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ORIGINAL RESEARCH
INTERVENTIONAL

WEB Device Shape Changes in Elastase-Induced
Aneurysms in Rabbits

Y. Ding, D. Dai, A. Rouchaud, K. Janot, S. Asnafi, D.F. Kallmes, and R. Kadirvel

ABSTRACT

BACKGROUND AND PURPOSE:While WEB devices have been shown to be safe and effective for aneurysm treatment, WEB-shape
modification compression has been associated with incomplete aneurysm occlusion. We explored the relationship between occlu-
sion rates and WEB-shape modification in different WEB device types in an experimental aneurysm model.

MATERIALS AND METHODS: Elastase-induced aneurysms were created in rabbits and treated with dual-layer (n¼ 12), single-layer
(n¼ 12), or single-layer sphere (n¼ 12) WEB devices. Aneurysms were followed up either at 3 or 12months. Angiographic occlusion
was graded using the WEB Occlusion Scale: grade I, complete; grade II, complete but recess filling; grade III, residual neck; or grade
IV, residual aneurysm. WEB-shape modification and histologic features were also analyzed.

RESULTS: Grade I or II occlusion was seen in 16 (44%) aneurysms, and grade I, II, or III (“adequate”) occlusion was observed in 22
(61.1%) aneurysms at follow-up. WEB-shape modification was observed in 22 (61.1%) aneurysms. WEB-shape modification was higher
in single-layer (9/12) and dual-layer (10/12) devices compared with single-layer sphere devices (3/12). Aneurysms with WEB-shape
modification had a higher level of thrombus organization in the dome compared with those without WEB-shape modification (68%
[15/22] versus 50% [7/14]). WEB-shape modification was not correlated with angiographic or histologic outcomes but was signifi-
cantly correlated with levels of fibrosis and smooth muscle cells in the aneurysm.

CONCLUSIONS: WEB-shape modification is not associated with incomplete aneurysm occlusion of WEB devices in the rabbit
model but may be related to connective tissue formation and the healing response to WEB device implantation.

ABBREVIATIONS: FD ¼ flow diverter; SMA ¼ smooth muscle actin; WSM ¼ WEB-shape modification; DL ¼ dual-layer; SL ¼ single-layer; SLS ¼ single-layer sphere

During the past 2 decades, the treatment of intracranial aneur-
ysms has rapidly evolved from the single option of open

skull surgical clipping to the increasingly common use of mini-
mally invasive endovascular techniques. While endovascular coil-
ing has been shown to offer significant advantages over an open
surgical approach, it is still associated with significant limitations.
These include treatment-associated morbidity of at least 5%–7%,

a high aneurysm recurrence rate (as high as 20%–30% in some se-
ries), and low aneurysm occlusion rates.1

Flow diverters (FDs) are innovative and promising devices

used to treat complex and/or wide-neck aneurysms.2,3 They

divert blood away from aneurysms, and their use has expanded

since inception.4,5 Use of endoluminal FDs, however, necessitates

the use of antiplatelet therapy, which can be problematic for rup-

tured aneurysms. Unfortunately, the use of FDs does not eliminate

the possibility of delayed aneurysm rupture, a thromboembolic

event, and parent artery stenosis.6

The Woven EndoBridge (WEB) device (MicroVention) is a

completely intrasaccular FD device, which was designed to treat

challenging, wide-neck bifurcation aneurysms that are difficult

to embolize safely and effectively with other existing treatment

approaches.7,8 From the original dual-layer (DL) to current sin-

gle-layer (SL) design, WEB devices have shown a good safety

profile and a high rate of adequate occlusion both in experimen-

tal and clinical studies.9-16 In the meantime, WEB-shape modi-

fication (WSM) has been reported in the literature and could
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potentially be associated with the approximately 15% rate of

incomplete/inadequate aneurysm occlusion observed in the

published WEB Intrasaccular Therapy (WEB-IT) trial.17

However, this phenomenon has not been well-understood until

now because other researchers have reported that this shape

change did not impact the anatomic outcome after WEB

deployment.18 In this study, we compared the occlusion rates of

DL, SL, and single-layer sphere (SLS) WEBs in rabbit elastase

(Worthington Biochemical)-induced aneurysm models and

evaluated the relationship between WSM using histologic

results and angiographic occlusion rates.

