
of April 17, 2024.
This information is current as

Multisequence Longitudinal MRI
Detection in Multiple Sclerosis Using 
Automatic Lesion Incidence Estimation and

C.M. Crainiceanu
E.M. Sweeney, R.T. Shinohara, C.D. Shea, D.S. Reich and

http://www.ajnr.org/content/early/2012/07/05/ajnr.A3172
 published online 5 July 2012AJNR Am J Neuroradiol 

http://www.ajnr.org/cgi/adclick/?ad=57533&adclick=true&url=https%3A%2F%2Flinkprotect.cudasvc.com%2Furl%3Fa%3Dhttps%253a%252f%252fwww.genericcontrastagents.com%252f%253futm_source%253dAmerican_Journal_Neuroradiology%2526utm_medium%253dPDF_Banner%2526utm_c
http://www.ajnr.org/content/early/2012/07/05/ajnr.A3172


ORIGINAL
RESEARCH

Automatic Lesion Incidence Estimation and
Detection in Multiple Sclerosis Using
Multisequence Longitudinal MRI

E.M. Sweeney
R.T. Shinohara

C.D. Shea
D.S. Reich

C.M. Crainiceanu

BACKGROUND AND PURPOSE: Detecting incidence and enlargement of lesions is essential in moni-
toring the progression of MS. In clinical trials, lesion load is observed by manually segmenting and
comparing serial MR images, which is time consuming, costly, and prone to inter- and intraobserver
variability. Subtracting images from consecutive time points nulls stable lesions, leaving only new
lesion activity. We propose SuBLIME, an automated method for segmenting incident lesion voxels.

MATERIALS AND METHODS: We used logistic regression models incorporating multiple MR imaging
sequences and subtraction images from consecutive longitudinal studies to estimate voxel-level
probabilities of lesion incidence. We used T1-weighted, T2-weighted, FLAIR, and PD volumes from a
total of 110 MR imaging studies from 10 subjects.

RESULTS: To assess the performance of the model, we assigned 5 subjects to a training set and the
remaining 5 to a validation set. With SuBLIME, lesion incidence is detected and delineated in the
validation set with an AUC of 99% (95% CI [97%, 100%]) at the voxel level.

CONCLUSIONS: This fully automated and computationally fast method allows sensitive and specific
detection of lesion incidence that can be applied to large collections of images. Using the explicit form
of the statistical model, SuBLIME can easily be adapted to cases when more or fewer imaging
sequences are available.

ABBREVIATIONS: AUC � area under ROC curve; IQR � interquartile range; NAWM � normal
appearing white matter; PD � proton attenuation; ROC � receiver operating characteristic; SuB-
LIME � Subtraction-Based Logistic Inference for Modeling and Estimation

MS is an inflammatory disease of the central nervous sys-
tem characterized by brain and spinal cord lesions. Al-

though lesions in the gray matter of the brain are common,
lesions are more readily recognized in the white matter.1 MR
imaging of the brain is used to detect lesions in MS and is
essential in monitoring disease progression. In addition to
documenting disease effects at one time, MR imaging can be
used to assess longitudinal changes.2 MR imaging observation
of lesion volume change resulting from the development of
new lesions, enlarging lesions, and resolving lesions is an im-
portant marker of disease progression and response to ther-
apy.3 Lesion volume change is a common outcome in clinical
trials and is computed by comparing manual segmentations of
serial MR imaging examinations,4 which is time-consuming,
costly, and subject to inter- and intraobserver variability. In

addition, quantifying lesion change is challenging because in-
cident and enlarging lesions represent only a small proportion
of all lesions, typically on the order of 5–10%.5 Therefore, a
method that can automatically and accurately segment lesions
to assess change is desirable.

Lladó et al6 provide a comprehensive review of the current
methods of lesion change segmentation by dividing them into
2 groups: intensity-based and deformation-based. Intensity-
based methods use voxel-level comparisons of intensities to
identify lesion change. These methods are further categorized
into deterministic, statistical, and temporal analysis methods.
Deformation-based methods rely on observing the changes
in tissue surrounding lesions due to lesion expansion or
contraction.

Deterministic methods are defined as segmentations of
subtraction images.6 Images from consecutive studies can be
registered, normalized, and then subtracted to isolate areas of
lesion change and cancel radiologically stable disease-related
measurements. Manually segmented 2D T2-weighted sub-
traction images identify a higher number of active lesions,
with greater inter- and intraobserver agreement5,7 than com-
paring independently segmented serial images. Subtraction
images created from 3D imaging acquisitions have been
shown to be less susceptible to artifacts than 2D subtraction
images.8 To our knowledge, no manual or automated method
for combining information from multiple types of MR imag-
ing subtraction images has been developed.

