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BACKGROUND AND PURPOSE: Among cognitively healthy older individuals, the relationship among the
2 hallmark proteins of AD (A� and � APOE �4) and neurodegeneration is not well-understood. Here, we
investigated the relationship between A�, p-�, and APOE �4 on longitudinal brain atrophy in preclinical
AD.

MATERIALS AND METHODS: We examined 107 cognitively healthy older adults who underwent longi-
tudinal MR imaging and baseline lumbar puncture. Within the same linear mixed-effects model, we
concurrently investigated main and interactive effects between the APOE �4 genotype and CSF
A�1–42, CSF p-� and CSF A�1–42, and the APOE �4 genotype and CSF p-� on entorhinal cortex atrophy
rate. We also examined the relationship of APOE �4, CSF p-�, and CSF A�1–42 on the atrophy rate of
other AD-vulnerable neuroanatomic regions.

RESULTS: The full model with main and interactive effects demonstrated a significant interaction only
between CSF p-� and CSF A�1–42 on entorhinal cortex atrophy rate, indicating elevated atrophy with
time in individuals with increased CSF p-� and decreased CSF A�1–42. The APOE �4 genotype was
significantly and specifically associated with CSF A�1–42. However, the interaction between the APOE
�4 genotype and either CSF A�1–42 or CSF p-� on entorhinal cortex atrophy rate was not significant. We
found similar results in other AD-vulnerable regions.

CONCLUSIONS: On the basis of our findings and building on prior experimental evidence, we propose
a model of the pathogenic cascade underlying preclinical AD in which APOE �4 primarily influences the
pathology of Alzheimer disease via A�-related mechanisms, and in turn, A�-associated neurodegen-
eration occurs only in the presence of p-�.

ABBREVIATIONS: A� � amyloid-�; AD �Alzheimer disease; APOE �4 � �4 allele of apolipoprotein
E; HC � healthy controls; p-� � phospho-�181p; SE � standard error of the mean

Converging biochemical, molecular, and genetic evidence
indicates that A� plays a central role in the neurodegen-

erative process underlying AD.1 The presence of A� initiates
loss of dendritic spines and synapses2 and contributes to the
dysfunction of neuronal networks.3 Reports based on mouse

models suggest that multiple factors influence A�-associated
toxicity. The �4 allele of APOE �4, the most important genetic
risk factor for late-onset AD,4 accelerates the onset of A� de-
position into plaques5 and decreases the transport of A�
across the blood-brain barrier.6 Reductions in �, another hall-
mark protein of AD pathology, protect against A�-induced
neuronal dysfunction,7 while the presence of � potentiates A�-
associated synapotoxicity.8

In humans, evidence from genetic-at-risk cohorts and neu-
ropathologic findings in clinically healthy older individuals
suggest that the pathobiologic process underlying AD begins
years before the onset of cognitive deficits or dementia symp-
toms.9 Biomarker studies in cognitively asymptomatic older
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adults have demonstrated significant relationships between
structural MR imaging measures of brain atrophy and CSF A�
levels,10-12 enabling identification of clinically healthy individ-
uals who may be in a presymptomatic or preclinical stage of
AD.13

Recent evidence from our laboratory indicates that in clin-
ically healthy older individuals and those with mild cognitive
impairment, A�-associated volume loss occurs only in the
presence of p-�.14 However, it is unknown whether APOE �4
and CSF p-� concurrently modulate the effect of CSF A� on
longitudinal brain atrophy in preclinical AD. In this study, we
investigated whether concurrent interactions between de-
creased CSF A�1– 42 and APOE �4 and between decreased CSF
A�1– 42 and increased CSF p-� are associated with increased
brain atrophy in cognitively healthy older individuals.

Materials and Methods
Selection of participants and analysis methods for MR imaging and

CSF biomarkers are briefly summarized here, with details provided in

the On-line Appendix.

