Changes of Pituitary Gland Volume in Kennedy Disease

C.C. Pieper, I.K. Teismann, C. Konrad, W.L. Heindel, and H. Schiffbauer

ABSTRACT

BACKGROUND AND PURPOSE: Kennedy disease is a rare X-linked neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the androgen-receptor gene. Apart from neurologic signs, this mutation can cause a partial androgen insensitivity syndrome with typical alterations of gonadotropic hormones produced by the pituitary gland. The aim of the present study was therefore to evaluate the impact of Kennedy disease on pituitary gland volume under the hypothesis that endocrinologic changes caused by partial androgen insensitivity may lead to morphologic changes (ie, hypertrophy) of the pituitary gland.

MATERIALS AND METHODS: Pituitary gland volume was measured in sagittal sections of 3D T1-weighted 3T-MR imaging data of 8 patients with genetically proven Kennedy disease and compared with 16 healthy age-matched control subjects by use of Multitracer by a blinded, experienced radiologist. The results were analyzed by a univariate ANOVA with total brain volume as a covariant. Furthermore, correlation and linear regression analyses were performed for pituitary volume, patient age, disease duration, and CAG repeat expansion length. Intraobserver reliability was evaluated by means of the Pearson correlation coefficient.

RESULTS: Pituitary volume was significantly larger in patients with Kennedy disease (636 ± 90 mm³) than in healthy control subjects (534 ± 91 mm³) (P = .041). There was no significant difference in total brain volume (P = .379). Control subjects showed a significant decrease in volume with age (r = −0.712, P = .002), whereas there was a trend to increasing gland volume in patients with Kennedy disease (r = 0.443, P = .272). Gland volume correlated with CAG repeat expansion length in patients (r = 0.630, P = .047). The correlation coefficient for intraobserver reliability was 0.94 (P < .001).

CONCLUSIONS: Patients with Kennedy disease showed a significantly higher pituitary volume that correlated with the CAG repeat expansion length. This could reflect hypertrophy as the result of elevated gonadotropic hormone secretion caused by the androgen receptor mutation with partial androgen insensitivity.

ABBREVIATIONS: KD = Kennedy disease; AR = androgen receptor; LH = lutropin; FSH = follicle-stimulating hormone; SHBG = sex hormone–binding globulin

Spinobulbar muscular atrophy (Kennedy disease [KD]) is a rare X-linked neurodegenerative disorder of mainly spinal and bulbar motoneurons. It is caused by a CAG repeat expansion in the first exon of the androgen receptor (AR). Apart from typical neurologic signs such as a progressive wasting of proximal muscles and bulbar symptoms, this mutation causes a partial androgen insensitivity syndrome in >80% of patients, with gynecomastia being the most prominent symptom.1-3 Androgen insensitivity syndromes are typically associated with normal or elevated testosterone and estrogen levels, with elevated lutropin (LH) and sex hormone–binding globulin (SHBG) levels. This pattern can also be found in patients with KD.4 Battaglia et al4 described a case of a 59-year-old patient with KD who presented with typical endocrine symptoms, but without any apparent physical signs of neurodegeneration.

The pituitary gland is known to produce hormones such as LH, which control the activity of other endocrine glands. Because of high spatial and contrast resolution, MR imaging is currently the technique best suited to examine the pituitary gland.5-8 The normal size of the gland in a healthy adult is approximately 5–10 mm in height, 10 mm in length, and 10–15 mm in width.9
It is well established that dysfunctions such as primary hypothyroidism leading to elevated thyroid-stimulating hormone levels are associated with an enlargement of the pituitary gland.10

The aim of the present study was to evaluate the impact of KD on the volume of the pituitary gland as measured by MR imaging under the hypothesis that the described changes in gonadotropin hormone levels in KD can lead to morphologic changes, namely, hypertrophy of the pituitary gland. To the best of our knowledge, this is the first study to examine the volume of the pituitary gland in patients with KD.

MATERIALS AND METHODS

Patients

The patient group consisted of 8 men (age, 44–73 years; mean, 53.8) with genetically proven KD with no neurologic comorbidity. The control group included 16 age-matched healthy men (42–77 years; mean, 54.4). Informed consent was obtained from each subject. The study was approved by the local ethics committee.

All patients were clinically examined at the Department of Neurology.

All 8 patients showed typical symptoms of KD reflecting neurodegeneration. Disease duration ranged from 2–19 years (mean, 10.5 ± 6.2 years). Muscle weakness was present in 100% to different degrees. Muscular atrophy and fasciculations were most prominent in the tongue in 6 of 8 and 7 of 8 patients, respectively.

All patients had dysphagia and 4 of 8 had dysarthria, as signs of bulbar neuron involvement.

Signs of partial androgen insensitivity were present in all patients. Six of 8 presented with severe gynecomastia. One patient had erectile dysfunction, and 4 of 8 fathered children. Hormone levels were determined in 2 patients previous to the first MR imaging examination, which showed elevated testosterone of 12.47 ng/mL (normal values <7.99 ng/mL) and SHBG in one patient and values at the upper limit of the normal range for testosterone and LH in the other.

