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ORIGINAL RESEARCH
ADULT BRAIN

3D Quantitative Synthetic MRI in the Evaluation of Multiple
Sclerosis Lesions

S. Fujita, K. Yokoyama, A. Hagiwara, S. Kato, C. Andica, K. Kamagata, N. Hattori, O. Abe, and S. Aoki

ABSTRACT

BACKGROUND AND PURPOSE: Synthetic MR imaging creates multiple contrast-weighted images based on a single time-efficient
quantitative scan, which has been mostly performed for 2D acquisition. We assessed the utility of 3D synthetic MR imaging in
patients with MS by comparing its diagnostic image quality and lesion volumetry with conventional MR imaging.

MATERIALS AND METHODS: Twenty-four patients with MS prospectively underwent 3D quantitative synthetic MR imaging and
conventional T1-weighted, T2-weighted, FLAIR, and double inversion recovery imaging, with acquisition times of 9minutes 3 seconds
and 18minutes 27 seconds for the synthetic MR imaging and conventional MR imaging sequences, respectively. Synthetic phase-sen-
sitive inversion recovery images and those corresponding to conventional MR imaging contrasts were created for synthetic MR
imaging. Two neuroradiologists independently assessed the image quality on a 5-point Likert scale. The numbers of cortical lesions
and lesion volumes were quantified using both synthetic and conventional image sets.

RESULTS: The overall diagnostic image quality of synthetic T1WI and double inversion recovery images was noninferior to that of
conventional images (P¼ .23 and .20, respectively), whereas that of synthetic T2WI and FLAIR was inferior to that of conventional
images (both Ps, .001). There were no significant differences in the number of cortical lesions (P¼ .17 and .53 for each rater) or
segmented lesion volumes (P¼ .61) between the synthetic and conventional image sets.

CONCLUSIONS: Three-dimensional synthetic MR imaging could serve as an alternative to conventional MR imaging in evaluating
MS with a reduced scan time.

ABBREVIATIONS: DIR ¼ double inversion recovery; PSIR ¼ phase-sensitive inversion recovery; QALAS ¼ quantification using an interleaved Look-Locker ac-
quisition sequence with a T2 preparation pulse

MS is a chronic, immune-mediated, demyelinating disorder

of the CNS that usually affects young adults and leads to

chronic disability.1,2 The diagnostic criteria for MS are based on

the lesion number, size, and location.3 Although diffuse periven-

tricular lesions are most commonly observed, previous studies

have shown that the cortical and juxtacortical lesion load is asso-

ciated with cognitive impairment.4,5 Additionally, the detection

of cortical and juxtacortical lesions may contribute to early diag-

nosis because these lesions are characteristic of MS. MR imaging

plays an integral role in the diagnosis and management of

patients with MS through the in vivo detection and characteriza-

tion of lesions. Although MR imaging is highly sensitive in

detecting periventricular lesions and is considered as a standard

biomarker in the monitoring of treatment response,6 conven-

tional MR imaging techniques have a relatively low sensitivity for

detecting (juxta)cortical lesions. Phase-sensitive inversion recov-

ery (PSIR) and double inversion recovery (DIR) are recently

developed imaging techniques useful for detecting MS lesions,

especially (juxta)cortical ones.7,8 The PSIR preserves the positive

and negative polarities of tissues as they recover from the inver-

sion pulse, thus providing a T1-weighted contrast with higher
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SNR and GM-WM contrast. DIR is an imaging technique that

suppresses both WM and CSF signals, thus significantly increas-

ing lesion conspicuity in both GM and WM compared with

FLAIR or T2-weighted images. PSIR and DIR have been shown

to improve sensitivity compared with FLAIR or T2-weighted

images in the detection of cortical lesions. However, the addi-

tional scanning time associated with PSIR and DIR has hindered

the use of these techniques in clinical practice. Thus, a rapid

imaging technique that can acquire these contrast-weighted

images with high spatial resolution is desired.
Quantitative synthetic MR imaging is a time-efficient MR