We evaluated participants who were clinically diagnosed at base-

line as cognitively and clinically healthy controls (global Clinical De-

mentia Rating � 0) from the Alzheimer Disease Neuroimaging Ini-

tiative. A total of 115 cognitively healthy older individuals had

undergone longitudinal MR imaging, CSF lumbar puncture, and

APOE �4 genotyping. Of these individuals, we restricted our analyses

to those participants (n � 107) with quality-assured baseline and at

least 1 follow-up MR imaging (6 months to 3.5 years; 10% with

6-month follow-up, 15% with 12-month follow-up, 34% with 23-

month follow-up, and 41% with 36-month follow-up) available as of

December 2011. We classified all participants on the basis of the pres-

ence (“carriers”) and absence (“noncarriers”) of at least 1 APOE �4

allele (Tables 1 and 2). Using recently proposed CSF cutoffs,15 we also

classified all participants on the basis of high (�23 pg/mL, “positive”)

and low (�23 pg/mL, “negative”) p-� levels, and on low (�192 pg/

mL, “positive”) and high (�192 pg/mL, “negative”) A�1– 42 levels

(Tables 1 and 2).

We examined 417 T1-weighted MR images. We performed quan-

titative surface-based analysis of all MR images by using an automated

region-of-interest labeling technique16 and primarily focused on en-

torhinal cortex, a medial temporal lobe region that is selectively af-

fected in the earliest stages of AD.17-20 To additionally investigate

neuroanatomic regions that are involved in the later stages of the

disease process17,18 and to minimize multiple comparisons, we aver-

aged longitudinal volume change in the temporal pole, parahip-

pocampal gyrus, inferior temporal gyrus, banks of the superior tem-

poral sulcus, inferior parietal lobule, amygdala, and hippocampus to

create an “AD-vulnerable” region of interest (Fig 1). Using an auto-

mated method developed in our laboratory,21 we assessed longitudi-

nal subregional change in gray matter volume (atrophy) on serial MR

images.

We asked whether p-� and APOE �4 independently influence A�-

associated neurodegeneration. To investigate this question, we exam-

ined the main and interactive effects of CSF A�1– 42 and APOE �4, and

CSF A�1– 42 and CSF p-� on entorhinal cortex atrophy rate in a

mixed-effects model, covarying for the effects of age and sex,

specifically

�v � �0 � �t � �1APOE �4_status � �t �

�2CSF_A�1– 42_status � �t � �3CSF_p-�_status � �t �

�4�APOE�4_status � CSF_A�1– 42_status � �t� �

�5[CSF_p-�_status � CSF_A�1– 42_status � �t] �

covariates � �t � �.

Here, �v is entorhinal cortex atrophy (millimeters) and �t is the

change in time from baseline MR imaging (in years). Using the same

Table 2: Demographic, clinical, and imaging data for all older HC in this study, as assessed by APOE �4 and A� status

�4�/A�� �4�/A�� �4�/A�� �4�/A��
P Value(n � 61) (n � 21) (n � 5) (n � 20)

Age (yr) (mean) (SE) 75.7 (0.7) 76.2 (0.9) 71.7 (2.5) 77.1 (1.3) .56a

Female (%) 54 54 20 35 .23b

Education (yr) (mean) (SE) 15.6 (0.3) 15.9 (0.6) 15 (1.1) 15.6 (0.8) .98a

Baseline MMSE (mean) (SE) 29.1 (0.1) 29.4 (0.2) 28.6 (0.9) 29 (0.2) .73a

Entorhinal cortex APC (mean) (SE) �0.57 (0.13) �0.67 (0.17) �0.43 (0.30) �1.17 (0.28) .35c

AD-vulnerable ROI APC (mean) (SE) �0.6 (0.07) �0.78 (0.14) �0.65 (0.23) �1.0 (0.16) .28c

Note:—MMSE indicates Mini-Mental State Examination; APC � annualized percentage change.
a Derived from analysis of variance.
b Derived from a �2 test.
c Derived from linear mixed-effects models (please see text for details).