Current statistical methods detect changes in the brain be-
tween 2 MR imaging studies but do not provide fully auto-
mated segmentations of lesion change.6 Volumes from 2 time
points are registered, and statistical models classify voxels as
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no signal change, signal increase, signal decrease, and outside
of the brain.9 Higher lesion activity detection probabilities
have been obtained by extending this method to the use of
multisequence imaging data,10 but clusters of highly likely le-
sion change voxels must be reviewed by an expert to produce
lesion change segmentations.

Temporal analysis approaches are based upon voxel level
time-series.6 Longitudinal collections of images for a subject
are registered, and voxel intensities are analyzed as a function
of time. Lesions and other tissue classes of the brain can be
segmented from these time-series,11,12 but these methods re-
quire more than 2 MR imaging studies for each subject.

In contrast to intensity-based methods, deformation field-
based approaches observe the modification of the tissue sur-
rounding lesions.6 Volumes from 2 time points are registered,
and structural changes in the brain are determined by the local
deformation of voxels.13,14 While these methods have been
shown to perform better than intensity-based methods for the
segmentation of lesions, they require a region of interest to be
manually selected before the analysis.

There is currently no fully automated method that pro-
duces segmentations of incident lesions and lesion enlarge-
ment using information from only 2 MR imaging studies.
We therefore propose SuBLIME, a fully automated and com-
putationally fast method for segmenting voxel-level lesion
incidence between 2 MR imaging studies. Using a logistic re-
gression model with various MR imaging sequences from
consecutive studies, we estimate the probability of lesion inci-
dence in each voxel. The model utilizes information from the
FLAIR, PD, T2-weighted, and T1-weighted volumes, as well as
corresponding subtraction images, to produce interpretable
results in the form of regression coefficients that can be ap-
plied to new pairs of images quickly and easily.

To show how multisequence image information improves
lesion incidence and enlargement detection, while also being
robust to artifacts, we compare the full SuBLIME model to a
nested model fit with only the T2-weighted image. We also
compare both models to a population-level threshold of the
T2-weighted subtraction image to show that the SuBLIME
model framework improves performance.

Materials and Methods

Study Population
A total of 110 MR imaging studies (11 longitudinal studies each of 10

subjects) were analyzed. All participants gave written consent and

were scanned as part of an institutional review board–approved nat-

ural history protocol. To assess the performance of the model, we

randomly assigned 5 subjects (55 studies) to a set for model training

and used the remaining 5 subjects (55 studies) for validation of our

model. Demographic, diagnosis, and treatment information for the

training and validation subjects can be found in Table 1. The mean

time between scans in the training set was 130 days and the median

was 35 days. The mean time between scans in the validation set was 88

days and the median was 34 days.

Experimental Methods
We acquired whole-brain 2D FLAIR, PD, T2-weighted, and 3D T1-

weighted volumes in a 1.5T MR imaging scanner (Signa Excite HDxt;

GE Healthcare, Milwaukee, Wisconsin) using the body coil for trans-

mission. For signal detection, we used a volume head coil for 107 of

the studies and an 8-channel receive coil (Invivo, Gainesville, Florida)

in the remaining 3 studies. The 2D FLAIR, PD, and T2-weighted

volumes were acquired using spin-echo sequences and the 3D T1-

weighted volume using a gradient-echo sequence. The PD and T2-

weighted volumes were acquired as short and long echoes from the

same sequence. We used various scanning parameters for the differ-

ent studies. The ranges for the flip angle, repetition time, echo time,

and inversion time can be found in Table 2.

Image Postprocessing
For initial image processing, we used Medical Image Processing Anal-

ysis and Visualization (http://mipav.cit.nih.gov) and Java Image Sci-

ence Toolkit (http://www.nitrc.org/projects/jist/).15 We interpolated

all images for each subject to a voxel size of 1 mm3 and rigidly aligned

all of the T1-weighted volume to the Montreal Neurological Institute

standard space. We then took the average of the T1-weighted volume

for all the studies for each subject and registered the longitudinal

collection of the T1-weighted, T2-weighted, FLAIR, and PD images

for the subject to this average image. We removed extracerebral voxels

using a skull-stripping procedure.16 We automatically segmented the

entire brain and the NAWM using the T1-weighted and FLAIR

images.17

Criterion Standard Measure
To fit the model and to measure performance, we required a set of