Data Acquisition

MR imaging examinations were performed on a 3T Gyroscan Intera (Philips, Best, the Netherlands) with a transmit-receiver head coil. A 3D T1-weighted turbo-field-echo sequence was used for pituitary gland volumetry (matrix, 512 × 512; FOV, 256 × 256 mm²; TR, 7.4 ms; TE, 3.4 ms; 320 contiguous sagittal sections; section thickness, 0.5 mm; voxel size, 0.5 × 0.5 × 0.5 mm³, flip angle, 9°).

Pituitary gland volume was measured in sagittal sections by use of Multitracer (LONI Software, version 1.0; http://www.loni.ucla.edu/Software/MultiTracer)11 by a blinded, experienced radiologist (Fig 1A–B). Measurements were repeated in the same fashion after 4 to 6 weeks.

Statistical Analysis

The volumetric data were analyzed by a univariate ANOVA with total brain volume as a covariant in a group comparison of patients and control subjects by use of SPSS 17.0 (IBM, Armonk, New York). Patient data, namely, pituitary volume, patient age, disease duration, and CAG repeat expansion length, were then also entered into a linear regression model.

Furthermore, a 2-tailed correlation analysis between pituitary gland volume and age of patients and control subjects, as well as a 1-tailed analysis for CAG repeat expansion length, were performed.

Intraobserver reliability was evaluated with use of the Pearson correlation coefficient.

RESULTS

Patients with KD had a mean pituitary volume of 636 (±90) mm³, whereas healthy control subjects had a volume of 534 (±91) mm³, respectively. Statistical analysis showed pituitary volume to be significantly higher in patients with KD than in healthy control subjects (P = .041). There was no significant difference in total brain volume (P = .379) (Table 1 and On-line Fig 1).

The correlation analysis showed that in healthy control subjects, pituitary gland volume was significantly lower in older individuals (Pearson correlation coefficient r = −0.712, P = .002), whereas patients with KD showed a trend toward increasing gland volume with age (r = 0.443) but without reaching statistical significance (P = .272) (On-line Fig 2).

<table>
<thead>
<tr>
<th>Pituitary gland volumetry</th>
<th>Mean</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total brain volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td>1134 (±69) voxel</td>
<td>0.81</td>
<td>.379</td>
</tr>
<tr>
<td>Control subjects</td>
<td>1121 (±83) voxel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pituitary gland volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td>636 (±90) mm</td>
<td>3.72</td>
<td>.041</td>
</tr>
<tr>
<td>Control subjects</td>
<td>534 (±91) mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td>647 (±98) mm</td>
<td>5.10</td>
<td>.016</td>
</tr>
<tr>
<td>Control subjects</td>
<td>531 (±84) mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:—Results of the univariate ANOVA with total brain volume as covariant (F: variance of the group means/mean of the within-group variances). Results are considered statistically significant in cases of P < .05.
Multiple linear regression showed that the CAG repeat expansion length was the only predictor of pituitary volume. Patient age and disease duration were excluded from the model and therefore were not predictive factors of pituitary volume in KD.

The overall Pearson correlation for intraobserver reliability was 0.94 (P < .001), which is generally considered to reflect an excellent reproducibility.

DISCUSSION
In patients with KD, neurodegeneration has been attributed to a CAG repeat expansion in the AR. This mutation leads to intranuclear accumulation of AR, which can induce transcriptional dysfunction (toxic gain of function) causing cell death resulting in neurologic symptoms, whereas partial androgen insensitivity, on the other hand, appears to be caused by a loss of function from the same mutation in the first exon of the AR.12-14 This loss of function leads to endocrine disturbances with symptoms such as gynecomastia, testicular atrophy with reduced fertility, diabetes mellitus, or hypercholesterolemia.1,15-17 Our work is in line with previous reports on endocrinologic changes in patients with KD, with 6 of 8 patients presenting with gynecomastia, 1 patient presenting with erectile dysfunction, and 2 patients presenting with proven high testosterone levels. For instance, Dejager et al1 reported that >80% of cases presented with physical signs of androgen insensitivity, especially gynecomastia, undermasculinization, testicular hypotrophy, and reduced fertility, in a survey of 22 patients with KD. In most patients, gynecomastia was apparent before neurologic symptoms appeared; 50% showed additional signs of hypoandrogenicity such as erectile dysfunction and decreased sexual interest. As many as 86% exhibited a hormone profile indicative of partial androgen insensitivity. These changes slowly progressed over time.9 This evidence is corroborated by a large cohort of patients with KD in Japan in which Atsuta et al14 evaluated laboratory data in 61 cases. They stressed that even in older patients, testosterone levels remained high but decreased slightly with age.18

