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Individual Classification of Mild Cognitive
Impairment Subtypes by Support Vector Machine

ORIGINAL . .
researcH | Analysis of White Matter DTI
S. Haller BACKGROUND AND PURPOSE: MCI was recently subdivided into sd-aMClI, sd-fMCI, and md-aMCI. The

P. Missonnier current investigation aimed to discriminate between MCI subtypes by using DTI.

F.R. Herrmann MATERIALS AND METHODS: Sixty-six prospective participants were included: 18 with sd-aMCl, 13 with

C. Rodriguez sd-fMCI, and 35 with md-aMCI. Statistics included group comparisons using TBSS and individual
M.-P. Deiber classification using SVMs.
D. Nguyen RESULTS: The group-level analysis revealed a decrease in FA in md-aMCI versus sd-aMCl in an
G. Gold extensive bilateral, right-dominant network, and a more pronounced reduction of FA in md-aMCI
K.-O. Lovblad compared with sd-fMCI in right inferior fronto-occipital fasciculus and inferior longitudinal fasciculus.
.-0. Lov

The comparison between sd-fMCI and sd-aMCI, as well as the analysis of the other diffusion
parameters, yielded no significant group differences. The individual-level SVM analysis provided
discrimination between the MCI subtypes with accuracies around 97%. The major limitation is the
relatively small number of cases of MCI.

P. Giannakopoulos

EBM2 CONCLUSIONS: Our data show that, at the group level, the md-aMCI subgroup has the most pro-

nounced damage in white matter integrity. Individually, SVM analysis of white matter FA provided

highly accurate classification of MCI subtypes.

ABBREVIATIONS: AD = Alzheimer disease; aMCl = amnestic MCI; FA = fractional anisotropy;
MCI = mild cognitive impairment; md-aMCl| = multiple domains MCI; sd-aMCI = single domain
amnestic MCI; sd-fMCI = single domain frontal MCI; SVM = support vector machine; TBSS =

tract-based spatial statistics

Ithough there are currently no proven disease-modifying

treatments for AD, several promising candidates have
been evaluated to date."* However, recent studies pointed to
their limited performance in patients with clinically overt de-
mentia.”* To date, the identification of patients at high risk for
rapid cognitive decline is considered a prerequisite for future
curative strategies in AD.

MCI represents a transition zone between normal aging
and very early dementia, characterized by selective memory
deficits associated, or not, with other cognitive dysfunctions.5
It was originally conceived as a functionally nondisabling am-
nestic disorder that was later expanded to include essentially
any form of cognitive complaints.® Based on the patterns of
neuropsychologic deficits, MCI was recently subdivided into
sd-aMCI with isolated memory impairment; sd-fMCI, char-
acterized by early deficits confined to executive functions; and
md-aMCI, which displays widespread cognitive dysfunctions
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that affect memory and also language, attention, and/or visuo-
spatial abilities. For instance, md-aMCI is thought to progress
to clinically overt AD with an annual rate of 10%-15%,>”
whereas the other subgroups of MCI may remain stable or
evolve to other forms of dementia.®

Structural MR imaging was initially used to differentiate
patients with MCI from healthy controls in cross-sectional
studies. Most earlier MR neuroimaging studies focused on the
investigation of gray matter using voxel-based morphometry’
in MCL'"> A series of voxel-based morphometric studies re-
vealed volume differences between patients with MCI and
controls mainly distributed within the precuneus and cingu-
late gyrus.“’ More recently, several contributions on various
neurodegenerative diseases reported that the changes in WM
microstructure assessed with DTI may be a more sensitive pa-
rameter compared with gray matter data'’' for detecting
mild structural changes occurring at the early stages of the
degenerative process. Applying DTI analyses with voxelwise
TBSS,** an increasing number of contributions described the
damage of long interhemispheric and intrahemispheric white
matter tracts with homogeneously oriented fibers (ie, genu or
splenium of the corpus callosum, superior longitudinal fascic-
ulus, cingulus) and, more rarely, in frontal, parietal, and tem-
poral white matter in patients with MCI compared with
healthy controls.”*'

