




SPM8. ANN and FCM were implemented for our study, while the

rest of the methods were obtained from available repositories. The

ANN method is based on self-organizing maps, also known as

Kohonen networks.14 ANN was implemented for our study by

using the Matlab 7.12 environment (MathWorks, Natick, Massa-

chusetts) following the technique proposed by Tian et al.15 FCM16

and FANTASM17 are both based on fuzzy-clustering techniques.

FCM implements the classic fuzzy-clustering approach, while

FANTASM adds neighboring information to increment the ro-

bustness of the method to intensity inhomogeneity artifacts and

noise. FCM was also implemented by using the Matlab environ-

ment and following the technique described in Pham,16 in which

clusters were initialized according to Bezdek et al.18 FANTASM is

included in the MIPAV toolbox (http://mipav.cit.nih.gov).

FAST8 guides the segmentation with spatial information through

the optimization of Hidden Markov Random Fields, and the

method is included in the fMRI of the Brain Software Library

toolbox (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). SPM5 and SPM87

are based on an iterative Gaussian Mixture Model optimization,

weighting the probability of belonging to a certain tissue class with

a priori spatial information from tissue-probability atlases. How-

ever, SPM8 comes with a set of different characteristics to im-

prove registration and tissue segmentation. Both methods are in-

cluded in the SPM8 toolbox (http://www.fil.ion.ucl.ac.uk/spm/

software/spm8). All methods were run with default parameters.

Evaluation
Images from both the original and masked sets were segmented

into GM, WM, and CSF tissue classes by using the 6 presented

segmentation methods. Then, we computed the normalized tis-

sue volumes as the number of voxels classified as GM, WM, and

CSF, respectively, divided by the total number of voxels. Three

different analyses were performed on these data. First, we ana-

lyzed how lesion voxels were classified by each segmentation

method to establish to what extent the tissue volumes reported by

each algorithm on the original and masked images could be expected

to be different. Second, we analyzed the direct effect of lesions in the

global volume estimation by computing the differences in total tissue

volume as the percentage of change between original and masked

images. For example, in the case of GM tissue:

%GM �
NGMVOriginal � NGMVMasked

NGMVMasked
� 100,

where NGMVOriginal and NGMVMasked stand for the normalized

gray matter volumes of original and masked images, respectively.

Third, we also investigated the indirect effects of lesions in the rest

of the tissue volume outside lesion regions. These are tissue vol-

ume estimations that incorporate lesions in the segmentation

process but do not consider them when the volume is evaluated.

Statistical Analysis
The correlation among factors (differences in tissue volume, le-

sion load, and lesion intensity) was calculated by using Pearson

linear correlation coefficient (r). The significance level � was set at

.05. This level was used both for confidence interval computation

and 95% significance hypothesis 2-tailed t tests. All statistical

analyses were calculated by using the Matlab environment.

RESULTS
Lesion Classification
Figure 3 depicts the percentage of WML voxels classified either as

WM (Fig 3, top) or GM (Fig 3, bottom). Percentages are detailed

for each segmentation method and hospital. The amount of

WMLs that were classified as GM varied for each method, mostly

due to the differences among algorithms. Figure 4 illustrates the

differences among methods by showing the output classification

performed by each of the 6 segmentation methods.

Observed differences in the percentage of classified WML vox-

FIG 2. Our pipeline approach. From the 30 T1-weighted scans of patients with MS, nonbrain parts are stripped and brain voxels are corrected for
intensity inhomogeneities. From the same corrected set (original), a new set is generated by removing WML masks from scans before segmen-
tation (masked). The scans of both sets are segmented into 1 of the 3 tissue classes (GM, WM, and CSF). Lesion voxels are added as WM after
segmentation on masked images.
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els as GM and WM between hospitals can be attributed to each

particular scanner acquisition configuration that defines the tis-

sue signal-intensity distributions. The distance between WML

and WM mean signal intensities was highest in H3 as computed

by each of the 6 methods (range, from 89.2 � 4.45% to 92.22 �

4.45% of WML mean signal intensity with respect to WM) and

was lowest in H2 (range, from 95.3 � 1.76% to 100.34 � 6.39%).

As shown in Fig 1, there is a better contrast between GM and WM

tissue on the H3 images compared with the H1 and H2 images.

The correlation between the percentage of lesion classification

and lesion size was not significant in all cases (r � 0.33, P � .05).