imaging technique that enables simultaneous quantification of T1
and T2 relaxation times and proton attenuation and allows the
creation of any contrast-weighted image, including DIR and
PSIR, without additional scanning time.9–13 Previous studies
have shown that synthetic MR imaging is useful for detecting and
characterizing MS lesions.10,11,14 However, these studies were
based on a multisection 2D acquisition, providing a relatively low
resolution in the section direction. 3D quantitative synthetic MR
imaging, enabling the simultaneous quantification of T1, T2, and
proton attenuation of the whole brain in 3D,15–17 with smaller
section thickness, should allow for more detailed delineation of
MS lesions. With the combination of high spatial resolution 3D
acquisition and DIR as well as PSIR contrasts, 3D quantitative
synthetic MR imaging could serve as a clinically useful technique
for monitoring MS lesions.

Here, we assessed the utility of the recently developed 3D
quantitative synthetic MR imaging for evaluating MS lesions by
comparing the synthetic and conventional MR image sets. We
hypothesized that 3D synthetic MR imaging would have a com-
parable diagnostic quality with that of a conventional image set
(including 3D FLAIR and DIR) while shortening the total acqui-
sition time.

MATERIALS AND METHODS
Study Participants
This study complied with the Declaration of Helsinki and the
Health Insurance Portability and Accountability Act and was
approved by the local institutional review board. Written informed
consent was obtained from all participants. In this single-center pro-
spective study, 24 patients with MS diagnosed by the McDonald

criteria18 were recruited between May 2018 and September
2018. The exclusion criteria comprised contraindications to MR
imaging, such as metallic implants, claustrophobia, or tattoos.

MR Imaging Settings
All participants were scanned on a 1.5-T scanner (A patched
R5.3.0 Ingenia; Philips Healthcare) with a 12-channel head coil.
3D quantitative imaging was performed with 3D-quantification
using an interleaved Look-Locker acquisition sequence with a T2
preparation pulse (3D-QALAS) sequence.16,17 The 3D-QALAS
sequence produces 5 raw images that are used to fit relaxation
curves based on a least-squares approach. From these quantitative
maps, synthetic MR images could be generated by setting arbi-
trary TRs, TEs, and TIs. 3D-QALAS and conventional imaging
(3D T1WI, 2D axial T2WI, 3D FLAIR, and 3D DIR) were per-
formed in the same session on all participants. The acquisition
parameters of the sequences are shown in Table 1. Synthetic 3D
T1WI, 3D T2WI, 3D FLAIR, 3D PSIR, and 3D DIR images were
generated on synthetic MR imaging software (SyMRI version
0.45.14; SyntheticMR) by virtually setting TR, TE, and TI as fol-
lows: T1WI, 650/10/- ms; T2WI, 4500/100/- ms; FLAIR, 15,000/
75/3000ms; DIR, 15,000/100/3600ms; and PSIR, 6000/10/500ms.
All images were visually inspected by a radiologic technologist
for gross movement artifacts.

Qualitative Assessments
All images were independently reviewed on a standard DICOM
viewer, capable of window level and width adjustment and multi-
planar reformation, by 2 neuroradiologists (C.A. and S.K.) with
10 and 6 years of experience, respectively. The readers were
blinded to all clinical information to minimize bias. For each par-
ticipant, conventional and synthetic images were assessed during
2 separate reading sessions with a 5-week memory-washout inter-
val. Patients with MS were randomly assigned to 1 of the follow-
ing groups: for the first group, a set of synthetic images (eg, 3D
T1WI, 3D T2WI, 3D FLAIR, 3D DIR, and 3D PSIR) was pre-
sented in the first session and a set of conventional images (eg,
3D T1WI, 2D T2WI, 3D FLAIR, and 3D DIR) in the second ses-
sion and vice versa for the second group. Each session included
either all synthetic or all conventional contrast-weighted images
from a case. In each reading session, the raters evaluated 3

Table 1: Acquisition parameters for 3D-QALAS and conventional MR imaging sequences
Parameters 3D-QALAS 3D T1WI 3D FLAIR 3D DIR TSE T2WI