data in which the outcome is assessed by using a criterion standard

measure. The criterion standard was obtained using manual segmen-

tation by an experienced neuroradiologist, who evaluated consecutive

T2-weighted and FLAIR images and the T2-weighted subtraction im-

age. For each study, we segmented 5 representative axial sections of

the brain: sections 50 (through the inferior temporal lobes, pons, and

cerebellum), 70 (including the midbrain and occipital lobes), 90

(through the internal capsules), 110 (through the centrum semi-

ovale), and 130 (near the vertex). Only voxels with new lesion activity

were segmented; voxels containing existing lesions were not seg-

Table 1: Subject demographic, diagnosis, and treatment information

Set Subtype Age Sex EDSS

Treatment with
Disease-Modifying
Therapy (Baseline)

Validation RRMS 37 Male 1.5 Yes
Validation RRMS 38 Female 2.0 Yes
Validation RRMS 48 Male 3.0 No
Training RRMS 38 Female 1.5 No
Training RRMS 30 Female 1.0 Yes
Training RRMS 43 Female 1.5 Yes
Validation RRMS 35 Female 1.5 Yes
Training RRMS 37 Female 1.0 Yes
Training RRMS 47 Female 3.0 Yes
Validation RRMS 56 Female 1.0 No

Note:—EDSS indicates Expanded Disability Status Scale; RRMS, relaping-remitting mul-
tiple sclerosis.

Table 2: Study scanning parameters

FA (degrees) TR (ms) TE (ms) TI (ms)
FLAIR (90, 90) (10,000, 10,000) (77.8, 159.5) (2200, 2500)
T2-weighted (90, 90) (3400, 6500) (94.6, 112.0) NA
PD (90, 90) (3400, 6500) (11.8, 15.0) NA
T1-weighted (13, 20) (7.68, 10.3) (1.88, 4.05) (450, 750)a

Note:—FA indicates flip angle; NA, not available.
a 106 of the T1-weighted scans did not have an inversion time.
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mented. In total, there were 500 segmented sections, with 23 sections

containing lesions. There were a total of 55 incident or enlarging

lesions, with 26 in the training set and 29 in the validation set. The

neuroradiologist only segmented changes between consecutive stud-

ies; in our analysis, we also only focus on incidence between consec-

utive studies.

Normalization
We performed all statistical modeling in the R environment (version

2.12.0; R Foundation for Statistical Computing, Vienna, Austria) with

the packages AnalyzeFMRI,18 biglm,19 ff,20 and ROCR.21 We used

intensities from the FLAIR, PD, T2-weighted, and T1-weighted vol-

umes to identify new lesions and enlargement of previously existing

lesions. We denote the observed intensity of voxel v, for subject i, from

MR imaging study conducted at time tj by

Mi
0�v, tj�, M � FLAIR, PD, T2, T1

where M indicates the imaging sequence.

Analyzing images across study visits requires that the images be

normalized so that voxel intensities have common interpretations.

The normalization must allow for comparison of studies within and

between subjects. Our aim was to segment incident lesions, which

occur predominantly in the white matter; therefore, intensities from

each study are expressed as a departure from the subject’s NAWM

mean in each imaging sequence22:

Mi
N�v, tj� � �Mi

0�v, tj� � � i,M
0 �tj��/� i,M

0 �tj�

where �i,M
0 (tj) and �i,M

0 (tj) are the mean and standard deviation of

the observed voxel intensities in the NAWM of subject i, from se-

quence M, conducted at time tj. The NAWM segmentations were

developed using the high-resolution T1-weighted and FLAIR im-

ages.17 SuBLIME can use any NAWM segmentation approach and is

not sensitive to the choice of segmentation algorithm.

Subtraction Images
We calculated subtraction images for each sequence by subtracting

normalized images from consecutive MR imaging studies. We denote

the subtraction image intensity at voxel v for study tj by

�Mi
N�v, tj� � Mi

N�v, tj� � Mi
N�v, tj � 1�

where i is the subject and M is the imaging sequence. Misregistration,

partial volume effects, and low signal-to-noise ratios can cause arti-

facts and noise in subtraction images2; our approach avoids these

pitfalls by carefully integrating population-level normalization with

robustly tuned statistical prediction algorithms.