From the pathophysiologic point of view, testosterone normally inhibits LH and follicle-stimulating hormone (FSH) secretion through effects both on the hypothalamus and the pituitary gland.19 In patients with KD, partial androgen insensitivity frequently leads to high testosterone levels with elevated LH levels and hyper-responsiveness of LH to gonadotropin-releasing hormone as a possible sign of a larger stock of LH caused by a lack of suppressive effects of testosterone on the pituitary gland itself.2,20 Furthermore, the suppressive effect of synthetic androgens on testosterone levels, LH, and FSH is reduced in patients with KD, which suggests a weakened effect of androgens on the pituitary gland as a possible cause.21

LH and FSH are produced in the pituitary gland, which we investigated in the present study by means of high-field 3T MR imaging. The volume of the pituitary gland was significantly larger in patients with KD than in control subjects. It is known that pituitary gland size reflects hormonal secretion. An increase of LH and FSH at puberty, for example, leads to further enlarge-
size and CAG repeat expansion length. This could reflect hyper-
trophy of the pituitary gland as the result of elevated gonadotropic hormone secretion caused by the CAG repeat expansion in the AR
with partial androgen insensitivity.

REFERENCES
1. Kennedy WR, Alter M, Sung JH. Progressive proximal spinal and
bulbar muscular atrophy of late onset: a sex-linked recessive trait.
2. Sobue G, Hashizume Y, Mukai E, et al. X-linked recessive bulbospi-
3. Dejager S, Bry-Gaullard H, Bruckert E, et al. A comprehensive en-
docrine description of Kennedy’s disease revealing androgen in-
sensitivity linked to CAG repeat length. J Clin Endocrinol Metab
2002;87:3893–901
manifesting as an endocrine disorder. J Clin Neuromuscul Dis
2003;4:165–67
5. Castillo M. Pituitary gland: development, normal appearances, and
magnetic resonance imaging protocols. Top Magn Reson Imaging
2005;16:259–68
Endocrinol Metab 2007;109:111–24
7. Miki Y, Matsuo M, Nishizawa S, et al. Pituitary adenomas and nor-
mal pituitary tissue: enhancement patterns on gadopentetate-en-
hanced MR imaging. Radiology 1990;177:35–38
of the normal pituitary gland using ultrashort TE (UTE) pulse se-
quences (REV 1.0). Neuroradiology 2008;50:213–20
Clin N Am 2003;14:11–23
10. Kuroiwa T, Okabe Y, Hasuo K, et al. MR imaging of pituitary hyper-
trophy due to juvenile primary hypothyroidism: a case report. Clin
Imaging 1991;15:202–05
11. Woods RP. Multitracer: a Java-based tool for anatomic delineation
12. Parodi S, Pennuto M. Neurotoxic effects of androgens in spinal and
bulbar muscular atrophy. Front Neuroendocrinol 2011;32:416–25
13. Fischbeck KH. Polyglutamine expansion neurodegenerative dis-
14. Merry DE. Molecular pathogenesis of spinal and bulbar muscular
atrophy. Brain Res Bull 2001;56:203–07
spinal and bulbar motor neuron disease of late onset: a report of six
cases. Arch Neurol 1982;39:112–16
ospinal neuronopathy: a report of ten cases. J Neurol Neurosurg
Psychiatry 1982;45:1012–19
17. Thomas PS Jr, Fraley GS, Damian V, et al. Loss of endogenous an-
drogen receptor protein accelerates motor neuron degeneration
and accentuates androgen insensitivity in a mouse model of
X-linked spinal and bulbar muscular atrophy. Hum Mol Genet
2006;15:2225–38
18. Atsuta N, Watanabe H, Ito M, et al. Natural history of spinal and
bulbar muscular atrophy (SBMA): a study of 223 Japanese patients.
Brain 2006;129(Pt 6):1446–55
19. Shekter CB, Matsumoto AM, Bremner WJ. Testosterone adminis-
tration inhibits gonadotropin secretion by an effect directly on the
20. Ahmed SF, Cheng A, Hughes IA. Assessment of the gonadotrophin-
gonadal axis in androgen insensitivity syndrome. Arch Dis Child
1999;80:324–29
increased size of tandem CAG repeat in androgen receptor gene in
X-linked recessive bulbo spinal neuronopathy. J Neurol Sci
1994;121:167–71
imaging of physiologic hypertrophy in adolescence. Radiology 1990;
174(3 Pt 1):681–85
otropin levels and sex differences in premature and mature infant
24. Ikram MF, Sajjad Z, Shokh IS, et al. Pituitary gland volume on mag-
netic resonance imaging: normative observations. Pak J Neurol Sci
2007;2:141–44
25. Tsunoda A, Okuda O, Sato K. MR height of the pituitary gland as a
function of age and sex: especially physiological hypertrophy in ad-
olescence and in climacterium. AJNR Am J Neuroradiol
1997;18:551–54
of a novel semi-automatic segmentation technique for MR volum-
27. Roldan-Valadez E, Garcia-Ulloa AC, Gonzalez-Gutierrez O, et al. 3D
volumetry comparison using 3T magnetic resonance imaging be-
 tween normal and adenoma-containing pituitary glands. Neurol In-
dia 2011;59:696–99