The biologic relevance of the description of MCI subtypes
is still a challenging issue. In particular, it is unclear whether
the neuropsychologic definition of these subtypes corre-
sponds to distinct patterns of brain compromise. Earlier stud-
ies focusing on brain atrophy patterns reported a predominant
mesio-inferior temporal lobe involvement in sd-aMCI and
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progressive damage of other neocortical association areas in
md-aMCI. Cases of nonamnestic MCI are thought to have
increased vascular burden as well as focal atrophy of basal
forebrain and hypothalamus.**~> In contrast to gray matter,
MR imaging investigations of WM integrity in MCI subtypes
are still very rare.**® They neither included the whole spec-
trum of MCI subtypes nor explored the usefulness of DTI
parameters on the individual classification of cases of MCIL.
We recently investigated FA patterns in prospectively docu-
mented patients with MCI compared with healthy controls
and reported their use in the a priori identification of progres-
sive MCL.>® To explore the morphologic WM changes that
characterize each subtype of MCI, we assessed all DTI param-
eters and developed models of automatic individual classifica-
tion in a community-based series of cases of sd-aMCI, md-
aMCI, and sd-fMCI. First, a group-level analysis using TBSS,**
an improved voxel-based technique with respect to spatial
normalization, was performed to identify regions with altered
white matter structure between groups. As discussed above,
recent investigations implementing this technique in the do-
main of MCI*>**?® documented the presence of reduced FA
primarily in white matter tracts with homogeneously oriented
fibers (ie, genu or splenium of the corpus callosum, superior
longitudinal fasciculus, cingulus) and, more rarely, in frontal,
parietal, and temporal white matter. However, other studies
led to negative data challenging this point of view.>® While
such group-level data are fascinating from a research perspec-
tive, these cannot be applied in clinical neuroradiology for the
diagnosis of individual patients. In addition to MCI subgroup
comparisons, we report here an individual-level classification
analysis to explore the association between WM changes and
MCI subtype by using SVM analysis.** The basic principle of
such pattern recognition analyses can be illustrated in the ex-
ample of face recognition. A single feature, for example, the
nose, is generally not sufficient to detect an individual sub-
ject—even though the nose might show group differences, for
example, between females and males. In contrast, individual
faces can be identified by the combination of multiple features
such as nose, ear, chin, eyebrow, and so on, even though each
feature per se is not necessarily significantly different between
groups (for a more detailed description of pattern recognition
analyses, see Haller et al*'). Originating from machine learn-
ing, this technique provided individual risk scores for MCI
conversion to AD on the basis of gray matter voxel-based mor-
phometry'®***> and WM DTI data.*® In contrast to these
studies that focused on the discrimination between MCI ver-
sus controls, or stable versus progressive MCI, this work aims
to explore the neuroradiologic background of the previously
cited subgroups of MCI and to provide MR imaging tools for
the individual classification of MCI subtypes.

Materials and Methods

Participants

After formal approval by the local ethics committee, informed written
consent was obtained from all participants before inclusion in this
study. Sixty-six right-handed elderly subjects (66.2 * 5.0 years; 37
women) were recruited by using announcements in local newspapers.
All participants with MCI had normal or corrected-to-normal visual
acuity, and none reported a history of major medical disorders (can-
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cer, cardiac illness), sustained head injury, psychiatric or neurologic
disorders, or alcohol or drug abuse. All participants characterized by
regular use of psychotropics, stimulants, and beta blockers, as well as
those with severe physical illness that precluded the participation in
either phase of the project, were excluded. The education level was
defined according to the Swiss scholar system, where level 1 = less
than 9 years (primary school), level 2 = between 9 and 12 years (high
school), and level 3 = more than 12 years (university).

All subjects were screened with the Mini-Mental State Examina-
tion,*® the Lawton Instrumental Activities of Daily Living,*” and the
Hospital Anxiety and Depression Scale.*® In addition, extensive neu-
ropsychologic testing was performed on the basis of fully validated
tools, with normative age- and education-corrected norms in Europe.
It included attention (Wechsler Adult Intelligence Scale-Revised
Code, Trail-Making Test A), working memory (verbal: Forward Digit
Span Test;** visuo-spatial: Corsi Block-Tapping Test>®), episodic
memory (verbal: Buschke Double Memory Test 48 items;”" visual:
Shapes Test™?),
Fluency Test,>*?> Wisconsin Card Sorting Test>®), language (Boston

executive functions (Trail-Making Test A,>* Verbal

Naming Test>”), visual gnosis (Ghent Overlapping Figures Test™®),

o > and constructional®! tests).