Acquisition plane 3D axial 3D sagittal 3D sagittal 3D sagittal 2D axial
Image matrix 192� 192 256� 256 208� 208 176� 174 368� 230
FOV (mm) 256 256 256 250 230
Section thickness (mm) 1.3 1 1.2 1.5 5
Voxel size (mm) 1.3� 1.3� 1.3 1.0� 1.0� 1.0 1.2� 1.2� 1.2 1.4� 1.4� 1.5 0.6� 1.0
TR (ms) 6.2 8.2 4800 5500 4082
TE (ms) 2.8 3.8 371 306 90
TI (ms)

a

– 1660 2510/480 –

Flip angle (degree) 4 10 90 90 90
Bandwidth (Hz/pixel) 249 191 910 1076 167
Averages 1 1 1 2 3
Scanning time 9:06 6:20 5:22 5:03 1:42

Note: — – indicates no value.
a Inversion delay times, 100ms, 1000ms, 1900ms, and 2800ms; T2 prep echo time, 100ms.
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metrics, which were overall image quality, structural delineation,
and (juxta)cortical lesion count.

Overall Image Quality
The overall image quality was scored for each contrast-weighted
image on a 5-point Likert scale, as follows: 1, unacceptable; 2,
poor; 3, acceptable (acceptable for diagnostic use but with minor
issues); 4, good; and 5, excellent. For each contrast-weighted
image, readers recorded whether any of the following artifacts
were present: truncation and ringing artifacts, aliasing artifacts,
chemical shift artifacts, and any other artifacts (eg, spike noise,
banding, and blurring).19

Structural Delineation
The structure delineation scoring was performed in addition to
overall image quality scoring, intending to provide specific infor-
mation about detailed visualization of anatomic regions. Each
target structure was rated on a 5-point Likert scale as follows: 1,
not visible; 2, not easily detectable (not easily differentiable from
neighboring structures); 3, detectable (subtle differentiation from the
neighboring structure); 4, easily delineated (easily differentiated
from the neighboring structure); and 5, excellent delineation. The
target structures includedMS lesions, central sulcus, head of the cau-
date nucleus, posterior limb of the internal capsule, cerebral
peduncle, and middle cerebellar peduncle. This approach was a
modified version of the method used by Tanenbaum et al.20

Cortical Lesion Count
We did not distinguish between cortical and juxtacortical lesions as
per current imaging criteria for MS.18 For simplicity, we therefore
referred to both types of lesions as cortical lesions. Cortical lesions
larger than 3mm in diameter were counted by 2 neuroradiologists
using all contrast-weighted images of either the synthetic or conven-
tional image sets. Each detected lesion was retrospectively validated
on all available imaging data by the other 2 neuroradiologists (S.F.
and A.H., with 6 and 11years of experience, respectively) in consen-
sus to exclude false-positive lesions.

Quantitative Assessment
Lesion Volume Segmentation. Because periventricular lesions
were often diffuse or confluent, they were not manually counted
and were assessed with semiautomated lesion segmentation.
Lesions were segmented on 3D conventional and synthetic
FLAIR images using the lesion probability algorithm imple-
mented in the Lesion Segmentation Toolbox 2.0.12 (Technische
Universitat Munchen) running under Statistical Parametric
Mapping (https://www.fil.ion.ucl.ac.uk/spm).21 A neuroradiolo-
gist (S.F.) performed manual corrections of the automatically seg-
mented lesions. The total volume of the lesions was calculated by
each of the synthetic and conventional FLAIR imagings. The
Dice similarity coefficient of lesion maps was calculated between
the segmentation results of synthetic images and those of conven-
tional images. The Dice similarity coefficient represents the per-
centage of spatial overlap between 2 binary segmentation results,
which is defined as

Dice similarity coefficient A; Bð Þ ¼ 2ðA \ BÞ
ðAþ BÞ

in which A and B are target segmentations and \ is the intersec-
tion.22 The value of the Dice similarity coefficient ranges from 0
to 1, with higher values indicating more overlap between the 2
segmentations.