MATERIALS AND METHODS
Aneurysm Creation
Elastase-induced aneurysms were created in 36 New Zealand white
rabbits. Animal procedures were approved by the Institutional
Animal Care and Use Committee at Mayo Clinic. Aneurysm-crea-
tion procedures were performed using an elastase-induction model
as previously described.19 Endovascular treatment of each aneurysm
was undertaken at least 3weeks after aneurysm creation.20

Devices
WEB devices are classified according to shape and the number of
mesh layers each one contains. DL devices consist of 2 layers of
braided, nitinol wire mesh. SL and SLS devices consist of a single
layer of braided, nitinol/platinum wire mesh; however, SLS
implants have a more rounded 3D shape than the “barrel-like” SL
and DL devices. The specific qualities of the WEB devices have
been previously described.21,22

Device Deployment
The WEB device deployment procedure has been reported previ-
ously.7,8 The right femoral artery was briefly exposed. A 5F sheath
(Envoy; Cordis) was inserted, 500 U of heparin was injected, and
a 5F catheter was then advanced into the brachiocephalic trunk
from the aortic arch. DSA was performed through the guide cath-
eter. A 0.027-inch ID (interior diameter) microcatheter (VIA-27;
Sequent Medical) was advanced into the aneurysm lumen over a
microguidewire (Transend-14; Stryker). Appropriately sized
devices were placed in the aneurysm cavity for each device
(n¼ 12 [DL], n¼ 12 [SL], n¼ 12 [SLS]). DSA was performed im-
mediately following device placement. No animals received anti-
platelet therapy during the course of the study.

Follow-Up and Euthanasia
Angiographic evaluation was completed immediately after device
implantation and again at follow-up. The cohort was divided into 2
subgroups preselected for euthanasia at 3months (n¼ 6 [DL], n¼ 6
[SL], n¼ 6 [SLS]) and 12months (n¼ 6 [DL], n¼ 6 [SL], n¼ 6
[SLS]), respectively, by intravenous injection with a lethal dose of
pentobarbital through the ear vein. Following euthanasia, aneurysm
tissue was harvested and placed in a 10% formalin solution.

Aneurysm Grading and WSM Assessment
The degree of angiographic aneurysm occlusion at follow-up was
graded as follows: grade I, complete; grade II, complete but with
recess filling; grade III, residual neck; or grade IV, residual

aneurysm.23,24 Two reviewers independently evaluated the angio-
graphic occlusion, and disagreements were resolved by a third
reviewer. Angiographic occlusion outcome was dichotomized into
either complete occlusion (grade I or II) or incomplete occlusion
(grade III or IV). Grades I, II, and III were considered adequate.
The distance between proximal and distal device markers was
measured on unsubtracted angiographic images. WSM was
defined as a change in distance (#�10% to $10%) between
markers at follow-up compared with immediate postdevice
deployment.

Histopathologic Processing and Analysis
A histopathologist who was blinded to the angiographic results
did the processing and analysis for healing evaluation. Aneurysm
samples were processed at 1000-mm intervals in a coronal orien-
tation, permitting long-axis sectioning of the aneurysm neck,
with use of an IsoMet Low Speed Saw (Buehler). After the device
segments were removed under a dissecting microscope, the sam-
ples were then re-embedded in paraffin, sectioned at 4mm, and
stained with hematoxylin-eosin.

Histologic healing of aneurysms was assessed using an ordinal
scale.25 The extent of blood clot organization within the aneu-
rysm and the neointimal coverage of the aneurysm neck were
evaluated. Tissue compaction, seen as a concave surface of clot
tissue toward the aneurysm dome, was also analyzed. The degree
of inflammation within each aneurysm was scored as 0 (no
inflammatory cell infiltration); 1 (minimal or mild: scant, scat-
tered inflammatory cell infiltration); 2 (moderate: patchy-but-
localized or limited inflammatory cell infiltration); or 3 (marked:
attenuated, diffuse inflammatory cell infiltration).

Masson trichrome staining was performed to evaluate colla-
gen deposition within the aneurysm; collagen deposition within
the aneurysm dome was segmented and quantified using the pre-
viously described method.26 The fibrosis ratio (total area of fibro-
sis within the aneurysmal cavity divided by the total area of the
aneurysmal cavity) was calculated for each aneurysm.

Immunohistochemical staining of smooth muscle cells in tissue
sections was performed with smooth muscle actin (SMA).27 The
SMA–positive area was segmented and quantified with the same
method used for collagen deposition as described above.