and praxies (ideomotor,” reflexive,*
Global cognitive function was assessed by the Clinical Dementia Rat-
ing scale.®” Participants having a test score more than 1.5 standard
deviations below the age-appropriate mean in any of the above tests,
and a Clinical Dementia Rating score of 0.5 but no dementia, were
diagnosed with possible MCL® Patients with MCI were further di-
vided into subtypes based on the extensive neuropsychologic testing,
according to the criteria by Petersen and collaborators®* as follows:
sd-aMCI: impaired memory function for age and education; de-
creased performance in the Buschke Double Memory Test 48 items.
sd-fMCI: impairment in a single cognitive domain other than
memory, most commonly frontal alteration; decreased performance
in the visual Shapes Test and/or the Trail Making Test B.
md-aMCI: multiple areas of cognitive impairment that fall out-
side of predicted norms, but none sufficiently severe to constitute
dementia; decreased performance in the Wisconsin Card Sorting Test
and/or the Trail-Making Test A and/or the Corsi Block-Tapping test.%®
These patients were reviewed independently by 2 highly experi-
enced clinicians, blinded to each other’s findings, and were included
in the respective MCI groups only if both clinicians concurred on the
diagnosis. The final sample included 18 patients with sd-aMCI
(65.8 = 5.4 years; 7 women), 13 patients with sd-fMCI (67.0 = 4.7
years; 8 women), and 35 patients with md-aMCI (66.2 * 5.23 years;
22 women). In agreement with community-based data in this field,
there was a predominance of patients with md-aMCI in our sample.
Moreover, sd-fMCI had a prevalence close to that of sd-aMCL.°®

MR Imaging

MR imaging was performed on a 3T clinical routine whole-body
scanner (Magnetom Trio; Siemens, Erlangen, Germany). We used a
standard DTI sequence: 12 diffusion directions isotropically distrib-
uted on a sphere, 1 BO image with no diffusion weighting, 128 X
128 X 64 matrix, 1.8 X 1.8 X 2.0 mm voxel size, TE 76 ms, TR 7800
ms, 1 average, 2:48 minutes. Additional sequences (3D T1WI, 8:42
minutes; T2WI, 4:02 minutes; 3D FLAIR, 7:02 minutes) were ac-
quired and analyzed to exclude brain pathology such as ischemic
stroke, subdural hematomas, or space-occupying lesions. In particu-
lar, white matter lesions were analyzed according to the Fazekas

SCOI'e.67



Table 1: Demographic and clinical characteristics

sd-aMCl Compared with

sd-aMCl Compared with md-aMCI Compared with

Variables sd-aMCl md-aMCI sd-fMCI md-aMCl sd-fMCI sd-fMCI
Age (years) 658 =54 66.2 =52 67.0 47 897 (NS) 445 (NS) .358 (NS)
Gender (F/M) 7/ 22/13 8/5 100 (NS) 220 (NS) 1933 (NS)
Education 26+06 19+07 19+08 019(NS) 120 (NS) 284 (NS)
MMSE 284 +15 217 +18 285+15 115 (NS) 884 (NS) 141 (NS)
IADL 88+08 83+08 78+12 018 (NS) 016 (NS) .310 (NS)
HAD (anxiety) 48+33 6.1+30 59+30 147 (NS) 176 (NS) 726 (NS)
HAD (depression) 19+19 2117 29+33 645 (NS) 514 (NS) .382 (NS)
Fazekas score 07+05 1.1+09 12+10 .090 (NS) 851 (NS) 148 (NS)

Note:—Data are presented as mean = SD. Demographic and clinical characteristics did not differ between the 3 groups. NS refers to the Dunn Multiple comparison test adjusted P-value
threshold for each demographic and clinical characteristic. sd-fMCI, n = 13; sd-aMCI, n = 18; md-aMCI, n = 35. HAD indicates Hospital Anxiety & Depression; IADL, Instrumental Activities

of Daily Living; MMSE, Mini-Mental State Examination.

Statistical Analysis

Demographic and Clinical Data. Demographic and clinical char-
acteristics, as well as neuropsychologic values were compared among
groups by using the nonparametric Kruskal-Wallis group test. A pair-
wise Dunn Multiple Comparison posttest was performed if overall P
was < .05.

DTI TBSS Analysis. Preprocessing of the FA data was carried out
by using the standard procedure of TBSS, as described in detail be-

fore22,68

in the FSL software package (http://www.fmrib.ox.ac.uk/
fs),* notably obtaining a spatial normalization of the DTI data,
which is the basis for the following analyses. In principle, TBSS proj-
ects all subjects’ FA data onto a mean FA tract skeleton by using
nonlinear registration. The tract skeleton is the basis for voxelwise
cross-subject statistics and reduces potential misregistrations as the
source for false-positive or false-negative analysis results. The other
DTI-derived parameters—longitudinal, radial, and mean diffusivity
were analyzed in the same way by using spatial transformation param-
eters that were estimated in the initial FA analysis. Voxelwise statisti-
cal analyses were corrected for multiple comparisons implement-
ing threshold-free cluster enhancement, considering fully corrected
P values <.05 as significant.”® Age and sex were used as nonexplana-
tory coregressors. We used the Johns Hopkins University DTI-based
white matter atlases (http://www.fmrib.ox.ac.uk/fsldownloads/),
which is distributed in the FSL package, for anatomic labeling of the
suprathreshold voxels.