In contrast, the percentage of WML classified as GM or WM and

the distance between the mean WML and WM signal intensities

showed a moderate correlation in all hospitals (r � 0.6, P � .01).

On the basis of our data, the contrast between tissues computed as

the normalized difference between the mean GM and WM signal

intensity distributions was correlated with the distance between

the WM and WML mean signal intensities (r � 0.6, P � .001).

Differences in Total Tissue Volume Estimation
The mean percentage differences in total tissue volume between

the original and masked images are presented in Table 1. All

methods overestimated GM tissue in original scans, regardless of

the hospital, but the overestimation was increased in H2 com-

pared with H1 and H3 due to greater lesion volumes in H2. The

differences among methods for the same hospital and tissue were

also significantly greater in H2 than in H1 and H3. Abnormally

low mean and high SD values observed in SPM5 for both GM

(0.10 � 2.68) and WM (1.04 � 3.01) in H2 were caused by 2

patients who exhibited very high opposite differences between

their respective original and masked images, decreasing the over-

all mean difference and increasing the SD.

Correlation between the differences in total mean tissue vol-

ume and lesion size was significant in all hospitals: Lesion size had

a direct effect on tissue segmentation. Table 2 shows the Pearson

correlation values obtained between differences in tissue volume

and lesion size across methods. All methods except SPM5 pre-

sented a positive correlation in GM and a negative correlation in

WM in H1 and H2. SPM5 correlated in H1 but not in H2, where

it was influenced by abnormal values in the 2 images with highest

lesion load. In H3, only FCM, FANTASM, and FAST were posi-

tively correlated in GM and negatively correlated in WM. The

correlation coefficients for ANN, SPM5, and SPM8 in H3 were

weak and not significant in GM and WM.

Volume Estimation of Tissue Outside Lesion Regions
The mean percentage differences in tissue volume outside lesion

regions between original and masked images are presented in Ta-

ble 3. The differences between the images segmented with lesions

and images in which the lesions were masked before tissue seg-

mentation were again higher in H2, and the methods still substan-

tially overestimated the GM outside the lesion regions to the det-

riment of WM, even though analyzed tissues were free of lesion

regions. In contrast, only SPM5 and SPM8 reported a noticeable

underestimation of GM in H3, also to the detriment of WM.

Differences in tissue volume outside the lesion regions correlated

with lesion size for all tissues and hospitals, indicating an effect of

lesion size not only on lesion voxels but also on tissue that is not

affected by lesions. Table 4 presents the correlation values obtained

across methods. In H1, there was a remarkable correlation for ANN,

FCM, FANTASM, and FAST in all tissues. The obtained values for

SPM8 were also significant in GM and

CSF. In H2, the correlation was significant

in ANN, FCM, and FANTASM in all tis-

sues. In H3, only FCM and FAST showed a

significant correlation in all tissues,

whereas FCM, FAST, SPM5, and SPM8

correlated significantly only in WM. All

methods except SPM5 and SPM8 re-

ported a significant correlation for CSF.

DISCUSSION
Previous studies have shown that the

range of voxel signal intensities compos-

ing each of the tissue distributions can

be altered by WMLs if these voxels are

included in the segmentation process.4,5

Lesion load and the apparent lesion sig-

nal intensity lead to observed changes in

tissue segmentation in original images.

FIG 3. Percentage of voxels in WML regions having been classified as
GM (top) and WM (bottom) for each segmentation method and hos-
pital, H1 (�), H2 (�) or H3 (E). Reported values are means and SDs.

FIG 4. Classification output returned by each segmentation method on the same image. A,
T1-weighted scan. B, Zoomed part of the scan with lesions outlined in red. Brain tissue segmen-
tation outputs also with lesions outlined for ANN (C), FCM (D), FANTASM (E), FAST (F), SPM5 (G),
and SPM8 (H). C–H, Segmented GM tissue is represented in gray; WM, in white; and CSF, in black.
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For instance, if a portion of the lesion voxels is classified as WM,

the mean overall WM intensity decreases, shifts WM boundaries

into darker intensities, and narrows GM tissue distribution.4,6

Voxels that should have been classified as GM are assigned to

WM, increasing the WM volume estimation and decreasing GM

volume. If some of the WML voxels are classified as GM, the

apparent GM mean intensity increases and the WM tissue distri-

bution narrows. This change occurs because voxels that are theo-

retically classified as WM are assigned to GM, increasing GM

estimation against a lower WM volume estimation.

