent standardized conventional scoring system for MR
imaging of preterm infants evaluates the severity of cerebral WM,
cortical GM, deep GM, and cerebellar and global abnormalities.15,16

These composite scores of abnormalities and their submeasures,
derived from early (29–35weeks’ postmenstrual age [PMA]) or
term-equivalent age (TEA) MR imaging, are associated with motor
and cognitive outcomes.1,17-20 George et al1 (n¼ 83 early; n¼ 77
TEA) found that global brain, WM, and deep GM abnormalities at
early and TEA MR imaging and cerebellar abnormalities at TEA
MR imaging were associated with neurologic, sensory, motor, and
cognitive outcomes at 1-year follow-up. Several studies have also
shown associations between abnormalities on TEA MR imaging
and cognitive and/or motor outcomes at 2-year follow-up, for
WM,17-19 GM,17 and global abnormalities20 and submeasures (ie,
ventricular dilation20 and smaller cerebellar diameter18,20). Others
found no association with outcomes.21 Furthermore, abnormalities
at TEA MR imaging have been related to longer-term develop-
mental outcomes.22-25 WM abnormalities were associated with
poorer motor outcomes at 5-year follow-up,22 delayed language
development,23 poorer executive functioning,23 and lower general
intelligence at 4- and 6-year follow-up,23 as well as poorer cognitive
outcomes at 4-,23 6-,23 7-,24 and 9-year follow-up. Anderson et al24

also reported that global brain and deep GM abnormalities at TEA
MR imaging were associated with poorer cognitive outcomes at 7-
year follow-up,24 including general intelligence, spelling, math, and
motor function. Possible reasons for these discrepancies between
studies include differences in the sampled population and MR
imaging acquisition, rater variability, sample size, and heterogene-
ity, including brain injury severity.

Manual scoring is time-consuming and requires expertise in
neonatal neuroimaging and is, therefore, impractical for larger
data sets and clinical practice. This study aimed to automate the 6
regional measurements of a conventional MR imaging scoring
system that are based on distance and area (accounting for
approximately half the measures in the scoring system) to
improve reproducibility and clinical utility. We automated the
extraction of biparietal width, interhemispheric distance, thick-
ness of the corpus callosum (at the genu, midbody, and sple-
nium), transcerebellar diameter, left and right lateral ventricular
diameter (LVD), and deep gray matter area (DGMA) for MRIs
acquired between 29 and 47weeks’ PMA. Agreement, reliability,
and associations between automated and manual measures were
examined, as well as for manual test-retest data for comparison.
We hypothesized at least a moderate association between auto-
mated and manual measures. Finally, we examined the associa-
tion between each measure with PMA and gestational age at birth
(GA), hypothesizing that automated measures would show asso-
ciations similar to those of the manual measures.

MATERIALS AND METHODS
Study Design and Participants
Data were included from the Prediction of PREterm Motor
Outcomes (PPREMO) study26 (longitudinal study of very preterm
infants) and the developing Human Connectome Project (dHCP)27

(cross-sectional study including preterm and term-born infants).
PPREMO recruited preterm infants born ,32weeks’ GA with no
congenital or chromosomal abnormalities and a reference sample of
term-born infants (38–42weeks’ GA, birthweight .10th percentile)
with an uncomplicated pregnancy, delivery, and postpartum period.
Study design and protocol are available.26 Ethical approval was
obtained from the Royal Brisbane and Women’s Hospital Human
Research Ethics Committee (HREC/12/QRBW/245), The Univer-
sity of Queensland (2012001060), and the trial was registered
with the Australian New Zealand Clinical Trials Registry
(ACTRN12613000280707). The dHCP study (second release)
includes the largest multimodal neonatal open-access data set (http://
www.developingconnectome.org/project/). Details of the structural
preprocessed data are available.13 Ethics approval was obtained from
the National Research Ethics Committee (REC:14/LO/1169). For
both data sets, informed written parental consent was obtained for
each infant, and local ethics approval for using the data for the cur-
rent study was obtained from the CSIRO Health and Medical
Human Research Ethics Committee (2020_051_LR).