Subtraction-Based Logistic Inference for Modeling and
Estimation
SuBLIME uses logistic regression to model the probability that a voxel

is part of an incident or enlarging lesion. We model lesion incidence at

the voxel level using FLAIR, PD, T2-weighted, and T1-weighted in-

tensities from the current study; the subtraction image intensities for

each of these sequences; the time between the consecutive studies; and

the interactions between the subtraction image intensities and the

time between consecutive studies. The result of our model is a collec-

tion of coefficients that can be used to create 3D maps of the proba-

bilities of lesion incidence. A flow chart describing the SuBLIME

method can be found in the On-line Appendix.

The first step of this procedure is to isolate candidate voxels that

are likely to be part of incident or enlarging lesions. As changes in

lesion behavior are evident on T2-weighted subtraction images, we

apply the logistic regression model only to voxels that are hyperin-

tense on these images. To avoid isolated voxels that have high T2-

weighted subtraction values as a result of noise, we smooth the sub-

traction image by using a Gaussian kernel with a window size of 5 mm.

Then, we include only voxels that have T2-weighted subtraction val-

ues larger than 1 standard deviation of the subtraction intensities

calculated across the image. We chose the threshold of 1 standard

deviation on the T2-weighted subtraction image empirically and

found it to be liberal in capturing changes in lesions. Of the 1026

neuroradiologist-segmented lesion voxels in the training set, the

voxel selection mask excluded only 45, or 4%. At least 1 voxel from

every lesion was included in the candidate voxels. The 45 missing

voxels were found in the voxel selection masks for 4 studies from 3 of

the subjects in the training set. The missed voxels were evenly distrib-

uted among the sections with lesion incidence. On average, for each

pair of consecutive studies in the training set, 14,311 (IQR: 9965;

17,638) voxels were included as candidate voxels in the 5 representa-

tive sections of the brain. The average number of voxels in the brain

from the 5 sections of the subjects in the training set is 59,116 (IQR:

56,269; 61,238). As the voxel selection procedure only excludes 4% of

active lesion voxels, it has a negligible impact on sensitivity, but it

greatly improves specificity by eliminating more than 75% of the

candidate voxels for active lesions. The voxel selection mask is illus-

trated in Fig 1; Fig 1A shows the radiologist segmentation of an axial

section of the brain, and Fig 1B shows the candidate voxels for the

same section that will be used in the logistic modeling described here.

We then fit a voxel-level logistic regression model for lesion inci-

dence over these candidate voxels, denoting the voxel-level lesion

incidence by the random variable W:

Wi�v, tj� � �1, if subject i has lesion incidence in voxel v at time tj

0, otherwise

We model the probability that a voxel is part of a lesion incidence

using the logistic regression model:

1) logit �P�Wi�v, tj� � 1�� � �0 � �1�t �

�2FLAIRi
N�v, tj� � �3�FLAIRi

N�v, tj� � �4�FLAIRi
N�v, tj� � �t �

�5PDi
N�v, tj� � �6�PDi

N�v, tj� � �7�PDi
N�v, tj� � �t �

�8T2i
N�v, tj� � �9�T2i

N�v, tj� � �10�T2i
N�v, tj� � �t �

�11T1i
N�v, tj� � �12�T1i

N�v, tj� � �13�T1i
N�v, tj� � �t

where �t is the time in days between consecutive studies. Note, how-

ever, that SuBLIME is a general logistic procedure encompassing a

large number of logistic regression models. Here we use the specific

model (1) because it performs very well in our application. The esti-

mated coefficients from the full model and the nested model with only

the T2-weighted image, based on all of the 10 subjects, are given in the

On-line Appendix. To account for the correlation in patients over

time, we nonparametrically bootstrapped (with replacement) the

subjects for the training and validation set to allow for estimation of

the confidence intervals for the regression coefficients. An interpre-

tation of the coefficients is also provided in the On-line Appendix.