We compare our results with those in previous studies regard-

ing the effects of WMLs on brain tissue volume measurements.

However, given the differences in image data, criterion standards,

simulated lesions, and lesion voxel intensities among studies, a

direct comparison further than an analysis of trends with similar

WML intensities and lesion loads should be carefully performed.

Our experiments follow the same trend presented by Battaglini

et al,4 and both studies show that FAST overestimates total GM

volume on images segmented with lesions. Similarly, our results

also coincide with those found by Chard et al5 in simulated data,

and in both studies, SPM5 overestimated GM tissue on images

with lesions. In contrast, our results appear to be inconsistent with

those reported by Gelineau-Morel et al.6 These studies showed a

significant correlation between WML intensity and an underesti-

mation of GM volume outside the lesions, especially when the

lesions had intensities similar to those of the mean GM. The ob-

served differences are caused by distinct signal-intensity profiles

of WMLs in each study. In the case of Gelineau-Morel et al,6 the

WML signal intensities were noticeably more hypointense com-

pared with our data. The probability of voxels to be classified as

GM dropped as a result of the influence of hypointense WML

intensities in tissue distributions. Part of WML voxels with a sig-

nal intensity similar to that of GM were still classified as WM,

reducing the signal intensity threshold between GM and WM. As

a result, most of the partial volume voxels with signal intensity in

the boundary between GM and WM were classified as WM, arti-

ficially reducing the overall number of GM voxels.

Our results show that the classification of WML regions is

highly dependent on lesion voxel signal intensities and the varia-

tion of their signal intensity in terms of the WM signal distribu-

tion. Lesion segmentation is clearly determined by this variation

because the probability of WML voxels being classified as WM

will be higher as long as WML intensities resemble those of WM.

However, the signal-intensity contrast among tissues also plays an

important role because it can influence the amount of WML vox-

els that are classified as GM or WM. As long as the contrast among

distributions increases, more lesion voxels will be added into the

GM distribution. Although the main factor in the observed dif-

ferences in tissue volume across methods is caused by lesion vol-

ume, the percentage of lesion voxels that are classified as GM and

WM might also be a remarkable factor in the observed tissue-

volume differences, especially in images with high lesion loads.

Therefore, the relationship between image quality and lesion load

also might have to be considered to explain the differences in

tissue volume.

SPM8 was the method with the lowest difference in total tissue

volume between original and masked images. In contrast, FAST

was the method that was more affected by lesions. In general, all

methods overestimated GM in original scans, though values were

more significant in H2 than H1 and H3 due to higher lesion loads

in H2. In H1 and H3, most of the underestimated WM was shifted

into GM. The small percentage of lesions that were segmented as

CSF, especially the low lesion volume, limited the impact of WML

voxels on the overall CSF tissue distribution of original images.

SPM8 and FANTASM were the methods with the lowest inci-

dence of WML in tissue volume measurements outside lesion

regions, while FCM and FAST showed the largest differences

among all methods. Lesion volume also explains the limited effect

of WML on tissue segmentation outside lesion regions in H1 and

H3, compared with images with higher lesion loads such as the H2

images. In H1 and H3, although the behavior differs slightly for

Table 1: Average percentage of change in total tissue volume estimation between original and masked imagesa

Method

H1 H2 H3

GM WM CSF GM WM CSF GM WM CSF
ANN 0.33 � 0.42 �0.23 � 0.28 0.11 � 0.11 1.59 � 1.37 �0.56 � 0.46 0.78 � 0.76 0.25 � 0.31 �0.16 � 0.28 �0.09 � 0.09
FCM 0.28 � 0.37 �0.22 � 0.29 0.09 � 0.11 2.28 � 2.26 �0.90 � 0.83 0.94 � 0.90 0.28 � 0.23 �0.25 � 0.20 0.08 � 0.09
FANTASM 0.23 � 0.26 �0.18 � 0.21 0.08 � 0.08 1.34 � 1.13 �0.49 � 0.37 0.80 � 0.73 0.26 � 0.22 �0.24 � 0.19 0.07 � 0.08
FAST 0.29 � 0.36 �0.29 � 0.36 0.12 � 0.13 1.92 � 1.59 �1.28 � 1.03 0.47 � 0.39 0.34 � 0.28 �0.37 � 0.31 0.12 � 0.17
SPM5 0.20 � 0.30 �0.21 � 0.20 �0.14 � 0.54 0.10 � 2.68 �1.04 � 3.01 0.53 � 0.51 0.04 � 0.17 �0.18 � 0.36 0.15 � 0.23
SPM8 0.08 � 0.09 �0.08 � 0.08 �0.04 � 0.18 0.55 � 0.34 �0.93 � 0.55 0.54 � 0.42 0.09 � 0.15 �0.23 � 0.25 0.17 � 0.23

a The results are divided by tissue and hospital. Reported values are the means � SD. Positive values indicate a tissue overestimation on original images compared with masked.