MR Image Acquisition
PPREMO infants were scanned during natural sleep (no sedation
or anesthesia) at the Royal Brisbane and Women’s Hospital on a
3T MR imaging scanner (Tim Trio; Siemens) in an MR imaging–
compatible incubator with a dedicated neonatal head coil (LMT
Lammers Medical Technology). MR imaging noise was attenu-
ated using MiniMuffs (Natus Medical). Infants were monitored
with pulse oximetry. T2WI TSE volumes were acquired in the
axial plane with the following parameters:26 TR/TE ¼ 10,580/
189ms, flip angle ¼ 150°, FOV ¼ 144 � 180 mm, matrix ¼
204� 256, voxel size¼ 0.7� 0.7� 2 mm3. Infants were scanned
at 29–35weeks’ PMA (early MR imaging) and again at TEA.

Images for dHCP were acquired on a 3T MR imaging scanner
(Achieva; Philips Healthcare) with a dedicated neonatal head coil.27

We used the provided motion-corrected and super-resolution
reconstructed images,28 with a resolution of 0.5� 0.5� 0.5 mm3.13

Conventional MR Imaging Scoring (Manual)
As described in George et al,16 PPREMO images were manually
rated using the standardized MR imaging scoring system.15 A neu-
rologist with training in radiology and experience with neonatal
MR imaging scoring (S.F.) scored images masked to clinical history
(except PMA at scanning). Scoring methodology was confirmed
by a senior neuroradiologist (A.C.). We manually obtained 6 raw
measures of distance and area: biparietal width, interhemispheric
distance, thickness of the corpus callosum at 3 locations, transcere-
bellar diameter, left and right LVD, and DGMA (Table 1).15 In
addition, test-retest ratings were available for 20 infants (both time
points): Scans were manually rated again by the same rater (S.F.) 1
month apart and by an independent blinded rater (J.B.), a pediatric
radiologist. No manual ratings were available for dHCP.
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Image Processing
For PPREMO, T2WIs were preprocessed with slice interpolation
(up-sampling to a 0.7 � 0.7 � 1 mm3 resolution) and N4 bias
field correction. T2WIs were segmented using the MILXView
neuroimaging platform with the UNC neonate atlas29 and the 20
ALBERT atlas29,30 used to provide priors and 87 anatomic
regions (Milx31). PPREMO scans were also segmented with the
state-of-the-art dHCP parcellation pipeline. We did not use
the dHCP parcellations for extraction of the measures for the
PPREMO cohort, however, because several scans with a success-
ful Milx segmentation had no successful dHCP segmentation
available due to registration errors in the dHCP pipeline. For
dHCP, preprocessed T2WIs and segmentation labels were down-
loaded.13 None of the segmentations were manually edited.

T2WIs were rigidly aligned to either
an early or TEA PPREMO population
template, depending on the age at scan-
ning, using the FMRIB Linear Image
Registration Tool (FLIRT; http://www.
fmrib.ox.ac.uk/fsl/fslwiki/FLIRT).32

Segmentations were transformed to
this space using the obtained transfor-
mation, ensuring that all scans had the
same orientation for subsequent analy-
sis steps, while preserving brain size
and shape. Because the corpus cal-
losum is a relatively thin region, seg-
mentation errors may influence the
results more significantly than other
measures using larger segmentations.
To evaluate this problem, we extracted
callosal thickness measures twice for
the PPREMO cohort using segmenta-
tions from both pipelines, allowing
comparison of quantification between
pipelines (Milx versus dHCP).

Extraction of Automated
Measures
The automated pipeline (Table 2 and
Fig 1) to extract raw measures uses
the segmentation labels and Matlab
software (MathWorks). A subsample
of the PPREMO cohort (n¼ 85) was
used to develop the Matlab pipeline.
For callosal thickness, we increased
the resolution (PPREMO: factor 5;
dHCP: factor 4, considering T2WI re-
solution). The 97th percentile was
chosen to identify the distance of the
thickest location separately for each
division of the corpus callosum,
reflecting a location similar to that of
the manual measures (in particular
the genu and splenium), while ensur-
ing that measurements were not
driven by outliers. For each scan,

automatically extracted measures were visually inspected and
rated as “poor,” “usable” (some errors), or “good” (little-to-no
error).