SVM Individual Classification Analysis. The individual SVM
classification analysis is, in principle, identical to a previous study.*
The individual classification was analyzed in the freely available
WEKA software package (Version 3.6.1; http://www.cs.waikato.
ac.nz/ml/weka/). It is based on the TBSS preprocessed data, which
notably include a spatial normalization into Montreal Neurological
Institute; standard space and a selection of the voxels of the white
matter skeleton. This dataset contained 149,775 voxels. After conver-
sion of the preprocessed DTI FA data in a WEKA-compatible data
format, 3 separate analyses were performed for the differences be-
tween each pair of MCI subgroups. The analysis included 2 steps. In
the first step, we performed a feature selection. The rationale behind
this step is that not all voxels discriminate between groups. On the one
hand, inclusion of nondiscriminative voxels results in overlapping
features (or voxels), which reduces the accuracy of the classification.
On the other hand, exclusion of discriminative features also reduces
the accuracy of the classification. To identify the optimum number of
voxels, we used the feature selection algorithm “RELIEFFE.””! In prin-
ciple, this method ranks features (or voxels) that distinguish most
between classes. These are known as the relevant features. To avoid
selection-related bias, we selected the top 1000 features implementing

10 repetitions of a 10-fold cross-validation. This means that the data
were divided into 10 parts; 9 parts were used for training and the
remaining part was used for testing. This was repeated 10 times such
that each part was once used for testing. To further reduce selection-
related bias, we repeated this entire process 10 times. The second step
consisted of the “actual” classification analyses for each comparison
by using the SVM algorithm “sequential minimal optimization””?
(distributed in the WEKA package) with a radial basis function ker-
nel.”> We chose the commonly used radial basis function kernel,
which nonlinearly maps samples into a higher dimensional space,
because this kernel provided slightly better classification accuracy in
the present study and in a related previous study® than a linear ker-
nel. Unlike linear kernels, radial basis function can handle the case
when the relation between class labels and attributes is nonlinear.
There are 2 parameters while using radial basis function kernels: C
and GAMMA. GAMMA represents the width of the radial basis func-
tion, and C represents the error/trade-off parameter that adjusts the
importance of the separation error in the creation of the separation
surface. Based on our previous experience, GAMMA was iteratively
explored from 0.01 to 0.09, with an increment of 0.01, while C was
fixed to 1.00. Equivalent to the feature selection discussed above, we
implemented 10 repetitions of a 10-fold cross-validation to reduce
selection-related bias. We present the average results of 10 repetitions
of 10-fold cross-validations for the best parameter settings. The 3
MCI subgroups were pair-wise compared in 3 distinct SVM analyses.

Results

Clinical Data

The distribution of MCI subtypes in our series was similar to
that previously reported in community-based series.*>*° Age,
sex, education, and Fazekas score did not differ significantly
between the 3 groups (Table 1). Among cases of MCI, patients
with sd-aMCI had a significantly lower Buschke total score
than both patients with md-aMCI and those with sd-fMCI
(Table 2). In contrast, patients with sd-aMCI were quicker in
the Trail-Making Test B than both patients with md-aMCI
and sd-fMCI, and in the Trail-Making Test A compared with
patients with md-aMCI. Patients with md-aMCI had signifi-
cantly lower Corsi scores than those with sd-fMCI (P = .008).

TBSS Group Differences

Compared with patients with sd-aMCI, those with md-aMCI
had significantly reduced FA in a bilateral, right-dominant
network, including right uncinate fasciculus, forceps minor,
and internal capsule as well as bilateral inferior fronto-occip-

