
of March 20, 2024.
This information is current as

MRI in the Head and Neck
Deep Learning for Synthetic CT from Bone

S. Bambach and M.-L. Ho

http://www.ajnr.org/content/43/8/1172
https://doi.org/10.3174/ajnr.A7588doi: 

2022, 43 (8) 1172-1179AJNR Am J Neuroradiol 

http://www.ajnr.org/cgi/adclick/?ad=57533&adclick=true&url=https%3A%2F%2Fwww.elucirem.us%2Felucirem%3Futm_source%3DAJNR%26utm_medium%3Dbanner%2B%26utm_campaign%3Dnext%2Bgeneration%2B%26utm_id%3Dguerbet%2B
https://doi.org/10.3174/ajnr.A7588
http://www.ajnr.org/content/43/8/1172


ORIGINAL RESEARCH
HEAD & NECK

Deep Learning for Synthetic CT from Bone MRI in the Head
and Neck

S. Bambach and M.-L. Ho

ABSTRACT

BACKGROUND AND PURPOSE: Bone MR imaging techniques enable visualization of cortical bone without the need for ionizing
radiation. Automated conversion of bone MR imaging to synthetic CT is highly desirable for downstream image processing and
eventual clinical adoption. Given the complex anatomy and pathology of the head and neck, deep learning models are ideally
suited for learning such mapping.

MATERIALS ANDMETHODS: This was a retrospective study of 39 pediatric and adult patients with bone MR imaging and CT exami-
nations of the head and neck. For each patient, MR imaging and CT data sets were spatially coregistered using multiple-point affine
transformation. Paired MR imaging and CT slices were generated for model training, using 4-fold cross-validation. We trained 3 dif-
ferent encoder-decoder models: Light_U-Net (2million parameters) and VGG-16 U-Net (29million parameters) without and with
transfer learning. Loss functions included mean absolute error, mean squared error, and a weighted average. Performance metrics
included Pearson R, mean absolute error, mean squared error, bone precision, and bone recall. We investigated model generalizabil-
ity by training and validating across different conditions.

RESULTS: The Light_U-Net architecture quantitatively outperformed VGG-16 models. Mean absolute error loss resulted in higher
bone precision, while mean squared error yielded higher bone recall. Performance metrics decreased when using training data cap-
tured only in a different environment but increased when local training data were augmented with those from different hospitals,
vendors, or MR imaging techniques.

CONCLUSIONS: We have optimized a robust deep learning model for conversion of bone MR imaging to synthetic CT, which
shows good performance and generalizability when trained on different hospitals, vendors, and MR imaging techniques. This
approach shows promise for facilitating downstream image processing and adoption into clinical practice.

ABBREVIATIONS: DL ¼ deep learning; GRE ¼ gradient recalled-echo; MAE ¼ mean absolute error; MSE ¼ mean squared error; TE ¼ echo time

MR imaging is the workhorse of clinical neuroradiology, pro-
viding high tissue contrast for the evaluation of CNS struc-

tures. However, CT remains the first-line technique for rapid
neurologic screening and cortical bone assessment. A novel class of
MR imaging techniques uses very short TE to capture weak and

short-lived proton signals from dry tissues such as cortical bone. As
MR imaging hardware and software have advanced, “black-bone”
MR imaging techniques have progressively improved from gradient
recalled-echo (GRE) to ultrashort-TE and zero-TE approaches.1-3

TE values are on the order of 1–2ms for GRE, 50–200 ms for ultra-
short-TE, and 0–25 ms for zero-TE (Online Supplemental Data).
With shorter TEs, the detectable signal from cortical bone increases,
scan times become faster, acoustic noise from gradient switching
decreases, and resistance to motion and susceptibility artifacts
increases.4-5

BoneMR imaging offers the potential for both rapid initial screen-
ing and comprehensive “one-stop-shop” imaging, without the need
for ionizing radiation exposure. Thus, bone MR imaging is a promis-
ing alternative to CT for bone imaging. However, current barriers to
implementation involve direct comparison of bone MR imaging and
CT with regard to multiple factors, including accessibility, cost,
convenience, patient awareness, clinician understanding, diagnostic
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accuracy, and interventional utility.6-8 A key step in facilitating clini-
cal understanding and adoption is the automated conversion of
bone MR imaging to synthetic CT-like contrast, which is highly de-
sirable for image interpretation, 3D printing, and surgical planning
applications. Conventional image-processing approaches, such as
intensity thresholding, logarithmic inversion, histogram subtraction,
atlas- and voxel-based techniques, have all been investigated.9-12 In
clinical practice, these point operation–based techniques are ham-
pered by false-negatives in the setting of undermineralization
(young children or osteopenia), very thin bone (pathologic remod-
eling), and multiple bone-air interfaces (facial bones, skull base), as
well as false-positives including other short-T2 tissues (fascia, dura,
ligaments, cartilage, hardware, hemorrhage, mucoid secretions, air)
and complex tissue interfaces (tumor, trauma, inflammation).