Statistical Analysis
Agreement between manual and automated measures is reported
using standard error of measurement (SEM), and bias (ie, the
mean difference of the measurements), with 95% limits of agree-
ment (LoA). Bland-Altman plots were inspected for bias (sepa-
rately for early and TEA MR imaging and for the combined
sample). Reliability and associations between automated and man-
ual measures were examined by calculating intraclass correlation
coefficients (ICCs, type [3, 1]) and Pearson correlation coefficients
(r), respectively. For comparison, reproducibility measures for

Table 1: Six manual measures of distance and area
Measure How to Measure

Biparietal width Greatest distance between left and right parietal cortices,
measured on a single coronal slice identifying bilateral
cochlea and basilar truncus

Interhemispheric distance Distance between crowns of superior frontal gyri, measured
on the same coronal slice as biparietal width

Callosal thickness Thinning at the genu, midbody, splenium
Transcerebellar diameter Single coronal slice at level of ventricular atrium
Lateral ventricular diameter Same coronal slice as transcerebellar diameter
Deep grey matter area Single axial slice showing caudate heads, lentiform nuclei,

and thalami

Table 2: Automated measures of distance and area
Measure How to Measure

Biparietal width Identify most lateral sagittal slices of parietal GM (regionprops3)
For each GM voxel, calculate distance to voxels in opposite
hemisphere

Calculate maximum distance
Interhemispheric
distance

Calculate distance from each voxel of superior frontal gyrus label
in left hemisphere to each voxel label in right hemisphere
(bwmorph3, bwdist)

Derive minimum distance
Callosal thickness Combine 2D corpus callosum segmentation of the 11 most medial

slices
Increase resolution (imresize) and improve mask (bwmorph3, bwmorph)
Derive skeleton (bwskel); for every voxel, calculate normal vector,
identify intersection with borders of segmentation (points2contour,
polyfit)

Derive distance between upper/lower segmentation borders for
every voxel

Apply smoothing (nanfastsmooth), make 3 divisions
Obtain 97th percentile for each division (prctile)

Transcerebellar
diameter

Model cerebellum segmentation as 3D ellipsoid (bwmorph3,
regionprops3)

Calculate length of principal axis (regionprops3)
Lateral ventricular
dilation

Identify coronal slice at level of ventricular atrium (regionprops3):
find maximum surface area using ventricle label (bwmorph,
regionprops)

Model 2D ventricle as ellipse, calculate length of minor axes
(regionprops)

Deep grey matter area Identify axial slice: centroid of caudate, thalamus, and lentiform
nucleus (bwmorph, regionprops)

Combine labels to calculate area (regionprops)

Note:—Matlab package used is provided in brackets.
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manual test-retest data were calculated for PPREMO only, because
manual measurements were not available for dHCP.

Next, automated measures were also validated by examining
their association with PMA, GA, and birth weight (Pearson r) in
both cohorts using R Statistics (Version 4.0.2; http://www.r-
project.org). When one examines these associations, replicating
results in an independent cohort is important. The smaller sam-
ple size of the PPREMO cohort may result in less power to detect
an effect than in the dHCP cohort; conversely, a smaller sample
size may also result in overestimating the effect size of associa-
tions or false-positives.

For all analyses, only automated measurements with a visual
quality rating of “usable” or “good” were included. For reproduci-
bility (ie, agreement and reliability) analyses, preterm-born infants
scanned at TEA in the PPREMO cohort were merged with term-
born infants. When we examined the association of measures with
PMA, GA, or birth weight, outliers in automated andmanual meas-
ures were removed using the Tukey lowerInner and upperInner
fence, which was performed separately for each measure, as well as

separately for scan age,37weeks and above, and separately within
the preterm and term-born group (at TEAMR imaging).