AINR Am J Neuroradiol @@ | @ 2013 | www.ajnr.org 3



Table 2: Neuropsychologic data

sd-aMCl Compared sd-aMCl Compared md-aMCI Compared

Variables sd-aMCl md-aMCl sd-fMCI with md-aMCl with sd-fMCI with sd-fMCI
Attention
WAIS-R; Code 63.1 114 55.0 £ 13.1 53.0 +12.8 .01461 (NS) 1458 (NS) 3150 (NS)
Trail-Making Test A (s) 357+173 47.9 =181 450+ 113 .001(S) A51(NS) 4354 (NS)
Working Memaory
Verbal (Digit) 68+22 6.1+16 7.0+18 233 (NS) 839 (NS) 135(NS)
Visuospatial (Corsi) 57+14 4414 59+ 1.1 .008 (NS) 246 (NS) 0015 (S)
Episodic Memory
Verbal (Buschke 48)
Total score 192 +42 23.63 +6.0 2462+ 23 .0004 (S) .0003 (S) 201 (NS)
Immediate recall 380+52 37334 395+39 720 (NS) 376 (NS) 230 (NS)
Differed cued recall 184 +37 236 +6.4 246 +23 163 (NS) 395 (NS) .900 (NS)
Intrusions 38+35 40+29 36+49 501 (NS) 597 (NS) 202 (NS)
Visual (Shapes) 1.8+07 11.0+15 120+ 0.0 147 (NS) 443 (NS) .049 (NS)
Executive functions
Trail-Making Test B (s) 542 +143 90.3 +=41.0 96.50 = 41.3 .000032 (S) .00015 (S) .33006 (NS)
Verbal Fluency 227 69 225+71 212 £ 6.1 798 (NS) 335 (NS) 709 (NS)
Wisconsin 56+ 2.1 47+18 40+25 104 (NS) 049 (NS) 407 (NS)
Language (Boston) 194 +08 19109 196 = 0.7 157 (NS) 570 (NS) .055 (NS)
Visual gnosis (Ghent) 50=*00 50=*00 50=*00 500 (NS) 500 (NS) 500 (NS)
Standardized praxies
|deomotor 191 %10 189+ 13 192+ 1.1 188 (NS) 148 (NS) 919(NS)
Reflexive 77 +05 70+10 6909 0161 (NS) 0139 (NS) 2942 (NS)
Constructional 96 =09 91+12 34+05 .806 (NS) 371 (NS) 499 (NS)

Note:—Data are presented as mean + SD. sd-fMCI, n = 13; sd-aMCl, n = 18; md-aMCl, n = 35. S and NS refer to the significant and nonsignificant Dunn multiple comparison test
adjusted P-value threshold for each demographic and clinical characteristic. Wisconsin: number of completed categories (/6); ideomoator praxis: transitive and intransitive (/30). WAIS-R

indicates Wechsler Adult Intelligence Scale-Revised.
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Fig 1. TBSS analysis between MCI subtypes. md-aMCI compared with sd-aMCl had significantly reduced FA (red to yellow) in a bilateral right-dominant network including right uncinate
fasciculus, forceps minor, and internal capsule, as well as bilateral inferior fronto-occipital fasciculus, anterior thalamic radiation, superior longitudinal fasciculus, inferior longitudinal
fasciculus, and corticospinal tract. md-aMCI compared with sd-fMCI had less pronounced reduction in FA in right inferior fronto-occipital fasciculus and inferior longitudinal fasciculus (blue
to light blue). Axial, sagittal, and coronal sections at the indicated position in Montreal Neurological Institute; standard space coordinates (radiologic convention with right hemisphere
on left-hand side). Gray, mean FA value; green, average skeleton. Threshold-free cluster enhancement—corrected for multiple comparisons at P < .05. Suprathreshold voxels were enlarged

by using TBSS fill (part of FSL) for illustrative purposes.

ital fasciculus, anterior thalamic radiation, superior longitudi-
nal fasciculus, inferior longitudinal fasciculus, and corticospi-
nal tract (Fig 1, Table 3). The inverse comparison and the
analysis of longitudinal diffusivity, radial diffusivity, or mean
diffusivity yielded no significant differences. Importantly, md-
aMCI displayed a significant FA decrease in right inferior
fronto-occipital fasciculus and inferior longitudinal fasciculus
compared with sd-fMCI (Fig 1, Table 3). Again, the inverse
comparison and the analysis of longitudinal diffusivity, radial
diffusivity, or mean diffusivity yielded no significant differ-
ences. The comparison between sd-aMCI and sd-fMCI
yielded no significant differences.
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SVM Individual Classification Analysis

Confirming the strength of the association between these pat-
terns of WM changes and MCI subtypes, SVM analysis of FA
provided a correct classification between the MCI subgroups
with accuracies of 98.40 (*£5.90)% for md-aMCI versus sd-
fMCIL; 97.70 (+6.61)% for md-aMCI versus sd-aMCI; and
99.67 (+3.33)% for sd-fMCI versus sd-aMCI (Table 4).

Discussion
Our investigation led to 2 main findings. Paralleling the mul-
tiple cognitive deficits that characterize their clinical expres-



Table 3: List of suprathreshold clusters (threshold-free cluster enhancement—corrected at P < .05) for the comparison of MCI subgroups

Z-MAX X
(mm)

Z-MAX Y
(mm)

Z-MAX Z
(mm)

Cluster
Index Voxels  Z-MAX

Z-C0OG X
(mm)

Z-COG Y
(mm)

Z-C0G Z

(mm) Side Anatomic Location

sd-fMCI versus md-aMCl

1 40 952 —12 —86 =7

—84 -3

sd-aMCl versus md-aMClI

1 3409 973 25 28 0

2 694 .966 —25 —24 24

3 175
4 66

.959 15 -8 56
.954 17 47 -9

—12.8

=717

—324

—85.2 —4.18 Right  Inferior fronto-occipital fasciculus
(occipital)