Statistical Analysis
Continuous variables were described as mean [SD] and compared
using a Student t test. Categoric variables were presented as num-
ber (percentage) and compared using the Fisher exact test. The
correlation between WSM and aneurysm occlusion was assessed
by the Spearman rank correlation. The correlation between WSM
and aneurysm geometries, histologic healing, fibrosis, and smooth
muscle actin levels was evaluated by simple linear regression. A
P value, .05 was considered statistically significant.

RESULTS
Angiographic Findings
All aneurysms were implanted with appropriately sized devices.
No morbidity or mortality was observed throughout the study.

In the group of rabbits selected for euthanasia at 3months
(n¼ 18), grade I or II occlusion was achieved in 9 (50%)
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aneurysms at follow-up. Within this group, 6 rabbits were treated
with the DL device: 1 (16.7%) showed grade I occlusion, 3
(50.0%) showed grade II occlusion, 1 (16.7%) showed grade III
occlusion, and 1 (16.7%) showed grade IV occlusion. For the 6
rabbits treated with the SL device, 1 (16.7%) showed grade I
occlusion, 2 (33.3%) showed grade III occlusion, and 3 (50.0%)
showed grade IV occlusion. In the final subgroup (n¼ 6) treated
with the SLS device, 3 (50.0%) rabbits showed grade I occlusion,

1 (16.7%) showed grade II occlusion, and 2 (33.3%) showed grade
IV occlusion.

In the 12-month group at follow-up (n¼ 18), 7 (38.9%) aneur-
ysms had grade I or 2 occlusion. Of the 6 rabbits treated with the
DL device, 3 (50.0%) showed grade I occlusion, 1 (16.7%) showed
grade II occlusion, and 2 (33.3%) showed grade IV occlusion. For
the 6 rabbits treated with the SL device, 1 (16.7%) showed grade I
occlusion, 2 (33.3%) showed grade III occlusion, and 3 (50.0%)
showed grade IV occlusion. For the rabbits treated with the SLS de-
vice, 1 (16.7%) showed grade I occlusion, 1 (16.7%) showed grade
II occlusion, 1 (16.7%) showed grade III occlusion, and the remain-
ing 3 (50.0%) showed grade IV occlusion (Table 1).

In a pooled angiographic analysis, 16 (44%) aneurysms (9 at
3months and 7 at 12months) demonstrated complete occlusion
and 22 (61.1%) aneurysms (12 at 3months, and 10 at 12months)
showed adequate occlusion. No significance was found in com-
plete or adequate occlusion rates between the 3- and 12-month
groups (P¼ .74). DL (75%, 9/12) devices demonstrated a higher
percentage of adequate aneurysm occlusion compared with SLS
(58.3%, 7/12; P¼ .68) and SL (50%, 6/12; P¼ .04) devices.

WEB-Shape Modification
WSM was observed in 22 (61%) aneurysms (Fig 1), of which half
(5 with complete occlusion, 6 with incomplete occlusion) were in
the 3-month group and the remaining half (4 with complete occlu-
sion, 7 with incomplete occlusion) were in the 12-month group
(Table 2). WSM was not statistically associated with aneurysm
neck width or height (Fig 2). There were no significant differences
in occlusion grades in aneurysms with or without WSM (9 with
complete occlusion, 13 with incomplete occlusion versus 7 with
complete occlusion and 7 with incomplete occlusion; P¼ .73) (Fig
1). Furthermore, no correlation was found between the percentage
of WSM and the occlusion grade. Most interesting, SLS had signifi-
cantly less WSM (25%, 3/12) compared with the DL (83%, 10/12;
P¼ .012) and SL (75%, 9/12; P¼ .039) devices.

Histologic Findings
The mean histologic healing score was not significantly different
between the 3- and 12-month groups (5.6 [SD, 2.6] versus 4.2 [SD,
2.5]; P¼ .11), but it was significantly higher in aneurysms with
complete occlusion compared with those with incomplete occlu-
sion (6.39 [SD, 2.07] versus 2.80 [SD, 1.75]). Histologic evaluation
of aneurysm sacs showed a combination of loose connective tissue
and thrombus (unorganized, organized, and poorly organized).