Deep learning (DL) offers a promising approach for synthetic
CT generation, being already routinely used for tissue classification
and image-mapping purposes. DL algorithms use multiple layers
of neighborhood-based operations to derive complex information
from diverse input data sets, including MR imaging signal proper-
ties, normal anatomic structures, and pathologic changes. In neu-
roradiology, DL for synthetic CT has been explored in adult
volunteers and a few patient case series, the most frequent applica-
tion being radiation therapy planning or PET attenuation correc-
tion. Despite these early studies suggesting feasibility, synthetic CT
approaches have only been successful when applied to anatomi-
cally simpler regions such as the torso and extremities or normal
adult skull anatomy at low spatial resolution.13-17 For most cases
of head and neck clinical applications, existing synthetic CT algo-
rithms fail due to the wide variety of normal anatomic variants
and pathologic conditions. Without sufficient clinical training data
and human supervision, DL-powered bone MR imaging conver-
sion approaches show limitations similar to those of conventional
processing, yielding a variety of false-negatives and false-positives.

Robust synthetic CT algorithms still have not been developed
for head and neck applications, are not routinely used in clinical de-
cision-making, and do not carry added value over source MR
images interpreted by experienced radiologists. Therefore, at this
time, bone MR imaging is a useful alternative to CT for diagnostic
imaging but requires a radiologist’s understanding of imaging
physics, head and neck anatomy, and pathologic disease processes
to optimally analyze the source images. Improvement of automated
synthetic CT algorithms could help address existing barriers to
technology implementation by providing greater understanding for
untrained radiologists and clinicians as well as facilitating down-
stream processing such as 3D printing and surgical navigation.
Therefore, the objective of our study was to optimize a convolu-
tional neural network algorithm for bone MR imaging conversion
to synthetic CT based on our diverse data set of patients using dif-
ferent institutions, platforms, and bone MR imaging techniques. In
particular, we sought to develop a robust DL model that would
show good performance and generalizability, thus facilitating
downstream image processing and adoption into clinical practice.

MATERIALS AND METHODS
Data Acquisition
This was an institutional review board–approved retrospective study
with de-identified data sequentially collected from 2 institutions.

The patient flowchart for study selection is described in the Online
Supplemental Data. Originally, 53 patients were included with bone
MR imaging and CT of the head and neck performed within a 6-
month time period for bone evaluation. Following image review by
a neuroradiologist with expertise in bone MR imaging, 14 patients
were excluded on the basis of nondiagnostic image quality (MR
imaging and/or CT) due to motion, hardware, or other artifacts.
This exclusion resulted in a final data set of 39 patients: 16 patients
from institution 1 and 23 patients from institution 2. Subjects
spanned a broad age range (neonate to 35years; median age,
4.5 years) with 23 (59%) male and 16 (41%) female patients. Clinical
indications for imaging were suspected craniosynostosis (n ¼ 10),
genetic syndrome (n¼ 5), tumor (n¼ 4), trauma (n¼ 4), preoper-
ative planning (n ¼ 10), and postoperative follow-up (n ¼ 6).
Anatomic imaging coverage included the head, face, neck, and/or
cervical spine, based on the indication. For bone MR imaging, an
additional bone sequence was added to the examination on the basis
of a clinical request and/or the indication for bone imaging. A vari-
ety of platforms, techniques, and field strengths were used, depend-
ing on the institution and scanner availability.