Table 2: Pearson correlation coefficients between method
differences in total volume estimation and WML sizea

Method GM WM CSF
H1

ANN 0.94 �0.90 0.89
FCM 0.93 �0.89 0.83
FANTASM 0.87 �0.80 0.78
FAST 0.97 �0.97 0.96
SPM5 0.58b �0.89 �0.21b

SPM8 0.92 �0.63 �0.69
H2

ANN 0.91 �0.88 0.93
FCM 0.92 �0.94 0.92
FANTASM 0.89 �0.87 0.84
FAST 0.95 �0.96 0.82
SPM5 �0.35b �0.06b 0.72
SPM8 0.76 �0.79 0.57b

H3
ANN 0.56b �0.55b 0.88
FCM 0.77 �0.84 0.88
FANTASM 0.74 �0.82 0.85
FAST 0.88 �0.94 0.92
SPM5 �0.06b �0.03b 0.21b

SPM8 0.56b �0.48b 0.09b

a Correlation was computed for each method and hospital separately. All values were
found to be significant (P value � .05) unless otherwise noted.
b Not significant.
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each method, the differences in tissues outside the lesion regions

are very small.

The differences outside the lesion regions are especially im-

portant because they highlight the bias introduced by WMLs on

the estimation of tissue volume that is not pathologically affected.

If one compares the results between total tissue volume and tissue

volume outside lesion regions, it can be observed that an impor-

tant part of the overestimated total GM is essentially derived from

the same hypointense WML voxels that are classified as GM.

Moreover, it is important to highlight the differences in the algo-

rithms. Methods such as FCM and ANN, which only rely on signal

intensity, introduce more errors in tissue segmentation compared

with methods such as SPM8 and SPM5, which incorporate spatial

information. This reinforces the necessity for selecting a segmen-

tation algorithm that does not depend on signal intensity only.

However, even though WML voxels have not been considered for

computing tissue volume outside the lesion regions, there is still a

clear tendency toward overestimating GM. On images with a high

lesion load, the observed differences in GM volume outside lesion

regions reach values that are equivalent to the yearly expected GM

atrophy.9,10 Following these assumptions, SPM8, FANTASM,

and SPM5 are the methods with the lowest reported incidence of

WML on brain tissue volume measurements, especially on images

with a high lesion load.

The present study is not free of limitations. The principal lim-

itation is the lack of tissue expert annotations, given that the study

incorporated a relatively large number of images from 3 different

hospitals and this task was time-consuming. A second limitation

of the study is the sensitivity of the tissue segmentation methods

to changes in the skull-stripping mask. Errors in the brain mask

may lead to the inclusion of blood vessels such as the internal

carotid arteries with hyperintense signal intensity, which might

bias the tissue distributions. A final limitation of the study is the

inherent difficulty of comparing previous studies, given the dif-

ferences in the scanner protocols used to acquire the images of

patients with MS. The differences in the acquisition protocol may

cause the observed differences in the lesion intensity profile com-

pared with previous works.8,10 Our study shows that such an in-

tensity profile introduces variations in GM and WM tissue

distributions.

CONCLUSIONS
The results of this study indicate a direct relationship between the

differences in brain tissue volume and changes in lesion load and

WML intensity. Of the analyzed methods, SPM8 exhibited the

lowest incidence of WMLs in volume estimation, whereas FCM

yielded the highest GM overestimation. Furthermore, all methods

were affected by WMLs in tissue volume outside the lesion re-

gions. SPM8 and FANTASM exhibited the lowest differences in

tissue volume outside the lesion regions, whereas the influence of

WMLs outside the lesion regions is more important in methods

such as FCM and FAST. The latter results are especially important

because even when masking lesions after segmentation to avoid

the inclusion of lesion voxels segmented as GM into the volume

estimation, the methods tend to overestimate GM tissue on im-

ages segmented with lesions. On images with high lesion load, this

bias might conceal or falsify part of the GM and WM tissue

atrophy.
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