Statistical Analysis
All statistical analyses were performed on the R program version
3.3.0 (http://www.r-project.org/). The nonparametric Wilcoxon
signed rank test was used to compare qualitative (overall image
quality, structural delineation, and lesion count) and quantitative
scores (lesion volume) between synthetic and conventional
images. Interrater reliability for categoric data between readers
were assessed by the Kendall coefficient of concordance.23 Agree-
ment between lesion volumes obtained with synthetic and conven-
tional imaging were also assessed by interclass correlation coeffi-
cient. A P value of,.05 was considered statistically significant.

RESULTS
Among the 24 patients with MS, 1 patient showed severe move-
ment artifacts on both 3D-QALAS and conventional imaging
and was excluded from the study. The demographic details of the
patients in this study are listed in Table 2. Fig 1 shows representa-
tive examples of 3D synthetic and conventional images of a
patient with MS.

Qualitative Assessment
Overall Image Quality. Because the interclass correlation coeffi-
cient of overall image quality between the 2 readers was high
(0.883), the results were pooled for analysis. Fig 2 shows a com-
parison of overall image quality between synthetic and conven-
tional MR imaging. Considering all contrast views, 97.8% (225/
230) of the synthetic contrast-weighted images and 100% (184/
184) of the conventional images were rated as $3 on the 5-point
Likert scale. The overall diagnostic image quality of synthetic
T1WI and DIR images was statistically noninferior to that of con-
ventional images (P¼ .23 and .20, respectively). The image qual-
ity of synthetic T2WI and FLAIR was statistically inferior to that
of conventional images (both Ps, .001). Of the synthetic PSIR
images, 95.6% (44/46) were rated 4 (good) or 5 (excellent). High-
signal artifact on the brain surface on synthetic FLAIR images
(Online Supplemental Data) and DIR images (Online Supplemental
Data) were observed in 13.0% (3/23) and 17.4% (4/23) of the cases,

Table 2: Demographics of patients with MS (n= 23)
Characteristics Findings

Participants (n) 23
Sex (male/female) 6/17
Age (years) 41.3 6 9.8 (range, 19–59)
Disease duration (years) 10.1 6 5.2
Subtype (RR/SP/PP) 20/1/2
EDSS score (range) [0, 8.5] (median 1.5)

Note—EDSS indicates Expanded Disability Status Scale; PP, primary-progressive;
RR, relapsing-remitting; SP, secondary-progressive.
Data are shown as mean 6 SD unless otherwise specified.
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respectively. A ring-shaped artifact was observed on the brain sur-
face in 8.7% (2/23) of cases in synthetic MR imaging (Online
Supplemental Data).

Structural Delineation. Regarding lesion delineation, 98.7%
(227/230) of the synthetic contrast-weighted images and 98.9%
(182/184) of the conventional images were rated as $3 on the 5-
point Likert scale, considering all contrast views (Fig 3). All
images rated 2 were either synthetic T2WI (2/46) or synthetic
FLAIR (1/46); no images were rated as 1. The lesion delineation

of synthetic T2WI and FLAIR was statistically inferior to that of
conventional images (both Ps, .001), whereas no significant dif-
ference was found for T1WI and DIR between synthetic and con-
ventional images.

Considering all evaluated brain structures (ie, the central
sulcus, head of the caudate nucleus, posterior limb of the in-
ternal capsule, cerebral peduncle, and middle cerebellar
peduncle) across all contrast views, 98.1% (1128/1150) of the
synthetic contrast-weighted images and 98.8% (909/920) of
the conventional images were rated as $3 on the 5-point
Likert scale (Fig 3). The contrast views that were rated 2 for
any of the structures were either synthetic T2WI (14/230),
synthetic FLAIR (8/230), or conventional DIR (11/230); no
images were rated as 1.