For MR, thirteen patients were scanned on Siemens
Healthineers (Erlangen, Germany) platforms (3 Tesla: Magnetom
Prisma, 1.5 Tesla: Magnetom Aera), and 26, on GE Healthcare
(Chicago, IL) platforms (3 Tesla: Discovery MR750, MR750w).
Bone MR imaging sequences were adapted from commercially
available options and included 3D zero-TE, ultrashort-TE, and
GRE sequences with a 20- to 30-cm FOV and 0.7- to 1-mm iso-
tropic resolution. Sample parameters are provided in the Online
Supplemental Data. Most scans were performed at 3T, with 2 scans
performed at 1.5T field strength due to device-compatibility consid-
erations. For CT, 23 examinations were performed on Siemens
Healthineers platforms (Somatom Definition Flash, Somatom
Definition Edge, Somatom Definition AS, Somatom Force,
Somatom Sensation 64); 9, on GE Healthcare platforms (Discovery
CT750 HD, Optima CT660, LightSpeed VCT); and 7 on Canon
Medical Systems (Tustin, California) platforms (Aquilion ONE)
using a standard multidetector technique (age-adjusted radiation
dose, 0.5- to 1-mm section thickness, bone reconstruction kernel).

Image Coregistration and Preprocessing
The goal of the image-processing pipeline (Online Supplemental
Data) was to generate a diverse set of spatially aligned bone MR
imaging and CT pairs for neural network training. A neuroradi-
ologist with experience in bone MR imaging coregistered all MR
imaging and CT images on the basis of key anatomic landmarks
and inspected the final matched image sets for quality assurance.
First, multiple-point affine transformation of MR imaging to CT
data was performed in OsiriX MD (http://www.osirix-viewer.
com) to yield coregistered 3D volumes. All remaining image-pre-
processing steps were implemented in Matlab (MathWorks). The
image volumes were resampled to achieve isotropic resolution in
all dimensions and then were divided into paired 2DMR imaging
and CT slices in axial, coronal, and sagittal planes. While synthe-
sizing only axial CT views may be sufficient for many applica-
tions, we were interested in deriving the largest and most diverse
training set possible. Each image pair was masked and cropped to
disregard irrelevant background artifacts during training. Masks
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were created by binarizing the CT image (using Otsu’s method to
find the ideal threshold18) and finding the largest convex area in
the binary image. The same convex mask was also applied to the
paired MR images. Images were cropped to the smallest possible
square containing and centering the masked content.

Finally, each section was resized to the resolution required for
neural network input. The resulting images were saved with an 8-
bit gray-scale depth based on the entire dynamic range for MR
imaging slices and bone window/level for CT slices. On average,
this pipeline generated 550 MR imaging/CT pairs per patient
(approximately 22,000 image slices total). Additionally, we artifi-
cially augmented our training data by randomly flipping (hori-
zontally or vertically), rotating (by,10°), or cropping (by,10%)
image pairs during training.

We note here that masking the MR image based on a regis-
tered CT image would not be possible in a real-world scenario
(because CT would not be available). However, we found this
approach to work much more robustly, which was necessary to
automate the masking pipeline, given the large amount of train-
ing slices. Our goal was to have clean training data. Inference
based on a nonmasked MR imaging is still possible.

Neural Network Architectures
We tested 3 encoder-decoder networks based on U-Net models.19

For the first model, we built a lightweight baseline model
(Light_U-Net) based on the original U-Net architecture but
decreasing the number of filters (channels) for each block, for total
of �2million trainable parameters. We further changed the filter
size of the transposed convolutions from 2� 2 to 3� 3 so that the
decoder path exactly mirrored the encoder path, avoiding the need
to crop the filter responses in the skip connections. The output
layer was reduced to a single channel with sigmoid activation func-
tion, allowing the model to produce a gray-scale image rather than
a binary segmentation mask. For the second model, we used the
well-established VGG-16 convolutional neural network architec-
ture20 for the encoder path and mirrored it for the decoder path.
The resulting model had a larger number of filters and filter blocks,
resulting in�29million total trainable parameters. This enabled us
to use transfer-learning as a third model variation, VGG-16 U-Net
transfer-learning, in which filter weights in the encoder path were
initialized with values learned from the public ImageNet (https://
image-net.org/index) data set, in which a large variety of annotated
objects were classified from.14 million conventional color photo-
graphs21 (Online Supplemental Data).