Table 1: Aneurysm occlusion grading summary

Groupa
DL, No.
(%)

SL, No.
(%)

SLS, No.
(%)

Total, No.
(%)

3-Month group
Grade I 1 (16.7) 1 (16.7) 3 (50.0) 5 (27.8)
Grade II 3 (50.0) 0 (0) 1 (16.7) 4 (22.2)
Grade III 1 (16.7) 2 (33.3) 0 (0) 3 (16.7)
Grade IV 1 (16.7) 3 (50.0) 2 (33.3) 6 (33.3)
Total 6 6 6 18

12-Month group
Grade I 3 (50.0) 1 (16.7) 1 (16.7) 5 (27.8)
Grade II 1 (16.7) 0 (0) 1 (16.7) 2 (11.1)
Grade III 0 (0) 2 (33.3) 1 (16.7) 3 (16.7)
Grade IV 2 (33.3) 3 (50.0) 3 (50.0) 8 (44.4)
Total 6 6 6 18

a Grade I represents complete occlusion; grade II, complete occlusion with recess
filling; grade III, residual neck; grade IV, residual aneurysm.

FIG 1. Range of WEB device shape change by time and device config-
uration. The change in distance between the distal and proximal
markers of the device at follow-up compared with that immediately
posttreatment. Positive values denote device shortening; negative
values represent device elongation. Device elongation is seen in only
2 cases, both of which have device elongation of ,2%. 3M indicates
3 months; 12M, 12 months.

Table 2: WSM and aneurysm occlusion by device type

Follow-Up,
Occlusion
Groupa

DL (n= 12) SL (n= 12) SLS (n= 12) Total (n= 36)

With WSM,
No. (%)

Without
WSM, No.

(%)

With
WSM, No.

(%)

Without
WSM, No.

(%)

With
WSM, No.

(%)

Without
WSM, No.

(%)

With
WSM, No.

(%)

Without
WSM, No.

(%)
3 Months
Grade I or II 4 (33.3) 0 0 1 (8.3) 1 (8.3) 3 (25.0) 5 (13.9) 4 (11.1)
Grade III or IV 2 (16.7) 0 3 (25.0) 2 (16.7) 1 (8.3) 1 (8.3) 6 (16.7) 3 (8.3)

12 Months
Grade I or II 3 (25.0) 1 (8.3) 1 (8.3) 0 0 2 (16.7) 4 (11.1) 3 (8.3)
Grade III or IV 1 (8.3) 1 (8.3) 5 (41.7) 0 1 (8.3) 3 (25.0) 7 (19.4) 4 (11.1)

Total 10 (83.3) 2 (16.7) 9 (75.0) 3 (25.0) 3 (25.0) 9 (33.3) 22 (61.1) 14 (38.9)
a Grade I represents complete occlusion; grade II, complete occlusion with recess filling; grade III, residual neck; grade IV, residual aneurysm.
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Aneurysms that demonstrated complete occlusion had more
organized thrombus (76%, 16/21), while aneurysms that exhibited
incomplete occlusion had unorganized thrombus (60%, 9/15) in
the aneurysm dome. Most aneurysms showed open areas with no
tissue filling and a neck remnant with a concave surface toward the
dome (75% [12/16] in the complete occlusion group versus 90%

[18/20] in the incomplete occlusion
group). Inflammation within the aneu-
rysm lumen was absent or mild.

Aneurysms with the WSM showed
a high level of organized thrombus
compared with those without WSM
(68% [15/22] versus 50% [7/14],
P¼ .09) (Fig 3). The mean histologic
healing score, inflammation score, fi-
brosis percentage, and SMA percentage
was 5.0 [SD, 2.3], 1.5 [SD, 0.6], 15.9
[SD, 14.8], and 12.6 [SD, 9.6], respec-
tively, in aneurysms with WSM, and
4.7 [SD, 3.2], 1.2 [SD, 0.8], 9.6 [SD,
8.0], and 9.5 [SD, 8.2], respectively, in
aneurysms without WSM. There were
no statistically significant differences in
histologic healing, inflammation, fibro-
sis, and SMA between aneurysms with
and without WSM. However, the per-
centage of WSMwas moderately corre-
lated with both fibrosis (r¼ 0.37,
P¼ .02) and SMA levels (r¼ 0.36,
P¼ .032) (Fig 4). WSM was not signifi-
cantly correlated with either total histo-
logic healing or inflammation.