Cortical Lesion Counts. The interobserver reproducibility
between the 2 readers for the number of detected cortical lesions
was assessed. The interclass correlation coefficient of synthetic
MR imaging was 0.90 (95% CI, 0.76–0.96); that of conventional
MR imaging was 0.87 (95% CI, 0.69–0.94). Fig 4 shows a repre-
sentative cortical lesion depicted by conventional and synthetic
imaging. The cortical lesion counts with synthetic and conven-
tional image sets were 2.9 6 3.3 (range, 0–11) and 3.4 6 3.7
(range, 0–11) by reader 1 and 2.3 6 2.7 (range, 0–8) and 2.2 6

3.1 (range, 0–11) by reader 2. Three false-positives were found in
both the synthetic and conventional image sets. There was no sig-
nificant difference in the number of cortical lesion counts
between the synthetic and conventional image sets (P¼ .17 and
.53 for each rater).

Quantitative Assessment
Lesion Volume Assessment. Fig 5 illustrates a representative MS
lesion segmentation map on conventional and synthetic images.
There was no significant difference in the segmented lesion vol-
umes between synthetic and conventional images: 12.0 6 10.9

FIG 1. Representative examples of quantitative synthetic (A) and conventional (B) MR imaging in a 35-year-old woman with MS. The overall
image quality of synthetic T1WI, T2WI, FLAIR, DIR, and PSIR were scored as 5, 3, 3, 5, and 5 by reader 1 and 5, 3, 4, 5, and 5 by reader 2. All of the
conventional contrast-weighted images were scored as 5 by both readers.

FIG 2. Comparison of overall image quality for conventional and syn-
thetic MR imaging in patients with MS. Each contrast-weighted image
in 23 patients was rated on a 5-point Likert scale by 2 readers.
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(range, 1.4–35.7) and 12.2 6 11.9 (range, 0.8–41.0) mL, respec-
tively (P¼ .61). The interclass correlation coefficient of the seg-
mented lesion volumes was 0.98 (95% CI, 0.97–0.99), indicating
excellent agreement. The Dice similarity coefficient of lesion
maps between the synthetic and conventional MR imaging
among all patients was 0.726 0.07.

DISCUSSION
In this study, we evaluated the image quality and utility of 3D syn-
thetic MR imaging in the assessment of MS lesions in both qualita-
tive and quantitative approaches. To the best of our knowledge,
this article is the first report of a clinical evaluation of 3D synthetic
MR imaging. The time-efficient acquisition of synthetic imaging
enabled the shortening of total acquisition time by 51% (9minutes,
3 seconds and 18minutes, 27 seconds for 3D-QALAS and conven-
tional sequences, respectively) while maintaining enough image
quality for both cortical lesion counts and quantitative lesion volu-
metric analysis. The acquisition time of 3D-QALAS is even shorter
than that of the combination of T1-weighted, T2-weighted, and
FLAIR images, which were recently reported to be used for creat-
ing 3D DIR images with deep learning.24

FIG 4. Example of an MS cortical lesion (arrows) in synthetic PSIR (A)
and DIR (B) images. Conventional T1WI (C) and DIR (D) images are shown
for reference. (Left) axial, (middle) coronal, and (right) sagittal views.

FIG 3. Comparison of structural delineations between conventional and synthetic MR imaging in patients with MS. Each target structure in 23
patients was rated for each contrast-weighted image on a 5-point Likert scale by 2 readers.
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Although the image quality of synthetic T2WI and FLAIR
images was inferior to that of the conventional contrast-weighted
images, there was no significant difference in the number of
detected cortical lesions and automatically segmented lesion vol-
umes. These findings support the notion that 3D synthetic imag-
ing could provide essential information for clinical evaluation of
MS lesions. Despite the inevitable trade-off between imaging time
and image quality, 3D synthetic MR imaging is a promising
method for achieving accelerated acquisition while retaining clin-
ical utility.