RESULTS
The final sample for PPREMO included 94 infants who underwent
MR imaging between 29 and 36 weeks’ PMA (78%; Online
Supplemental Data), of which 81 infants were scanned again at 38–
47weeks’ PMA (77%), and 22 term-born infants (81%). For
dHCP, scans of 455 subjects were included (90%; Online
Supplemental Data). Demographic details are presented in Table 3.

The 6 automated measures were successfully extracted for
80%–99% of the final scans with a usable segmentation, equiva-
lent to 56%–85% of total scans (Online Supplemental Data)
because 14%–30% of the total scans were excluded due to poor
quality, realignment errors, poor segmentation, and severe pa-
thology (Online Supplemental Data). Our pipeline was successful
for .93% of the suitable PPREMO scans, except for interhemi-
spheric distance (74%) and LVD (left: 78%; right, 61%), and
.92% of the suitable dHCP scans, except for callosal thickness
measures (75%–88%). Automated biparietal width, transcerebel-
lar diameter, LVD, and DGMA measures showed good agree-
ment, good reliability, and a strong association with manual
measures (Online Supplemental Data; SEM ¼ 0.40–2.61, bias¼
0.14–5.70, LoA ¼ –4.81–12.92, ICC¼ 0.77–0.97, r¼ 0.77–0.98,
P, .001). Findings (ie, agreement, reliability, and associations
between automated and manual measures) were similar for both
time points (Online Supplemental Data) and in line with the
good-to-excellent interrater agreement and reliability for the re-
spective manual measures (except for poorer agreement and reli-
ability for the manual DGMA: SEM¼ 0.56–0.59, bias ¼ –0.09,
LoA ¼ –1.73–1.55, ICC¼ 0.36–0.67, r¼ 0.36–0.69; Online
Supplemental Data). The automated interhemispheric distance
showed a moderate agreement, reliability, and association with the
manual measure (SEM¼ 0.73, bias ¼ –0.58, LoA ¼ –2.59–1.44,
ICC¼ 0.59, r¼ 0.59, P, .001), but poor reliability and a weak
association was found at early MR imaging (SEM¼ 0.66, bias ¼ –

0.44, LoA ¼ –2.27–1.39, ICC¼ 0.26, r¼ 0.26, P, .05), in line
with poor interrater reliability and the weak association for manual
test-retest data at early MR imaging (SEM¼ 0.56, bias ¼ –0.04,
LoA ¼ –1.57–1.50, ICC¼ 0.23, r¼ 0.23; Online Supplemental
Data).

Automated callosal thickness measures showed poor-to-no
agreement, poor reliability, and a weak-to-no association with the
manual measures (SEM¼ 0.77–1.87, bias¼ 2.76–5.85, LoA ¼
–0.05–10.32, ICC¼ 0.01–0.24, r¼ 0.03–0.35; Online Supplemental

FIG 1. Automated MR imaging measures of biparietal width (BPW),
interhemispheric distance (IHD), thickness of the corpus callosum (CC),
transcerebellar diameter (TCD), left and right LVD, and DGMA. IHD, Blue
to orange represents the distance (closest and farthest, respectively) for
each voxel to the segmentation in the opposite hemisphere. CC, Upper
image, T2WI with the CC segmentation border (red); lower panel, seg-
mentation border (blue), skeleton (red), and distance between the upper
and lower borders of the segmentation for each voxel on the skeleton
(green). R indicates right; L, left; A, anterior; P, posterior.