Model Implementation
All DL models were implemented in Python (Python Software
Foundation) using the TensorFlow library (www.tensorflow.org)
with the Keras interface (Massachusetts Institute of Technology).
All experiments were run on a high-performance computing cluster
using either a NVIDIA Tesla V100 or NVIDIA Tesla P100 GPU
(Nvidia, Santa Clara, California). The input to the model was a
single-channel gray-scale bone MR image with a resolution of 224
� 224 pixels to match the fixed resolution of the VGG-16 architec-
ture. Each 3 � 3 convolutional layer was followed by a batch-nor-
malization layer and a ReLU activation layer. The VGG-16 U-Net
architecture, which was originally designed for color images,

required a 3-channel image input, so the gray-scale image was
repeated across all 3 channels. Because the encoder path was an
exact copy of the original VGG-16 architecture, its 3 � 3 convolu-
tional layers were not followed by a batch-normalization layer but
only had an ReLU activation. For the decoder path, batch normal-
ization was still added after every 3 � 3 convolutional layer. For
both networks, the synthetic CT image was produced via a 1 � 1
convolutional layer with a sigmoid activation, creating a continuous
gray-scale image on the interval of 0–1 and a resolution of 224 �
224 pixels. All models were optimized with stochastic gradient
descent using the Adam method22 with default parameters and a
batch size of 128 images. Network weights were initialized ran-
domly, except for the VGG-16 U-Net transfer learning variant, in
which weights in the encoder path were pretrained on ImageNet.
No weights were frozen during optimization.

Loss Functions
We experimented with optimizing 3 different loss functions:
mean absolute error (MAE, also called L1 loss), mean squared
error (MSE, also called L2 loss), and a weighted sum of both:

L1 ¼ 1
N

XN

i¼1

jCTi � sCTij; L2 ¼ 1
N

XN

i¼1

CTi � sCTið Þ2;

Lw ¼ L1 þ aL2;

where N is the total number of image pairs in the training set and
a is a coefficient that was selected empirically as 4.4, resulting in
approximately equal contribution of L1 and L2 to the total loss.

Model Training and Validation
Because intrapatient image slices are visibly correlated with each other
compared with interpatient slices, we trained and evaluated our mod-
els on data from separate patients. For every experiment, we per-
formed a patient-level 4-fold cross-validation, with eachmodel trained
on three-quarters of the patients and then tested on the remaining
quarter. Reported results were aggregated across all 4 models.

Because neural network optimization is stochastic in nature
(random initialization and random batching), training on the
same data set multiple times may result in a different model con-
vergence. We, therefore, repeated each 4-fold cross-validation
experiment 10 times and reported average performance and 95%
confidence intervals across the 10 independent runs.

Neural network models additionally require an internal vali-
dation set to prevent overfitting. For this purpose, a random 15%
of slices from the training data were held out during training.
After each training epoch, we computed the internal validation
loss and stopped training the model once that validation loss had
not decreased for at least 5 epochs. We selected the model weights
with the smallest internal validation loss up to that point.

Performance Metrics
Global performance metrics were calculated pixel-wise across the
image data sets and includedMAE,MSE, and the Pearson correlation
coefficient R. To expressMAE andMSE in terms of Hounsfield units,
we rescaled the neural network output on the basis of a window
width of 2000 HU. In addition, we quantified the degree of bone
overlap between ground truth CT and synthetic CT by thresholding
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both into binary bone maps. Given a threshold t, we defined bone
precision, bone recall (sensitivity), and bone Dice score as

PreðtÞ ¼ R CT tð Þ \ sCT tð Þ½ �
RsCT tð Þ ;RecðtÞ ¼ R CT tð Þ \ sCT tð Þ½ �

RCT tð Þ ;

DiceðtÞ ¼ 2R CT tð Þ \ sCT tð Þ½ �
RCT tð Þ þ RsCT tð Þ :

Thresholding was done on a grid of thresholds ranging from
40% gray level to 70% gray level (Online Supplemental Data). We
report the average precision, recall (sensitivity), and Dice score
across all thresholds.

Model Generalizability
Because our full data set contained images acquired at different
hospitals, as well as using difference imaging vendors and bone
MR imaging techniques, we conducted a series of experiments to
evaluate how well model performance generalizes across all these
different dimensions. All models were based on Light_U-Net
with MAE loss. For each test set, baseline model performance
was computed using patient-based 4-fold cross-validation with a
training set from the same data subset (vendor, hospital, or MR
imaging technique). These baseline results were compared with a
model trained only on data from a separate subset, as well as a
model trained on augmented data including both the current and
separate subsets (again with 4-fold cross-validation).