Inferior longitudinal fasciculus
(occipital)

Inferior fronto-occipital fasciculus
(occipital)

Inferior longitudinal fasciculus

(occipital)

-838 —-25  Right

29.6 43 20.3 Right  Inferior fronto-occipital fasciculus
(frontal)

Uncinate fasciculus

Anterior thalamic radiation

Internal capsule

Superior longitudinal fasciculus

Corticospinal tract

Anterior thalamic radiation

Superior longitudinal fasciculus

Corticospinal tract

Inferior fronto-occipital fasciculus

Inferior longitudinal fasciculus

Superior longitudinal fasciculus

Forceps minor

Uncinate fasciculus

Anterior thalamic radiation

—355 13.1 Left

16.4
171

—7.61
48.9

52.9
—6.96

Right
Right

Note:—Cluster index, number of suprathreshold voxels in cluster, maximum P value, location of maximum P value per cluster in Montreal Neurological Institute; standard space (X, Y,

Z), and center of gravity of the cluster in NMI standard space (X, Y, Z).

Table 4: Individual SVM classification based on DTI FA TBSS

md-aMCI versus md-aMCI versus sd-fMCI versus

sd-fMCI sd-aMCl sd-aMCl

Number of subjects 34/1 34/15 11/15
Chance rate 0.76 0.69 0.58
SVM analysis

Accuracy 98.40 (5.90) 97.70 (6.61) 99.67 (3.33)

TP rate 1.00(0.00) 1.00(0.00) 1.00(0.00)

FP rate 0.06 (0.23) 0.07 (0.20) 0.01(0.05)

TN rate 0.94(0.23) 0.94(0.20) 1.00(0.05)

FN rate 0.00(0.00) 0.00(0.00) 0.00 (0.00)

Note:—Accuracy, true-positive (TP), false-positive (FP), true-negative (TN), and false-
negative (FN) rates for individual classifications using a SVM classifier. Note that the
accuracy is calculated as average accuracy of 10 repetitions using 10-fold cross-validation
(average and standard deviation).

sion, patients with md-aMCI displayed a more widespread
damage of long interhemispheric pathways, mainly in the
right hemisphere compared with the single-MCI subgroups.
The most relevant data concern the possibility of using the
SVM technique to correctly classify each patient in the MCI
subgroups with an accuracy higher than 95%.

DTI Parameters in MCI Subtypes

Among the different DTI parameters studied, only the FA cor-
related with the clinical diagnosis of MCI subtypes. Interest-
ingly, the other DTI-derived diffusion parameters—longitu-
dinal diffusivity, mean diffusivity, and radial diffusivity—
yielded no significant group differences. This is consistent
with a recent (2012) study by Bosch and colleagues,*® indicat-
ing that FA more closely correlates to the cognitive profile than
longitudinal diffusivity or radial diffusivity in patients with

MCI and healthy controls. However, another recent TBSS
study assessing the same diffusion parameters in clinically
overt AD cases compared with healthy controls led to the op-
posite results.”* The few available recent investigations on the
different diffusion parameters in normal aging, MCI, and
AD?*®7*77 provided inconsistent data with respect to the re-
gional differences in the distribution of significant changes in
FA, longitudinal diffusivity, radial diffusivity, and mean diffu-
sivity. For example, in the above mentioned study of subjects
with MCI and AD, FA was more closely related to the cognitive
profile than longitudinal diffusivity or radial diffusivity.*® In
contrast, another study in AD showed stronger differences in
longitudinal diffusivity, radial diffusivity, and mean diffusivity
than FA.”* It is likely that the sensitivity of the different diffu-
sion parameters may vary substantially as a function of the
disease severity. Research using these different diffusion indi-
ces is still at an early stage, as is our understanding of the
relevance of longitudinal diffusivity and radial diffusivity
changes in terms of myelin or axonal damage. FA changes
without parallel modifications in other diffusion parameters
as those observed in our cases of MCI support the idea of
group differences at the level of fiber tract coherence rather
than myelin or axonal integrity loss.”® In clinically overt AD,
the predominance of myelin loss is accompanied by concom-
itant changes in DTT parameters. Finally, wallerian degenera-
tion suggested by increased mean diffusivity, without signifi-
cant changes in FA, may take place only in advanced stages of
the degenerative process.”” Future work is clearly warranted to
elucidate the biologic significance of DTI parameter changes
over time in aging, MCI, and AD.
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TBSS Analysis