After we fit the model, we use the estimated coefficients to create

maps of the estimated probability of lesion incidence at each voxel. To

incorporate spatial information of the neighboring voxels and reduce

noise, we smoothed the estimated probabilities from the model using

a Gaussian kernel with window size of 3 mm. This kernel size was

empirically chosen and found to perform well.
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Results
Axial sections from normalized FLAIR, PD, T2-weighted, and
T1-weighted volumes from 2 consecutive studies, and the sub-
traction images of the 2 studies for each sequence for a subject
in the validation set, are shown in the On-line Appendix. Le-
sions are characterized by hyperintensities in FLAIR, PD, and
T2-weighted images, and hypointensities in T1-weighted im-
ages, though not all lesions appear on T1-weighted images.
Lesion incidence is characterized by hyperintensities in
FLAIR, PD, and T2-weighted subtraction images and by hy-
pointensities in T1-weighted subtraction images. For the same
subject and study, an axial section of the smoothed probability
map of lesion incidence from the full SuBLIME model is
shown in Fig 1C. Fig 1D shows the same section for a model fit
with only the T2 image. Red indicates areas with the higher
probability of lesion incidence, and blue indicates areas with
lower probabilities of lesion incidence. An axial section of the
probability map from the full model for another subject from
the validation set is shown in the On-line Appendix. The cor-
responding axial section of the normalized FLAIR, PD, T2-
weighted, and T1-weighted volumes from the 2 consecutive
studies and the subtraction images are also shown.

In the Study Population section, we discussed assessing the
performance of the model by randomly assigning 5 subjects to
the training set and the remaining 5 subjects to a validation set.
The voxel-level ROC curves for the subjects in the validation
set are shown in Fig 2A. We optimized the voxel selection
procedure and fit the model (1) on the training set. We only
used studies from the validation set to estimate the voxel-level
ROC curve and AUC. The vertical axis of the ROC curve shows
the true-positive rate (sensitivity) for a given threshold on
the probability map, and the horizontal axis shows the false-
positive rate (1 - specificity) for this threshold. These perfor-
mance measures are known to be susceptible to instability. To
account for this instability, as well as the correlation in subjects

over time, we nonparametrically bootstrapped (without re-
placement) the training and validation sets. This procedure
allowed the estimation of confidence intervals for the AUC.
The blue curve is the ROC curve for the full model with an
estimated AUC of 99% (95% CI [97%, 100%]). The red curve
is the ROC curve for the model fit with only the T2-weighted
image with an estimated AUC of 97% (95% CI [88%, 99%]).
The green curve is the ROC curve for the population level
threshold of the T2-weighted subtraction image with an esti-
mated AUC of 92% (95% CI [83%, 95%]).

The AUC calculated over the entire ROC space shown in
Fig 2A is not optimal for the evaluation of the performance of
an algorithm designed to detect lesion incidence. This full
AUC summarizes test performance over regions of the ROC
space that are not clinically relevant. The subset of lesions
showing change usually consists of a small fraction of all le-
sions in the brain and an even smaller fraction of the entire
brain. The average number of voxels in the entire brain among
the validation set is 1,277,736 (IQR: 1,204,162; 1,364,908). For
the entire brain, a false-positive rate of 0.01 would correspond
to a volume of 12,800 mm3 of healthy brain being falsely iden-
tified as lesion, making the resulting prediction maps difficult
to interpret and clinically unacceptable. Thus, the perfor-
mance of SuBLIME should only be evaluated for very small
false-positive rates; large false-positive rates are not clinically
relevant. Fig 2B shows the partial ROC curve for false-positive
rates up to 0.01. The blue curve corresponds to the full model
(1), the red curve corresponds to the model fit with only the
T2-subtraction image, and the green curve corresponds to the
population level threshold of the T2-weighted subtraction im-
age. The full model has a higher true-positive rate for these
relevant small false-positive rates, which further emphasizes
the importance of using the various imaging sequences in ad-
dition to the T2-weighted images. We have also provided the

Fig 1. Areas with lesion incidence are indicated with red boxes. A, Neuroradiologist manual segmentation of an axial section of the brain. B, Selected voxels for SuBLIME modeling. C,
Axial section of the probability map from the full model. D, Axial section of the probability map from the SuBLIME model fit with only the T2-weighted image. E, Binary segmentation of
the probability map from the full model with false-positive rate of 0.01 overlaid on the FLAIR image. F, Binary segmentation of the probability map from the full model with false-positive
rate of 0.001 overlaid on the FLAIR image.
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partial ROC curves for the nested SuBLIME models fit with
only 3 imaging sequences in the On-line Appendix.

The probability maps can be cut at desired false-positive
rates to create binary segmentations of lesion incidence. Table
3 shows the threshold values, specificity, and sensitivity for 4
different false-positive rates in the validation set. To put this
into context, we have also provided the volume of lesion inci-
dence that was segmented at each threshold value. The true
lesion volume change from the neuroradiologist’s manual seg-
mentation was 625 mm3. Fig 1E shows a binary segmentation
of a section for a false-positive rate of 0.01, and Fig 1F shows a
binary segmentation with a false-positive rate of 0.001. The
section with false-positive rate 0.01 contains many false-posi-
tive lesions, while the false-positive rate of 0.001 provides a
more accurate segmentation of the section. Choosing thresh-
old values is a trade-off between sensitivity and specificity.
SuBLIME is flexible, and the appropriate false-positive rate
may be selected for a particular application.