RESULTS
Model Architectures and Loss Functions
Performance comparison of the various neural network models
and 3 loss functions is summarized in the Table, with visual com-
parison of model results in Fig 1 and loss functions in Fig 2.
Results are based on 10 repetitions of a patient-based 4-fold cross-
validation among the 16 patients from institution 1, which con-
tained the best quality and most curated data. Among all model
architectures, Light_U-Net achieved the lowest test MAE and
MSE when trained with MAE and MSE loss, respectively.
Light_U-Net models also achieved the highest correlation coeffi-
cients across the board. When trained on the mixture loss,
Light_U-Net also achieved a lower test MAE and MSE than both
VGG U-Net and VGG U-Net transfer learning. Adding transfer

learning to VGG U-Net tended to increase the test performance,
though differences between VGG U-Net and VGG U-Net transfer
learning were not always significant.

When we compared loss functions, models trained on MAE
loss naturally achieved a lower validation MAE than those trained
on MSE loss and vice versa, with the mixture loss falling in-
between. MAE loss achieved a significantly higher mean bone pre-
cision across all network architectures. Visually, the synthetic CT
images showed sharper edge contrast with crisper bone detail. In
addition, relatively fewer pixels were assigned bone density (white
signal) on CT, indicating higher specificity, a lower false-positive
rate, and higher false-negative rate for bone. MSE tended to
achieve a higher mean bone recall (sensitivity) with various net-
work architectures, though the differences were not statistically sig-
nificant. Visually, the synthetic CT images showed margins that
were more blurry and more homogenized bone detail. In addition,
relatively more pixels were assigned bone density (white signal) on
CT, indicating a higher sensitivity, higher false-positive rate, and
lower false-negative rate for bone. In general, MAE loss tended to
undercall bone, and MSE loss tended to overcall bone, with the
mixture loss producing intermediate image effects.

Overall, the Light_U-Net architecture models outperform or tie
other models in all metrics, with difference loss functions allowing
adjustment among higher bone precision, recall, or overlap (Dice
score). Additional examples of synthetic CT images in axial, coro-
nal, and sagittal views are provided in the Online Supplemental
Data. When reviewed by expert neuroradiologists, the computa-
tionally optimized model (Light_U-Net, MAE) yielded visibly
superior results compared with previously reported synthetic CT
algorithms (eg, conventional logarithmic inversion and vendor-
provided processing tools). For example, our algorithm enabled
delineation of bone microstructure in typically false-negative areas
of thin bone (facial bones, skull base, remodeled bone). In addition,
our algorithm better excluded false-positive areas such as the fascia
and mucoid secretions. Finally, the synthetic CT images showed
distinction of nonbone tissues, including soft tissue, fat, and air,
that was comparable with the true CT.

Model Generalizability
Results of generalizability experiments across different hospitals,
vendors, and bone MR imaging techniques are summarized in

Four-fold cross-validation results for different model and loss combinationsa

Model Loss MAE (HU) MSE (3103 HU) R Avg. Bone Precision
Avg. Bone
Recall

Avg. Bone
Dice

Light_U-Net MAE 95.6 (94.4–96.9) 54.3 (53.1–55.5) 0.872 (0.869–0.875) 0.665 (0.661–0.669) 0.519 (0.505–0.533) 0.567 (0.558–0.576)
Light_U-Net MSE 106.0 (103.5–108.4) 51.5 (50.0–53.0) 0.878 (0.875–0.881) 0.621 (0.614–0.629) 0.548 (0.526–0.570)b 0.558 (0.544–0.573)
Light_U-Net Mix 97.6 (96.6–98.7) 51.3 (50.4–52.2) 0.878 (0.876–0.880)b 0.641 (0.636–0.646) 0.538 (0.529–0.546) 0.568 (0.562–0.573)b