Table 3: Demographic and clinical characteristics

PPREMO (n= 197)
dHCPPreterm, Early MR Imaging Preterm, TEA MR Imaging Control, TEA MR Imaging

No. 94 of 121 81 of 105 22 of 27 455 of 506 (95 preterm)
Sex (female) 61% 63% 50% 45%
PMA at MR imaging (wk)a 31.86 6 1.96 (29–35) 40.71 6 1.43 (38–47) 41.29 6 1.25 (39–44) 40.71 6 2.86 (29–45)
GA (wk)a 28.40 6 2.00 (23–31) 28.50 6 2.20 (24–31) 40.00 6 0.98 (38–41) 39.71 6 2.82 (24–42)
Birth weight (g)a 1107 6 368 (494–1886) 1061 6 391 (494–1886) 3516 6 157 (2932–4200) 3250 6 928 (540–4800)

a P, .05 for 2-sided t test comparing preterm infants at 40weeks with term-born controls (PPREMO). Continuous variables are given as median 6 interquartile range (range).
Scans with poor quality (PPREMO, n¼ 39), realignment errors (PPREMO, n¼ 1; dHCP, n¼ 39), and severe pathology (PPREMO, n¼ 16; dHCP, n¼ 12) were excluded.
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Data), whereas a moderate agreement, reliability, and association
were found for manual test-retest data (SEM¼ 0.23–0.46, bias ¼
–0.34–0.12, LoA ¼ –1.61–1.29, ICC¼ 0.41–0.70, r¼ 0.41–0.70;
Online Supplemental Data). Different measurement techniques
likely contributed to the lack of agreement between automated and
manual callosal thickness measures. For the automated measures,
thickness is derived from multiple measurements and calculated as
the distance between the upper and lower segmentation border
(measuring perpendicular to the corpus callosum skeleton),
whereas the distance for the manual measures is based on a single
measurement and measured exactly anterior-posterior (genu and
splenium) or inferior-superior (midbody). Care needs to be taken
when using manual and automated measures interchangeably
because a bias was observed for the callosal thickness measures in the
Bland-Altman plots (Online Supplemental Data), with larger auto-
mated than manual values for smaller thickness values and smaller
automated than manual values for larger thickness values.
Examining the distribution of manual and automated measures,
however, showed more clustering of time points for automated ver-
sus manual measures (Online Supplemental Data). The parcellation
software used to extract the corpus callosum segmentation (Milx ver-
sus dHCP) influenced the derived measures for the PPREMO cohort
slightly, shown by overlapping 95% confidence intervals for reprodu-
cibility statistics observed between manual and automated callosal

thickness measures (Online Supplemental Data). The reliability of
the callosal thickness measures derived from the 2 segmentations was
fair to good (genu ICC¼ 0.74 [0.66–0.81]; midbody ICC¼ 0.73
[0.65–0.80]; splenium ICC¼ 0.54 [0.42–0.65]; P, .001).

All automated measures (except right LVD in dHCP) showed a
positive association with PMA for both the PPREMO (combining
both time points; Online Supplemental Data) and dHCP cohorts
(r¼ 0.11–0.94; Online Supplemental Data and Fig 2 left). These
associations were similar to those found between the manual meas-
ures and PMA for all measures except callosal thickness (Online
Supplemental Data). Automated callosal thickness measures
showed stronger (and positive) associations with PMA than the
manual measures (Online Supplemental Data), whereas some man-
ual callosal thickness measures showed a counterintuitive negative
association with PMA (at early MR imaging only) (Fig 2, left).

The associations with PMA were not always consistent
across early and TEA MR imaging for the PPREMO cohort (Fig
2, left). All automated measures were positively associated with
PMA at early MR imaging, while only transcerebellar diameter
and DGMA showed a positive association at TEA MR imaging
(a similar trend was observed for the manual measures) (Fig 2,
left). In comparison, only callosal thickness at the midbody
showed a positive association with PMA in the PPREMO term-
born sample, but these results should be seen in light of the

FIG 2. Associations between the 6 raw conventional MR imaging measures with postmenstrual age (left) and gestational age at birth (right)
in the Pearson r, displayed separately for preterm-born infants at early MR imaging (n¼ 94) and TEA MR imaging (n¼ 81), as well as term-
born controls at TEA MR imaging (PPREMO, n¼ 22; dHCP, n¼ 455). Manual measures were available for PPREMO only. Double asterisks
indicate P# .001; asterisk, P# .05. BPW indicates biparietal width; CC, callosal thickness (at the genu (CCg), midbody (CCm), and splenium
(CCs)); IHD, interhemispheric distance; TCD, transcerebellar diameter; R, right; L, left.
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much smaller sample size. In the dHCP, which includes both
preterm and term-born infants, all automated measures were
positively associated with PMA (Fig 2, left); these associations
remained after removing all early MR imaging scans (scans with
PMA,37weeks) and also, when examining the associations
between measures with PMA within the term-born group only.