Table 1: Demographic, clinical, and imaging data for all older HC in this study, as assessed by P-� and A� status

P-��/A�� P-��/A�� P-��/A�� P-��/A��
P Value(n � 46) (n � 20) (n � 19) (n � 21)

Age (yr) (mean) (SE) 74.3 (0.6) 74.9 (1.1) 78.0 (1.4) 78.2 (1.0) .02a

Female (%) 24 31 29 38 .59b

Education (yr) (mean) (SE) 15.5 (0.4) 14.8 (0.8) 15.5 (0.4) 16.7 (0.6) .34a

Baseline MMSE (mean) (SE) 29.1 (0.1) 29.1 (0.2) 28.8 (0.3) 29.3 (0.2) .46a

Entorhinal cortex APC (mean) (SE) �0.6 (0.15) �0.6 (0.18) �0.6 (0.18) �1.2 (0.25) .005c

AD-vulnerable ROI APC (mean) (SE) �0.6 (0.08) �0.5 (0.11) �0.7 (0.14) �1.1 (0.14) .002c

Note:—MMSE indicates Mini-Mental State Examination; APC � annualized percentage change.
a Derived from analysis of variance.
b Derived from a �2 test.
c Derived from linear mixed-effects models (please see text for details).
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linear mixed-effects framework, we also investigated the main and

interactive effects of CSF A�1– 42 and APOE �4, and CSF A�1– 42 and

CSF p-� on the atrophy rate in the AD-vulnerable region of interest.

Results
Results from the full model with both interactive terms
showed that the interaction between CSF A�1– 42 and CSF p-�
status on entorhinal cortex atrophy rate was significant (�5 �
�0.39, SE � 0.14, P � .005), indicating elevated atrophy with
time in individuals with positive CSF p-� and positive CSF
A�1– 42 status (Fig 2A) as previously reported.14 In contrast,
the interaction between CSF A�1– 42 and APOE �4 on entorhi-
nal cortex atrophy rate was not significant (�4 � �0.17, SE �
0.18, P � .35). With both interaction terms in the model, the
main effects of APOE �4, CSF A�1– 42 status, and CSF p-�

status were not significant. Follow-up analyses demonstrated
that positive CSF A�1– 42 status was associated with an elevated
entorhinal cortex atrophy rate only among CSF p-�–positive
individuals (�-coefficient � �0.32, SE � 0.11, P � .008).
There was no association between positive CSF A�1– 42 status
and entorhinal cortex atrophy rate among CSF p-�–negative
individuals (�-coefficient � 0.10, SE � 0.08, P � .23) (Fig
2A). There was no association between positive CSF A�1– 42

status and entorhinal cortex atrophy rate either among APOE
�4 carriers (�-coefficient � �0.11, SE � 0.19, P � .58) or
noncarriers (�-coefficient � �0.02, SE � 0.08, P � .76) (Fig
2B).

Similar results were obtained when examining the associa-
tion of CSF protein and APOE �4 status on the atrophy rate in
the AD-vulnerable region of interest: The interaction of CSF

Fig 1. 3D representations of the neuroanatomic regions examined in the current study (only 1 hemisphere is shown). All of the neocortical regions are visible in the lateral (A ) and medial
(B ) views of the gray matter surface, and the 2 non-neocortical regions (ie, the hippocampus and amygdala, C ) are visible in the coronal view of a T1-weighted MR image. Regions illustrated
in red constitute the AD-vulnerable region of interest (for further details please see text).

Fig 2. Box-and-whisker plots for all healthy control participants illustrating entorhinal cortex atrophy rate, measured as annualized percentage change (APC) based on CSF p-� and CSF
A� status (A ) and �4 genotype and CSF A� status (B ). For each plot, thick black lines show the median value. Regions above and below the black line show the upper and lower quartiles,
respectively. The dashed lines extend to the minimum and maximum values with outliers shown as open circles. As illustrated in A, the p��/A�� HC demonstrate the largest cortical
atrophy rate (ie, more negative percentage change). In comparison as noted in B, the �4�/A�� HC show equivalent rates of atrophy compared with the other groups.