DISCUSSION
Our study, which aimed to delin-
eate the underlying mechanisms of
WSM in WEB devices, demon-
strates that WSM does not corre-
late with angiographic aneurysm
occlusion or total histologic heal-
ing outcomes in the rabbit aneu-

rysm model. However, WSM is positively associated with
collagen and SMA levels, supporting the hypothesis that
WSM is likely more related to aneurysm healing than exter-
nal (eg, hemodynamic) compression alone.

The underlying mechanisms of WSM or compression could
be multifaceted (eg, device size and construction, exact anatomic

FIG 2. WEB shape changes at 3 months following device implantation. A, Anteroposterior DSA image before device implantation shows an an-
eurysm cavity (arrow). B, The DSA image immediately after SL device deployment shows complete aneurysm occlusion (arrow). C,
Unsubtracted image of B shows proximal and distal markers (arrows) of the WEB device. D, DSA image at 3-month follow-up shows a residual
neck (arrow). E, Unsubtracted image of D shows device compression. Note that the distance between the proximal and distal markers (arrows)
is reduced compared with that in C, indicating a change in shape.

FIG 3. A, Anteroposterior DSA before aneurysm treatment (arrow). B, A DSA image immediately
after DL device deployment shows residual aneurysm (arrow). C, A DSA image at 12months
shows complete occlusion (arrow) with substantial shortening of the device. D, Photomicrograph
of a section (hematoxylin-eosin, original magnification�12.5) demonstrates an aneurysm sac filled
with loose connective tissue, except for a small neck remnant. A neointimal layer completely tra-
verses the neck interface near the proximal device markers (arrows). E, Photomicrograph of a sec-
tion shows moderate collagen deposition throughout the aneurysm cavity (Masson trichrome
stain, original magnification �2.3). Relatively high collagen content was noted near the proximal
marker (arrow). F, Photomicrograph of a section shows the presence of smooth muscles through-
out the aneurysm dome, as well as in the neointimal lining bridging the neck (arrows) (SMA immu-
nostain, original magnification�2.0). Tx indicates treatment.
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configuration of aneurysm geometry and surrounding vessels,
parent artery, aneurysm neck). Computational fluid dynamics
simulations have shown that WEB device compression was posi-
tively correlated with computational fluid dynamics–derived
inflow into the aneurysm.28 In endoluminal FDs, pore den-
sity has been positively associated with aneurysm occlusion.
Pore density at the proximal WEB device marker is relatively
high compared with that in endoluminal devices,29,30 and it
is highly unlikely that device compression would lead to
reduced pore density at the neck. Rouchaud et al31 demon-
strated, in coiled aneurysms, that a higher level of collagen in
the aneurysm dome could trigger coil retraction from the
neck orifice into the aneurysm cavity, resulting in aneurysm
recurrence. Our findings suggest that WEB devices could
behave like coils in the vascular microenvironment and
result in device compression, and the contractile properties
of connective tissue components in WEB-implanted aneur-
ysms could lead to WSM. Proper endothelial cell growth
across the pores of FDs in the aneurysm neck is also consid-
ered critical for aneurysm occlusion, in addition to the
change in blood hemodynamics, for the mechanistic action
of FDs. Endoluminal FDs placed in the healthy parent artery
act as scaffolds for endothelial cell migration and neointima
formation. In contrast, intrasaccular FDs are implanted in
the aneurysm cavity, which represent a nonfunctional endo-
thelium and a smooth-muscle layer and could explain the
lack of neointimal coverage at the neck.

The observed WSM rate of 62% in the rabbit model is similar

to that reported in clinical studies for the WEB device.32-36

Although DL WEB devices had higher adequate occlusion rates

compared with SL devices in this study, the DL devices also dem-

onstrated higher WSM. Given the small sample sizes and the dif-

ference of a single result providing statistical significance, taken

together, these results suggest that WSM is not well-correlated

with either device type.
Our study has several limitations. First, the variation in the

angiographic working projection angle resulted in inaccurate
measurements of the distance between device markers. Second,
we arbitrarily defined 10% of the device as a threshold for WSM.

A high stringent limit may provide
different results. Third, we did not
evaluate numerous other factors,
including mechanical and hemody-
namic factors, which could influence
the device shape changes.

CONCLUSIONS
WSM is not associated with incom-
plete aneurysm occlusion in the rabbit
model but may be related to connec-
tive tissue formation and collagen dep-
osition after WEB implantation.
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