Several automated measures (biparietal width, callosal thick-
ness at the genu and splenium, transcerebellar diameter, and
DGMA) also showed a positive association with GA across
cohorts (r¼ 0.34–0.71; Online Supplemental Data and Fig 2,
right), while the automated interhemispheric distance showed a
negative association with GA for the PPREMO cohort only (r ¼
–0.26; Online Supplemental Data). In addition, the automated
left and right LVD were not associated with GA (Online
Supplemental Data and Fig 2, right). Associations were in the
same direction as the associations observed for the manual meas-
ures (Online Supplemental Data and Fig 2, right). Measures
derived from early versus TEA MR imaging showed a similar
association with GA (Fig 2, right), except that the associations
with GA for the manual biparietal width and automated callosal
thickness at the splenium were found at early MR imaging only.
Associations between the measures with birth weight were similar
to those found for gestational age (Online Supplemental Data).

DISCUSSION
In this study, we developed and validated a method to automati-
cally derive 6 measures of brain growth and development based
on raw measurements of distance and area (biparietal width,
interhemispheric distance, callosal thickness, transcerebellar di-
ameter, LVD, and DGMA). These measures account for approxi-
mately half the measures of the standardized conventional MR
imaging scoring system.15 Conventional MR imaging scores have
been linked to outcomes and may assist with early diagnosis and
streamlining identified at-risk infants into early intervention. We
automated these measures for early and TEA MR imaging to
make scoring more time-efficient and objective, enabling its use
in clinical and research settings. Automated measures (except for
interhemispheric distance and callosal thickness) showed good
agreement and reliability as well as a strong association with
manual measures in the prospective PPREMO cohort (early MR
imaging, n¼ 94; TEA MR imaging, n¼ 103). Furthermore, all
automated measures showed similar or stronger associations
with PMA compared with the manual measures, which were
replicated in an independent cohort including mostly TEA MR
imaging (dHCP n¼ 455, except for the right LVD). All measures
(except the LVD) showed an association with GA, though not all
associations were found across cohorts.

Our findings are in line with those in our previous study of
the PPREMO cohort,16 which reported several positive associa-
tions between the manual measures with PMA, as part of validat-
ing the manual measures for preterm-born cohorts derived from
early and TEA MR imaging. Other studies15,33 have shown posi-
tive associations with PMA for the manual biparietal width,
transcerebellar diameter, and DGMA—the measures for which
we found the strongest associations. In addition, most associa-
tions with PMA were similar for the automated versus manual
measures, but the automated callosal thickness measures were

more strongly associated with PMA. The automated callosal
thickness measures may be more sensitive than the manual meas-
ures because these were derived from multiple measurement
points.

Associations with PMA were somewhat different for early ver-
sus TEA MR imaging. All measures were associated with PMA at
early MR imaging, but only the transcerebellar diameter and
DGMA were associated with PMA at TEA MR imaging, in line
with others showing no association with PMA for interhemi-
spheric distance, callosal thickness, and LVD when deriving
measures at TEA MR imaging15,33 or in the first year.34 Regional
differences in growth trajectories may explain these inconsisten-
cies between early and TEA MR imaging. Between 27 and
45weeks’ PMA, total brain growth peaks at 35 weeks,35 but re-
gional differences exist, with WM and subcortical GM peaking
earlier (at 33 and 31weeks, respectively),35 whereas the cerebel-
lum (at 37weeks) as well as CSF and cortical GM (both at 38–
39weeks) peak later.35 Acquiring MR imaging measures at both
early and TEA MR imaging may provide additional information
on whether brain growth is progressing as expected, which could
be valuable for prediction modeling of clinical outcomes.