AJNR Am J Neuroradiol ●:● � ● 2013 � www.ajnr.org 3



A�1– 42 and CSF p-� status on the AD-vulnerable region-of-
interest atrophy rate was significant (�-coefficient � �0.34,
SE � 0.11, P � .002), but the interaction of CSF A�1– 42 and
APOE �4 was not (�-coefficient � �0.15, SE � 0.14, P � .28).
None of the main effects of APOE �4, CSF A�1– 42 status, and
CSF p-� were significant with both interaction terms in the
model. Follow-up analyses demonstrated that positive CSF
A�1– 42 status was associated with an elevated AD-vulnerable
region-of-interest atrophy rate among CSF p-�–positive indi-
viduals (�-coefficient � �0.30, SE � 0.09, P � .001) but not
among CSF p-�–negative individuals (�-coefficient � 0.03,
SE � 0.07, P � .61). There was no association between positive
CSF A�1– 42 status and atrophy rate in the AD-vulnerable re-
gion of interest either in APOE �4 carriers (�-coefficient �
�0.19, SE � 0.13, P � .09) or noncarriers (�-coefficient �
�0.06, SE � 0.07, P � .38).

We also examined the possibility that APOE �4 modulates
AD-associated neurodegeneration via p-�–related mecha-
nisms. Using the same linear mixed-effects model framework
described above, we concurrently examined the main and in-
teractive effects of APOE �4 and CSF p-�, CSF A�1– 42 and
APOE �4, and CSF A�1– 42 and CSF p-� on the atrophy rate of
entorhinal cortex and the AD-vulnerable region of interest.
We did not find a significant interaction between APOE �4
and CSF p-� either on the atrophy rate of entorhinal cortex
(�-coefficient � �0.04, SE � 0.18, P � .78) or the AD-vul-
nerable region of interest (�-coefficient � 0.19, SE � 0.15,
P � .18). Most important, even within this triple interaction
model, the only significant effect was the interaction between
CSF A�1– 42 and CSF p-� on the atrophy rate of entorhinal
cortex (�-coefficient � �0.38, SE � 0.15, P � .01) and the
AD-vulnerable region of interest (�-coefficient � �0.41,
SE � 0.12, P � .001).

Finally, although our results did not demonstrate a signif-
icant interaction between APOE �4 and CSF A�1– 42 on longi-
tudinal brain atrophy among HC, we examined whether the
presence of APOE �4 is associated with decreased CSF A�1– 42

and increased CSF p-� by using a generalized linear model,
covarying for age and sex, specifically

Logit([CSF_A�1– 42_status or CSF_p-�_status]) � �0 �

�1APOE �4_status � �2Age � �3Sex.

We found a significant relationship between APOE �4 status
and positive CSF A�1– 42 status (�-coefficient � 0.40, SE �
0.07, P � 4.82 	 10�7), indicating increased A� deposition in
�4 carriers. In contrast, there was no relationship between
APOE �4 carriers and positive CSF p-� status (�-coefficient �
0.05, SE � 0.09, P � .55).

Discussion
In this study, we show that in cognitively healthy older indi-
viduals, though the presence of the �4 allele is specifically as-
sociated with A� deposition, APOE �4 does not affect A�-
associated volume loss. In contrast, we found that p-�
modulates A�-associated neurodegeneration in clinically
healthy individuals, as previously reported.14 These findings,
in conjunction with recent experimental observations,22,23

support a conceptual model of the pathogenic cascade under-
lying preclinical AD (Fig 3), in which APOE �4 primarily in-

fluences Alzheimer pathology via A�-related mechanisms;
and in turn, A�-associated neurodegeneration occurs only in
the presence of p-�. This model provides a representation of
the disease process that can be assessed with currently vali-
dated biomarkers, not a comprehensive framework of all
pathologic processes occurring in the earliest stages of AD. As
such, it can be expanded to include future findings such as
mechanistic details regarding the effect of genetic susceptibil-
ity loci on AD-associated neurodegeneration.

