Klippel-Feil Syndrome and Sprengel Deformity Combined with an Intraspinal Course of the Left Subclavian Artery and a Bovine Aortic Arch Variant

SUMMARY: We present a case of Klippel-Feil syndrome and Sprengel deformity with a bovine aortic arch and an aberrant course of the left subclavian artery in a 14-year-old boy. CT and MR imaging of the neck and upper thorax demonstrated a cervical osseous segmentation anomaly, a left common carotid artery originating from the innominate artery, and a left subclavian artery coursing through the intraspinal space at the C6 through T1 level. Possible embryonic mechanisms and clinical significance of this variant are reviewed.

CASE REPORT

F. Floemer
O. Magerkurth
C. Jauckus
J. Lütschg
J.F. Schneider

Received October 3, 2007; accepted October 12.

From the Departments of Pediatric Radiology (F.F., O.M., C.J., J.F.S.) and Neuropediatrics (J.L.), University Children’s Hospital Basel (UKBB), Basel, Switzerland; e-mail: jacques.schneider@ukbb.ch

Published November 16, 2007 as 10.3174/ajnr.A0878

Copyright 2007 by American Society of Neuroradiology.
momyotomes. Sclerotomes resegment into a cranial and a caudal area, and in between forms the intervertebral disk. Fusion of the caudal section from a rostral somite with the cranial section of the corresponding caudal somite forms a vertebral body. Errors in segmentation may result in KFS. Vascular system development runs parallel to the development of the spinal cord. At days 21–29, thirty pairs of dorsal intersegmental arteries arise from the dorsal aortae and supply their corresponding somites. Between days 32–42, vertical and right-angle anastomoses develop between them and cross the vertebral bodies. The anastomoses serve as the origin of the vertebral arteries. During gestational days 37–42, the first 6 cervical intersegmental arteries regress, and only the seventh intersegmental arteries persist. The entire left and the greater part of the right subclavian artery originate from this seventh intersegmental artery.

Fetal vascular disruption disorders have been found to be responsible for various congenital anomalies, depending on the extent and timing of the disruptive event. A subclavian artery supply disruption sequence has been hypothesized to result in KFS on the basis of the theory that vascular disruption of the vertebral artery leads to ischemia during morphogenesis. Subsequent structural anomalies will involve not only the definitive vascular pattern by itself but also the vasculature-dependent soft-tissue territories.8,9 Due to the heterogeneity in KFS, the exact influence of vascular and genetic factors remains unclear. Because of the complex vascular variants in this group of patients, prior imaging of the aortic arch and supra-aortic vessels is recommended.10

References