VGG U-Net MAE 101.5 (99.8–103.3) 60.1 (58.3–61.9) 0.859 (0.856–0.863) 0.667 (0.662–0.672) 0.454 (0.431–0.476) 0.516 (0.497–0.534)
VGG U-Net MSE 111.5 (106.2–116.7) 55.1 (52.2–58.0) 0.869 (0.864–0.875) 0.614 (0.606–0.622) 0.521 (0.498–0.543) 0.538 (0.517–0.558)
VGG U-Net Mix 103.4 (100.9–105.9) 55.7 (53.6–57.9) 0.869 (0.865–0.873) 0.643 (0.637–0.648) 0.492 (0.471–0.513) 0.532 (0.514–0.55)
VGG U-Net TL MAE 99.2 (97.8–100.6) 58.0 (56.6–59.4) 0.864 (0.861–0.867) 0.668 (0.663–0.674)b 0.470 (0.450–0.490) 0.530 (0.514–0.546)
VGG U-Net TL MSE 111.7 (108.7–114.6) 55.0 (54.0–56.1) 0.869 (0.867–0.872) 0.619 (0.611–0.627) 0.503 (0.491–0.514) 0.527 (0.517–0.536)
VGG U-Net TL Mix 103.8 (101.9–105.7) 55.9 (54.4–57.5) 0.867 (0.864–0.870) 0.630 (0.620–0.640) 0.506 (0.489–0.523) 0.540 (0.528–0.552)

Note:—TL indicates transfer learning; Avg., average.
a Ninety-five percent confidence intervals across 10 separate training iterations are shown in parentheses. Loss is computed in Hounsfield units, with lower values better
for MAE and MSE and higher values better for Pearson R, bone precision, bone recall, and bone Dice scores.
b The best score within a column.
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the Online Supplemental Data. Training on additional data from
a different hospital, vendor, or technique significantly improves
performance in terms of MAE, MSE, and the correlation coeffi-
cient for all conditions, even when the added patients are few in
number compared with the reference data set. Conversely, when
one trains models on purely separate hospitals, vendors, or MR
imaging techniques, performance significantly decreases across
the board.

DISCUSSION
Model Architectures and Loss Functions
With regard to DL architecture, there are 2 classes of models that
are suitable for image-to-image translation: encoder-decoder net-
works and conditional generative adversarial networks. Generative
adversarial networks have the distinct advantage of learning to syn-
thesize realistic-looking images when paired images from the
source and target domain (eg, coregistered MR imaging and CT
slices) are unavailable during training.23-26 In the presence of
paired CT/MR imaging training data, recent experiments suggest
that encoder-decoder networks tend to outperform generative
adversarial networks in the CT/MR imaging domain in terms of
MAE, MSE, and other metrics.27 We selected the U-Net architec-
ture in particular because its skip connections between each
encoder and decoder layer allow precise spatial information from
the MR imaging to be propagated to the synthetic CT.

While transfer learning has been traditionally considered helpful
when training large models for tasks with relatively small data sets
(as is often the case for medical imaging), our study suggests that
for MR imaging-to-CT image synthesis, smaller models with fewer
training parameters may be more suitable. This result is supported
by recent systematic studies that found that the transfer accuracy
(specifically with models pretrained on ImageNet) is very sensitive
to how exactly the pretraining was done.28-30 For example, many

common forms of regularization may increase ImageNet accuracy
but are less suited for transfer learning. An alternative transfer
learning approach for future experiments could include finding a
related image-translation task for which paired training data are
available on a large scale. In general, if more training data are avail-
able, larger models may still be able to perform better for this task.

In terms of error minimization, low loss based on pixel-level sta-
tistics does not ensure a visually convincing and spatially accurate
image rendering. We attempted to numerically quantify synthetic
CT image quality by measuring bone precision, recall, and Dice
scores on the basis of multiple gray-level thresholds. In addition,
clinical assessment of synthetic CT images was performed by a neu-
roradiologist with expertise in bone MR imaging. Both numerically
and visually, there were competing trade-offs in MAE-versus-MSE
loss, and these trends persisted across all network architectures.
This persistence can be because MAE error is computationally
more tolerant of abrupt intensity changes between neighboring pix-
els, allowing small local errors and less bulk density assignment of
bone. Therefore, MAE loss achieves higher precision, higher speci-
ficity, a lower false-positive rate, and higher a false-negative rate for
bone. Visually, this results in a high-contrast image with sharply
defined edges and a tendency to undercall bone. On the other
hand, MSE loss penalizes individual outliers more heavily and so
enforces a more universally balanced error. Therefore, MSE loss
achieves higher recall (sensitivity), a higher false-positive rate, and a
lower false-negative rate for bone. Visually, these findings result in
a smoother and more regularized image with bulk density assign-
ment to larger areas and a tendency to overcall bone. Using a
mixture loss allows a balance among these competing factors, sug-
gesting that the weighting coefficient a could be titrated depending
on the clinical use case.