These findings provide important insights into the preclin-
ical stage of AD. Although several studies in cognitively
asymptomatic older individuals have demonstrated a signifi-
cant relationship among APOE �4 genotype, A� deposition,
and neurodegeneration,10-12,24-26 there has been limited eval-
uation of the role of p-� in modulating these relationships.
Our findings indicate that in clinically healthy older individu-
als, A� deposition by itself, either in �4 carriers or noncarriers,
is not associated with volume loss; the presence of p-� represents
a critical link among the APOE �4 genotype, A� deposition, and
neurodegeneration. Consistent with prior reports,27,28 our results
illustrate that the �4 allele primarily affects AD in an indirect
fashion via A�. In contrast, these findings do not support a role
for APOE �4 either in affecting intracranial p-� levels or modu-
lating AD pathology via p-�–related mechanisms.

From a quantitative neuroimaging perspective, our results
demonstrate the feasibility of using automated MR imaging–
based measures of longitudinal brain atrophy as an in vivo
biomarker even at the preclinical stage of the disease process.
Building on prior neuroimaging studies in cognitively healthy
older adults,10-12,24-26 these findings indicate that volume loss
can be detected in older individuals testing positive for both
A� and p-�. Furthermore, the pattern of atrophy detected in
this study is consistent with previous neuropathologic studies
demonstrating neuronal loss within entorhinal cortex in the
earliest stages of AD.19,20 Taken together, these findings sug-
gest that the regionally specific volume loss occurring in a
subset of cognitively healthy older adults is neuropathologi-
cally consistent with early AD.

Fig 3. A conceptual model of AD-associated neurodegeneration in the preclinical phase of
the disease process based on data from our mixed-effects models (please see text for
details). The thickness of the arrows illustrates the magnitude of effect. The circle with a
dot inside illustrates an interactive effect, the plus sign illustrates a positive effect, and X
illustrates no significant effect.
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This study has limitations. One concern is that CSF bio-
markers provide an indirect assessment of amyloid and neu-
rofibrillary pathology and may not fully reflect the pathologic
processes underlying Alzheimer disease. Another limitation is
that we primarily focused on the APOE �4 genotype and CSF
biomarkers of the 2 pathologic hallmarks of AD. Additional
genetic and cellular markers may also interact with A� to pre-
dict neurodegeneration in cognitively healthy elders. Finally,
the individuals examined here may represent a group of highly
selected, generally healthy older adults who are motivated to
participate in research studies. These findings therefore need
to be further validated on an independent community-based
cohort of older individuals who would be more representative
of the general older population.

Clinically, these results indicate that a biomarker profile
evaluating both A� and p-� may better identify those older
individuals who are at an elevated risk of progressing to even-
tual dementia than either biomarker by itself. Consistent with
prior clinical observations from our laboratory,29 our current
findings suggest that early intervention trials should take into
account both the p-� and A� status of participants because
older individuals with increased CSF p-� and decreased CSF
A�1– 42 levels are likely to have significantly elevated rates of
volume loss compared with individuals with normal CSF p-�
and decreased CSF A�1– 42 levels. Finally, in addition to the
current emphasis on A�, our findings identify the need for
developing novel therapies that target APOE- and �-related
processes. It is likely that a complex interplay between multi-
ple genetic and molecular entities determines AD pathogene-
sis.30,31 As such, targeting “upstream” events such as neuronal
lipids and cholesterol transporters that interact with APOE in
�4 carriers with normal AD biomarker levels as well as “down-
stream” events such as � phosphorylation and aggregation in
older individuals with both decreased CSF A�1– 42 and in-
creased CSF p-� levels may represent additionally beneficial
treatment strategies.

Conclusions
We show that in cognitively healthy older individuals, p-�
modulates the effect of A� on neurodegeneration. In contrast,
although the presence of the �4 allele is specifically associated
with A� deposition, APOE �4 does not influence A�-associ-
ated volume loss. These findings provide important insights
into the pathogenic cascade underlying preclinical AD and
illustrate the importance of examining both A� and p-� in
secondary prevention trials.
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