The number of previous DTI studies of MCI subtypes imple-
menting a similar voxelwise TBSS analysis is still limited. Most
investigations included only 1 (not further specified) MCI
group,”** or only the sd-aMCI subtype,”**® or a mix of sev-
eral subtypes, with the aim of discriminating stable versus pro-
gressive MCI.*>° Only 3 recent contributions compared DTI
patterns in aMCI versus non-MCL>>*’ In their study of 55
patients with aMCI and 41 patients with non-MCI, Chua et
al*® reported significantly lower FA in the splenium of corpus
callosum and significantly higher mean diffusivity in the left
parahippocampal subgyrus in the aMCI compared with the
non-MCI group. Zhuang et al’” included 96 patients with
aMClI and 69 patients with non-MCI. Despite the higher num-
ber of cases, the comparison between aMCI versus non-MCI
yielded no significant differences in this investigation. A pos-
sible explanation for this observation might be the heteroge-
neous constitution of the non-MCI group, which included
cases with various neuropsychologic profiles (and presumably
FA-related patterns). Another recent study by O’ Dwyer et al*!
implemented a very similar analysis approach as did our pre-
vious work in stable versus progressive MCI.>® The use of SVM
analysis of TBSS-preprocessed DTI data provided highly ac-
curate discriminations of patients with MCI versus controls,
patients with aMCI versus patients with non-MCI and con-
trols, as well as patients with non-MCI versus patients with
aMCI and controls. In contrast to the present study, O’Dwyer
etal’' did not specifically assess the classification between MCI
subtypes. Moreover, this contribution explored only aMCI
and non-MCI, while the current study uses a more detailed
discrimination of MCI into 3 subtypes. Using a careful neuro-
psychologic characterization, the present study is the first, to
our knowledge, that describes distinct patterns of WM
changes among the 3 MCI subtypes. The widespread involve-
ment of long intrahemispheric connections within the right
hemisphere in md-aMCI compared with sd-aMCl is expected,
as it corresponds to the progressive deterioration of several
cognitive functions other than memory preceding the conver-
sion to AD. These anatomic observations fit with functional
data collected in the same cohort, revealing altered right hemi-
spheric electrophysiologic patterns during face recognition in
md-aMCI compared with sd-aMCL* The more pronounced
damage of inferior fronto-occipital and inferior longitudinal
fasciculi in md-aMCI compared with sd-fMClI is in agreement
with the retrogenesis hypothesis in AD that postulates an early
involvement of late-myelinating pathways in the initial phases
of the degenerative process.””>' The comparison between sd-
fMCI and sd-aMCI yielded no significant group differences.
There are 2 possible explanations for this result. First, md-
aMCI is known to be a very heterogeneous group that covers
not only the linear evolution of sd-aMCI over time but also
several AD pathology-independent causes of dementia.®' Al-
ternatively, the small number of cases included in the sd-aMCI
group may be not sufficient to identify subtle MR imaging
differences compared with sd-fMCI. Supporting the idea that
sd-fMCI cases form an etiopathogenetically distinct group,
possibly not evolving to AD, a recent study by Grambaite et
al®* reported increased radial and mean diffusivities in rostral
middle frontal, medial orbitofrontal, caudal anterior cingu-
late, posterior cingulate, and retrosplenial cortices that corre-
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lated with attention/executive deficits in these cases. Further
investigations in larger cohorts, including longitudinal fol-
low-up of the different MCI subtypes, are needed to explore
the biologic substrates of cognitive deficits in sd-fMCIL.

SVM Individual Classification Analysis

Neuroimaging research has been dominated for decades by
group-level comparisons, typically of a patient group versus a
control group, with the aim of identifying group-related
changes in brain morphometry. While such group-level stud-
ies provide fascinating insights into disease-related morpho-
metric alterations from a research perspective, these group-
level results cannot be transferred into clinical neuroradiology
to identify the early stages of the dementing process at an in-
dividual level. To obtain individual discrimination between
MCI subgroups, we adopted a complex methodology includ-
ing a processing chain of TBSS preprocessing of DTI FA data,
feature selection of the most discriminative voxels, and subse-
quent SVM classification.>>®* The classification accuracy of
approximately 97% for all MCI subtypes in our series implies
that only 1 subject was incorrectly classified, regardless of MCI
subgroup. Note that the inclusion of a control group is not
necessary for such individual-level classification analyses, as a
classifier that perfectly discriminates, for example, 1 MCI sub-
type versus healthy controls may not necessarily also discrim-
inate between the different MCI subtypes. In fact, the brain
regions (or features) that best discriminate between MCI sub-
types are probably different from those regions that best dis-
criminate between patients with MCI and healthy controls.
The implemented individual-level classification analysis is
fundamentally different from the “classic” group-level com-
parisons and explains why we did not include a healthy control
group in this study.