As previously mentioned, prior synthetic CT articles have
used conventional or DL-based approaches in anatomically

FIG 1. Comparison of different encoder-decoder models. The first column shows real MR imaging and real CT. Subsequent columns show syn-
thetic CTs generated by Light_U-Net, VGG U-Net, and VGG U-Net transfer learning, as well as pixel-wise difference maps between synthetic
CT and real CT. Red indicates that synthetic CT is darker than real CT; blue, synthetic CT is brighter than real CT (Refer online version for colors).
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simpler regions, including the normal adult head, torso, and
extremities, for nondiagnostic applications, including radiation
therapy planning and PET attenuation and correction.13-17 More
recent work has also described conventional or DL-powered
approaches to synthetic CT using other MR imaging sequences
such as GRE, T1, and T2.31,32 The physics of these sequences is
inherently less sensitive to cortical bone so that postprocessing
approaches are destined to be less accurate. Indeed, the sample
synthetic CT output from these articles is low-resolution and
insufficient for diagnostic radiology use.

Review of the computationally optimized model (Light_U-
Net, MAE) by expert neuroradiologists showed clear potential
clinical value over existing conventional and DL algorithms. Our
synthetic CT algorithm visibly recaptured bone microstructure in
areas pushing the limits of the MR imaging technique, generated
fewer false-negative and false-positive bone assignments, and
enabled distinction among nonbone tissues. Given that the net-
work architectures and loss functions we used are similar to those
described in prior DL studies, our improved results are best
attributed to the use of real-world clinical data.

Advancement of clinical implementation will need to include
large-scale systematic human reviews of DL algorithms to quan-
tify the usefulness for diagnostic evaluation and interventional
planning. At our institution, we are conducting a noninferiority
trial of bone MR imaging versus CT, with CT representing the
criterion standard technique or ground truth. Expert radiologists
are independently evaluating CT, bone MR imaging, and syn-
thetic CT images (Light_U-Net, MAE) to provide numeric scores
(0–10) for visibility of key anatomic landmarks (calvaria, sutures,
fontanelles, orbits, nose, jaw, teeth, paranasal sinuses, skull base,
temporal bone, and cervical spine). For the patients analyzed in
this study, CT landmark mean ratings ranged from 9.4 (SD , 0.52)

for the calvaria to 9.1 (SD , 0.91) for temporal bone. For MR
imaging, the highest rated landmark was also the calvaria (mean,
9.0 [SD , 0.86]) and the lowest was the temporal bone (mean , 7.2
[SD 1.39]). For synthetic CT, the highest rated landmark was the
calvaria (mean , 8.1 [SD , 0.92]) and the lowest was the paranasal
sinus (mean, 6.8 [SD , 2.31]). These preliminary data suggest that
landmark visibility on bone MR imaging and synthetic CT are
slightly less than on real CT but sufficient to make most clinical
diagnoses.

Furthermore, we are comparing the suitability of CT, bone MR
imaging, and synthetic CT data sets for 3D anatomic modeling
and virtual surgical planning. Biomedical engineers are processing
imaging volumes via bone segmentation, mesh triangulation, and
surface generation. Conventional anatomic modeling pipelines use
CT with density thresholding to identify bone. Therefore, source
bone MR imaging with multiple dark structures is difficult and
time-consuming to manually segment. In our experience, synthetic
CT algorithms greatly facilitate 3D processing workflow, though as
noted by radiologists, anatomic accuracy is less in challenging areas
such as facial bones and skull base. For each patient, we coregister
image data to calculate a matrix of the reference CT surface and
spatial deviation D of the nearest point on the test surface (syn-
thetic CT), displayed as a color heat map. We can then calculate
statistical metrics over the entire point cloud (mean, range, SD,
interquartile range). Based on the surgical accuracy criteria, we can
also compute the percentage of data falling within the clinically ac-
ceptable tolerance interval D ¼ (–2mm,12mm). For the patients
analyzed in this study, 86% (SD, 0.18) of all MR imaging surface
data falls within62mm of coregistered CT surface data. The larg-
est areas of deviation are attributed to missing MR imaging data
around regions of hardware and difficult-to-segment anatomic
areas, which will guide further investigation.33-36