All automated measures (except LVD) were associated with
GA in at least 1 cohort, similar to findings in previous studies
using the manual measures,33,36 except for 1 study33 finding a
negative association between GA and LVD. These findings reflect
impaired brain growth in preterm-born infants compared with
term-born infants, in line with others15 who showed smaller
biparietal width, callosal thickness, transcerebellar diameter, and
DGMA but larger interhemispheric distance and LVD in preterm
compared with term-born infants. Furthermore, a recent large
volumetric study35 (n¼ 420) showed larger ventricular volumes
and smaller total GM (cortical and subcortical) and WM volumes
with lower GA. Another large study37 (n¼ 285) found smaller
volumes for most brain regions with lower GA, but other regions
(primary visual, motor, and somatosensory regions) were larger
with lower GA, possibly reflecting increased development in
response to the ex-utero environment.

There are some limitations to this study. First, the automated
method to extract the regional conventional MR imaging meas-
ures depends on an accurate segmentation of the brain, resulting
in only 70%–86% of the total scans being suitable for our Matlab
pipeline (depending on the measure) because we visually
inspected segmentations and excluded scans with segmentation
errors, poor scan quality (eg, motion), and severe pathology.
Different segmentation pipelines may influence the measures to
some extent, but differences between measures from different
segmentations are likely to be the result of segmentation errors
rather than differences between segmentations per se, with the
segmentation quality influenced by the age of the templates used
and different data used to derive the algorithm. Our aim to auto-
mate the Kidokoro measures15 included the idea that our Matlab
pipeline is not specific to 1 particular segmentation software, par-
ticularly because different pipelines may work better for a specific
patient cohort than others.

Although we aimed to make the automated measures as simi-
lar to the manual measures as possible, some differences between
measures likely exist due to differences in measurement
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techniques. For example, the automated interhemispheric dis-
tance is derived from the distance between the voxels of the supe-
rior frontal gyri, which may not always measure the distance at
the crowns. We focused on 2D measures to enable comparison
between manual and automated measures, allowing for manual
scoring of scans without a successful brain parcellation, for exam-
ple in cases with severe pathology. These 2D measures, however,
are likely influenced by variation in slice selection (particularly
interhemispheric distance and LVD), which could be improved
using 3D measures. Furthermore, findings were inconsistent for
the manual versus automated callosal thickness measures, with
negative associations found for the manual measures with PMA
at early MR imaging, but positive associations were found for the
automated measures with PMA.

Bland-Altman plots showed a bias. Automated measures may
overestimate thickness for smaller values, but manual measures
may underestimate thickness. Agreement and reliability for man-
ual callosal thickness measures were poor and poor-to-moderate,
respectively (Online Supplemental Data), and other studies35,38

showed a positive growing trajectory for callosal thickness,
suggesting that findings for the manual measures at early MR
imaging may be the result of measurement error. Manual measure-
ments of callosal thickness are subject to several challenges because
the corpus callosum is very thin, particularly at early MR imaging.
Thickness may be difficult to measure with a voxel size of 0.7mm
with the ruler not being sensitive to very small increments, and
partial volume, technical artifacts (eg, motion), and the presence of
the cavum septi pellucidi may impact the visualization.

Our study provides initial automating of conventional MR
imaging scoring for preterm neonates, which enables clinicians to
use the scoring system without manually measuring the 6 meas-
ures of distance and area, resulting in a more time-efficient and
consistent routine neonatal MR imaging clinical scoring system.
Our automated method enables extraction for large research data
sets, facilitating the development of well-established cutoff scores
and more reliable and clinically relevant prediction models to
assist clinicians with early diagnosis and intervention. Future
work is needed to establish a reference cohort to define the cut-
offs for the automated measures and to examine the association
between the measures and prospective clinical outcomes.

CONCLUSIONS
We validated an approach to automatically extract approximately
half the measures of a conventional brain MR imaging scoring
system for preterm-born infants using T2WI acquired between
29 to 47weeks’ PMA, which will enhance the use of this scoring
system in both clinical and research settings.
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