At first glance, it might appear counterintuitive that the
SVM individual classification was very successful in discrimi-
nating sd-fMCI versus sd-aMCI, despite the absence of thresh-
old-free cluster enhancement—corrected suprathreshold dif-
ferences for the corresponding TBSS group comparison. This
can, however, be readily explained by the major conceptual
differences between these techniques. For the TBSS group-
level analysis, around 150,000 voxels are analyzed. This large
amount of multiple comparisons requires strict multiple-
comparisons correction. In contrast, the SVM analysis creates
only 1 parameter per case and hence there is no need for mul-
tiple comparisons. In addition, TBSS analyzes each voxel sep-
arately, while SVM combines multiple features (or voxels),
thus enhancing the signal-to-noise ratio. Both effects are com-
plementary and readily explain the higher sensitivity of SVM
compared with TBSS.

Two previous studies successfully applied a SVM classifier
to discriminate patients with AD versus healthy controls based
on gray matter (after voxel-based morphometry preprocess-
ing), with accuracies of 89%** and 94.5%.*° Three more recent
gray matter contributions classified stable versus progressive
MCI with accuracies of 75%,'° 81.5%,** and 85%.%** In 1 of our
previous SVM studies based on WM (after DTI TBSS prepro-
cessing), the classification of stable versus progressive MCI
reached an accuracy of 98%.”° Only 1 previous study explored
individual classification of aMCI versus non-MCI using a bi-
nary logistic regression model of single anatomic regions.*®



DTI changes in the left posterior cingulate distinguished aM CI
from non-MCI with a sensitivity of 80% and specificity of
60.3%. The multi-voxel pattern recognition approach of the
current investigation combines multiple regions for the indi-
vidual classification analysis and yielded substantially higher
classification accuracies.

Strengths and Limitations

Strengths of the present work include the selection of commu-
nity-based cases of MCI, in-depth neuropsychologic charac-
terization, as well as combined use of TBSS and SVM analyses.
Several limitations should, however, be considered when in-
terpreting these data. From a clinical viewpoint, this cross-
sectional group comparison investigates the structural sub-
strates of MCI subgroups but did not provide information
about their evolution over time. Whether the observed DTI
changes alone, or in combination with molecular AD markers
such as amyloid imaging or CSF amyloid/T levels, could pre-
dict rapid cognitive decline (or conversion to AD) in each MCI
subgroup remains to be elucidated. Correlations between neu-
ropsychologic and neuroimaging data were not performed in
order to avoid multiple comparison biases created by the lim-
ited sample. This latter point may also affect the results of the
SVM analysis. In fact, the very high accuracy rates of individ-
ual classification exceeded our expectations. These values were
obtained by a well-established 10-fold cross-validation, where
9 parts are used for training and the remaining part is used for
testing the classifier. Even though this cross-validation ap-
proach is a standard method in the field of machine learning/
multi-voxel pattern analysis, and is appropriate for the num-
ber of subjects involved in our study, the present results seem
too optimistic, probably related to some degree of overfitting
of the data. Moreover, we first performed a feature selection
(rationale discussed above), which might further contribute to
some degree of overfitting. Finally, the nonlinear (radial basis
function kernel) SVM does not provide an easy-to-interpret
weight vector to examine the biologic compromise associated
with MCI subtypes. Additional validation in larger indepen-
dent datasets, which should be ideally acquired on different
MR scanners, is warranted to confirm the present findings.

Conclusions

The reliable definition of MCI subtypes is a sine qua non con-
dition for developing appropriate curative or symptomatic
treatments before the irreversible brain damage that charac-
terizes severe forms of dementia. Our data show that a highly
accurate classification of MCI subtypes at the individual level
can be obtained by SVM analysis of DTI-derived modifica-
tions in FA. The high proportion of subjects with MCI who
already undergo brain MR imaging during work-up of de-
mentia suspicion in routine clinical settings, in combination
with the short measurement time of DTI and potentially al-
most automatic postprocessing of the data, imply a potential
benefit and clinical practicability of this objective and individ-
ual classifier.
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Appendix

Essential Data Processing Steps

1) DTT data acquisition
2) TBSS data preprocessing (including reconstruction of

FA, longitudinal diffusivity, radial diffusivity, and mean diffu-
sivity, as well as spatial normalization into Montreal Neuro-
logical Institute; standard space)



3) Group-level analysis:

Group-level comparison of FA, longitudinal diffusivity, ra-
dial diffusivity, and mean diffusivity using Randomise Permu-
tation Testing

4) Individual-level classification feature selection using

Relieff:

10 repetitions of 10-fold cross-validation

SVM classification

10 repetitions of 10-fold cross-validation

Radial basis function kernel

GAMMA from 0.01 to 0.09 with increments of 0.01,
C fixed to 1.00
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