FIG 2. Comparison of different loss functions using a Light_U-Net model. The first column shows real MR imaging and real CT. Subsequent col-
umns show synthetic CTs generated when using a loss function based on MAE, MSE, and a mixed combination, as well as pixel-wise difference
maps between synthetic CT and real CT. Red indicates that synthetic CT is darker than real CT; blue, synthetic CT is brighter than real CT (Refer
online version for colors).
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Future comparative effectiveness studies will need to account
for the relative risks and benefits of clinical workflow, ionizing
radiation exposure, examination duration, anesthesia require-
ments, diagnostic quality, and treatment outcomes. For example,
bone MR imaging represents a key alternative for at-risk patients
in whom radiation exposure must be minimized or eliminated,
ie, children, pregnant women, and patients with cancer-predispo-
sition syndromes. In such patients, CT dose reduction can yield
poor image quality below a certain dose threshold. Therefore,
ultra-low-dose CT versus no-dose bone MR imaging may yield a
more realistic and equitable image comparison.7,33-36

Model Generalizability
In general, DL approaches benefit from larger and more broadly
representative training data. This study is limited by the relatively
small sample size of 39 patients, which, nevertheless, represents
the largest documented database of paired bone MR imaging and
CT examinations in clinical patients. Because referring patterns
can vary across clinicians and institutions, we chose to include all
available head and neck imaging cases to maximize the volume
and diversity of the data set. Our study cohort includes varied
patient ages, backgrounds, and disease processes with generaliz-
able real-world imaging data, including motion and artifacts. We
standardized the preprocessing and conversion of these volumet-
ric data sets into a unique image repository of approximately
22,000 2D paired MR imaging and CT image slices. It would be
advisable for multiple institutions interested in bone MR imaging
and CT to create a multicenter consortium that can establish best
practices with regard to clinical referrals, bone MR imaging tech-
niques, image preprocessing, data sharing, and model develop-
ment to further increase the available volume and scope of
training data. As enrollment numbers increase, it may be possible
to develop algorithms tailored to specific clinical indications.
This collaborative effort will help elevate collaborations and
democratize access among radiologists, clinicians, and patients
worldwide.

Our cross-validation experiments evaluated the impact of differ-
ent hospitals, vendors, and bone MR imaging techniques on model
generalizability. These generalizability experiments showed that
training on an augmented data set that includes a different hospital,
vendor, or technique significantly improves model performance.
Conversely, when one trains models only on disparate data sets,
performance significantly decreases across the board. Taken to-
gether, these results suggest that blindly applying a model trained
only on an outside data set can be dangerous due to inherent data
variations, but augmenting a local model with additional data sets
can boost overall performance. These are key considerations for
any institution looking to practically implement bone MR imaging
and synthetic CT. Future computational work will involve further
model optimization and customization of problem-specific loss
functions. We are also considering processing input data in patches,
which would permit assembly of higher-resolution output images
than our current model.37-41

Having established a robust DL pipeline with good performance
and generalizability, we hope to facilitate adoption into clinical prac-
tice. At our institution, we are already seeing early promise for diag-
nostic and interventional applications. With larger clinical training

sets, continued enhancement of synthetic CT algorithms will
improve understanding among untrained radiologists and clinicians
and streamline downstream processing for 3D printing and surgical
navigation. Further technical advancements could even augment
diagnostic value over source MR images, as suggested by the ability
to reconstruct bone microstructure approaching MR imaging
super-resolution. As synthetic CT algorithms become more robust
and accessible, they may be increasingly accepted for clinical deci-
sion-making in head and neck imaging. True clinical validation will
require comparative effectiveness research across different clinical
use cases and multiple iterations of human expert input to guide
selection and implementation of optimal algorithms.

CONCLUSIONS
We have optimized a DLmodel for conversion of boneMR imag-
ing to synthetic CT in the head and neck on the basis of a patient
data set inclusive of diverse demographics and clinical use cases.
Our unique database consists of 39 paired bone MR imaging and
CT examinations, scanned at 2 different institutions with varying
MR imaging vendors and techniques. The Light_U-Net model out-
performed more complex VGG U-Net models, even after the use
of transfer learning. Selection of loss function on the basis of MAE
resulted in better bone precision, while MSE tended to provide bet-
ter bone recall. Performance metrics for a given model decreased
when using training data captured only in a different environment
and increased when local training data were augmented with those
from different hospitals, vendors, and techniques. By establishing a
robust DL-powered synthetic CT algorithm with good perform-
ance and generalizability, we hope to elevate the applicability of
bone MR imaging with downstream image-processing and adop-
tion into clinical practice.
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