Several artifacts were reported in the reading session. The
high-signal artifact on the brain surface on synthetic FLAIR
images is consistent with that reported in 2D imaging and
seems to be caused by a partial volume effect.12 This artifact
may mimic subpial lesions located at the cortex–CSF inter-
face or make it difficult to identify them. Because no subpial
lesion was observed in this study both on synthetic and con-
ventional images, the sensitivity and specificity of synthetic
MR imaging to subpial lesions remain unclear. The relatively
inferior image quality of synthetic T2WI and FLAIR images
is desired to be solved for synthetic MR imaging to be used in
routine clinical imaging protocols.12 For 2D synthetic FLAIR,
deep learning has been reported to be useful for improving
the image quality of synthetic FLAIR while reducing arti-
facts.25 In this study, a ringing artifact was observed on the
brain surface, which was also seen in the original 3D-QALAS
images. These findings indicate that this artifact was not
caused by the process of image synthesis but rather propa-
gated from the artifacts presenting in the original images to
all the contrast-weighted images that were synthesized from
the original images. Although readers rated conventional
DIR superior to synthetic DIR for overall image quality, they
preferred synthetic DIR for structural delineation. One possi-
ble reason for this discrepancy is that the readers were accus-
tomed to the appearance of conventional contrast-weighted
images, and hence they may have rated familiar conventional
DIR images high in terms of overall image quality.

3D acquisition can provide thin continuous sections, which
reduces the effects of partial volume averaging. Datasets of iso-
tropic voxel size permit multiplanar reformations, allowing
lesions to be viewed in any conventional axial, sagittal, and coro-
nal plane and an oblique reformatted plane after a single acquisi-
tion. Furthermore, image synthesis is not limited to 3D-QALAS
and could be applied to other multiparametric approaches, such
as MR fingerprinting. In addition to the quantitative values, this
produces contrast-weighted images that allow radiologists to fully
use their knowledge and abilities for diagnosis. The synthesis of
MRA from 3D-QALAS data is also feasible.26

One of the strengths of synthetic MR imaging that remains to
be studied is the possibility of adjusting the synthetic TR, TE, and
TI parameters to optimize them for each pathology, which has
been shown in 2D synthetic MR imaging.11 Although we have
used preset parameters for creating synthetic images in this study,
optimization of the contrast may improve the detection and
delineation of lesions over conventional imaging. This could
potentially lead to an early and accurate diagnosis of MS based
onMR imaging. Another strength of 3D-QALAS is that it obtains
not only multiple contrast images for visual assessment but also
quantitative maps that could be useful for personalized or preci-
sion medicine.27 Blystad et al28 reported that contrast-enhancing
MS lesions have significantly lower T1, T2, and proton density
than nonenhancing lesions. This raises the possibility of predict-
ing active lesions without gadolinium-based contrast agents.

The study limitations include the relatively small sample size
and single-center design. Future multicenter studies evaluating
the diagnostic accuracy of synthetic MR imaging in a large cohort
are desired before its introduction into clinical practice. Another
limitation is that the in-plane resolution of 1.30mm in this study
was lower than the recommended in-plane resolution of 1.0mm
described in the MAGNIMS guidelines.29 A 3T scanner could
increase signal-to-noise ratio, enabling improved in-plane resolu-
tion. Combining with techniques such as compressed sensing30

may further increase the resolution with comparable or shorter
scanning times.

FIG 5. Representative examples of lesion segmentation in a 35-year-old woman with MS. Lesions were automatically segmented on synthetic
and conventional FLAIR images. The segmented lesions are overlaid on the images used for segmentation. A, Lesions overlaid on 3D synthetic
FLAIR images. B, Lesions overlaid on conventional 3D FLAIR images. Minimal differences are observed between segmented lesions of 3D syn-
thetic and conventional FLAIR images.
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CONCLUSIONS
3D synthetic MR imaging of the brain enables the creation of use-
ful contrast-weighted images, including DIR and PSIR, in a single
acquisition, thus reducing scanning time compared with conven-
tional MR imaging. The synthetic contrast-weighted images were
inferior in image quality but comparable in diagnostic power to
those acquired by conventional MR imaging in patients with MS.
3D synthetic MR imaging may be considered an alternative to
conventional MR imaging for generating diagnostic T1-weighted,
DIR, and PSIR images, but synthetic T2-weighted and FLAIR
images are currently unsatisfactory.
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