Discussion
Lesion volume change is frequently an outcome in clinical
trials for patients with MS and is traditionally assessed by man-
ually segmenting consecutive MRI. In a clinical trial setting,
SuBLIME may be used to replace or assist manual segmenta-
tion of incident and enlarging lesions to reduce costs. After
training, our fully automatic method does not require human

input and avoids the variability introduced by manual seg-
mentation. Training is necessary for each new dataset, but can
be fairly limited, as in the example from this paper.

In contrast to many automatic segmentation techniques,
SuBLIME is computationally fast. Training the model on 5
sections from 110 images takes less than an hour on a standard
workstation. This process is only conducted once after collect-
ing a dataset that combines images from multiple protocols,
and the results may be summarized as the 14 coefficients in the
model (1). Using this fitted model to generate a probability
map of the entire brain from a set of new images takes only
seconds using a standard workstation. For this analysis, we
trained and validated the model on 5 representative sections of
the brain. Confirmatory analyses that train and validate on
segmentations of the entire brain are indicated for further un-
derstanding of the performance of SuBLIME.

Because SuBLIME is fit voxelwise, it is sensitive to major
misregistration within a study and between longitudinal stud-
ies for the same subject. However, SuBLIME is robust to mi-
nor errors in registration. By simultaneously comparing data
from multiple sequences and only considering candidate
voxels, SuBLIME distinguishes between artifacts and lesion
incidence. We suspect SuBLIME may also be sensitive to the
radiologist’s manual segmentation. In this analysis, we used
a single expert segmentation of the sections. Future studies will
compare the SuBLIME segmentations to additional manual
segmentations to investigate the influence of interrater
variability.

SuBLIME uses a voxel-level model for assessing the out-
come. The assumption of independence between voxels is im-
perfect, as lesions consist of clusters of voxels. In this work, we
use smoothing of the T2-weighted subtraction image in can-
didate voxel selection, followed by a second smoothing of the
predicted probabilities of the model to incorporate the spatial

Fig 2. A, ROC curves for the voxel-level detection of incident and enlarging lesions for different thresholds of the probability maps produced from SuBLIME, as well as different thresholds
of the T2-weighted subtraction without the model and voxel selection procedure. The red ROC curve is for the full model and has an AUC of 99% (95% CI [97%, 100%]). The blue ROC
curve is for the model fit with only the T2-weighted image and has an AUC of 97% (95% CI [88%, 99%]). The green ROC curve is for thresholding the T2-weighted subtraction image
without the model and voxel selection procedure and has an AUC of 92% (95% CI [83%, 95%]). B, Partial ROC curves for false-positive rates up to 0.01. The red curve is for the full model
and the blue curve is for the model fit with only the T2-weighted image. The green curve is for thresholding the T2-weighted subtraction image without the model and voxel selection
procedure.

Table 3: Binary segmentations

False-
Positive
Rate

Threshold
Value Specificity Sensitivity

Volume Change
(Actual 625 mm3)

0.01 0.0022 0.99 0.95 30454
0.001 0.0229 0.999 0.83 3520
0.00025 0.0815 0.99975 0.54 1082
0.0001 0.1396 0.9999 0.35 509
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nature of the data. Nevertheless, further incorporation of
neighboring voxel information is warranted.

For this analysis, we decided to use a group of patients
with early relapsing disease because new lesion activity is
more common in this group. In the future, we plan to apply
SuBLIME to a larger group of patients with a wide spectrum of
disease activity and severity. Although developed for the par-
ticular application of longitudinal lesion incidence segmenta-
tion in MS, SuBLIME can be applied more generally to coreg-
istered serial images to detect other changes and pathologies.
We expect that a version of SuBLIME can easily be adapted
to monitor other pathologies assessed using MR imaging, such
as volumetric changes in patients with vascular disease or
tumors. Our techniques may also be useful for monitoring
changes in other imaging outcomes, including studies that use
combinations of imaging techniques such as PET-CT studies
in oncology. Finally, it is likely that the methods can be applied
to organs outside the brain, including the lung, liver, and
kidneys.

Conclusions
SuBLIME is a fully automated and computationally fast
method that allows sensitive and specific detection of lesion
incidence and enlargement. Using the explicit form of the sta-
tistical model, SuBLIME can easily be adapted to cases when
more or fewer imaging sequences are available.
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