Proton Imaging and Phosphorus Spectroscopy in a Malignant Glioma

Robert A. Zimmerman,1 Paul A. Bottomley,2 William A. Edelstein,2 Howard R. Hart,2 Rowland W. Redington,2 Larissa T. Bilaniuk,1 Robert I. Grossman,1 Herbert I. Goldberg,1 Leonard Bruno,3 and Herbert Kressel1

Since 1980 several papers have detailed the value of 1H magnetic resonance imaging (MRI) of the central nervous system as being clinically useful [1–8]. Recently, Cady et al. [9] used 31P MRI to study the cerebral metabolism of newborn infants suffering birth asphyxia, meningitis, congenital abnormalities, and cerebral edema. Bottomley et al. [10] described the first in vivo 31P spectra and high-field 1H MR images in a normal adult volunteer. We now report both 1H MR images and 31P MR chemical-shift spectroscopic studies in a patient with a malignant glioma of the left temporal parietal lobe undergoing radiation and chemotherapy. The ability to perform both 1H imaging and in vivo phosphorus spectroscopy with the same instrument with only a 5–10 min changeover delay opens a new avenue in the investigation of neurologic diseases.

Case Report

A 59-year-old man had a 6-month history of grand mal seizures and slowly developing dyslexia with some dysphagia. Neurologic examination was normal. A computed tomographic (CT) scan showed a right peritral contrast-enhanced mass surrounded by edema. A resistive 1H MR examination performed at the Hospital of the University of Pennsylvania using a 0.12 T prototype MR system in the transverse and coronal planes showed both the mass and the surrounding edema. Surgical biopsy revealed a grade III astrocytoma. CT was repeated after biopsy and revealed the tumor to be essentially unchanged (fig. 1A). The patient was placed on Decadron and treated to a level of 5,000 rad (60 Gy) with parallel opposed portals. At the end of radiation therapy and 2 months after initial studies, the patient was evaluated with the 1.5 T imaging/spectroscopy system at the General Electric Research and Development Center in Schenectady, NY. Series of 1H MR images and 31P MR chemical-shift spectra were recorded (figs. 1B and 1C).

General Electric 1.5 T Imaging/Spectroscopy System

A 1.5 T, 1-m-bore MR imaging/spectroscopy system was used to obtain proton MR images and 31P MR chemical shift spectra. The examinations were performed within 3/4 hr of each other. Examinations were done at a 84 MHz 1H resonance frequency and a 26 MHz 31P frequency. The image was a 256 × 256 point, 6 mm single slice obtained in 306 sec using a spin-echo (SE) spin-warp imaging method and partial saturation pulse sequence with a 600 msec repetition time (TR) and an echo time of 16 msec. 31P spectra were recorded from the left and right sides at the same level as the image using a 6.5-cm-diameter surface coil. Each spectrum represented the Fourier transform of 50 averaged free-induction decays obtained in 800 sec using a 16,000 msec pulse TR to avoid spectral distortion due to different MR relaxation times of the metabolic peaks. Free induction decays were multiplied by a 20 msec time constant exponential filter before Fourier transformation. Spectra contained contributions from both brain and surface tissue in the approximate ratio 2:1, respectively [11], and extending about 4 cm into the brain.

The proton image of the brain showed the area of tumor and edema within the left parietotemporal region (fig. 1B). 31P MR chemical-shift spectra showed peaks corresponding to shifts of sugar phosphates, inorganic phosphates, phosphodiesters, phosphocreatine, and to the α-, β-, and γ-phosphates of adenosine triphosphate (ATP). Spectrum obtained from the normal side was comparable to spectra obtained from 10 normal subjects previously studied. Spectrum from the tumor-edema side showed a 40% decrease in the phosphocreatine to β-ATP ratio, compared with the normal-side spectrum, as calculated from the area under the baseline-deconvolved peaks. This was from a loss of phosphocreatine. Inorganic phosphate levels were unchanged and not accurately determinable in either these experiments or in the normal studies.

Discussion

Minimal effort is required to switch between phosphorus and hydrogen data acquisition. Indeed, data can be acquired with both MR coils present, since there is essentially no interaction between coils owing to their different MR frequencies. All that is required is appropriate adjustment of MR spectrometer operating frequencies and adjustment of the band-width filters for data acquisition.

An application of 31P spectroscopy to in vivo study of mice with subcutaneous implanted murine and human tumors and their response to therapy was reported by Ng et al. [12]. They
noted considerable variability in the metabolic characteristics of tumors, even at the same stage of growth, suggestive of factors intrinsic to the host animal. However, both chemotherapy and radiation therapy produced substantial initial decreases in the phosphocreatine/ATP ratio of mouse tumor 31P spectra. Given that sugar phosphate and inorganic phosphate levels are not elevated in our spectra, and that most of the brain tissue detected by the surface coil is edematous rather than tumorous, as is apparent from the CT and MR scans, radiation/chemotherapy effects may also be responsible for the reduced phosphocreatine/ATP ratio observed here. The metabolic information is augmented by 1H MR scans, which add anatomic details of the region of interest.

REFERENCES