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REVIEW ARTICLE

Multimodal Diagnostic Imaging for Hyperacute Stroke
X K.D. Vo, X A.J. Yoo, X A. Gupta, X Y. Qiao, X A.S. Vagal, X J.A. Hirsch, X D.M. Yousem, and X C. Lum

ABSTRACT

SUMMARY: In April 2015, the American Roentgen Ray Society and the American Society of Neuroradiology cosponsored a unique
program designed to evaluate the state of the art in the imaging work-up of acute stroke. This topic has grown in importance because of
the recent randomized controlled trials demonstrating the clear efficacy of endovascular stroke treatment. The authors, who were
participants in that symposium, will highlight the points of emphasis in this article.

ABBREVIATIONS: NINDS � National Institute of Neurological Disorders and Stroke; ECASS � European Cooperative Acute Stroke Study; MR CLEAN � Multi-
center Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands; ESCAPE � Endovascular Treatment for Small Core and
Anterior Circulation Proximal Occlusion with Emphasis on Minimizing CT to Recanalization Times; EVT � endovascular treatment; EXTEND-IA � Extending the Time for
Thrombolysis in Emergency Neurological Deficits–Intra-Arterial; MR RESCUE � Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy; SWIFT-
PRIME � Solitaire With the Intention for Thrombectomy as Primary Endovascular Treatment

For �2 decades, intravenous tissue plasminogen activator was

the only proved therapy for acute ischemic stroke, despite hav-

ing limited efficacy for large-vessel occlusions and a restrictive

timeframe for administration.1,2 The recent publication of ran-

domized controlled trials demonstrating a high degree of efficacy

for endovascular treatment (EVT) in strokes caused by large-ves-

sel occlusions heralds a new era of acute stroke therapy. The Mul-

ticenter Randomized Clinical Trial of Endovascular Treatment

for Acute Ischemic Stroke in the Netherlands (MR CLEAN),3 En-

dovascular Treatment for Small Core and Anterior Circulation

Proximal Occlusion with Emphasis on Minimizing CT to Recan-

alization Times (ESCAPE),4 Extending the Time for Thromboly-

sis in Emergency Neurological Deficits–Intra-Arterial (EXTEND-

IA),5 and Solitaire With the Intention for Thrombectomy as

Primary Endovascular Treatment (SWIFT-PRIME)6 trials dem-

onstrated that patients with acute ischemic stroke with a proximal

large-vessel occlusion of the anterior circulation have significantly

improved functional outcomes when EVT is initiated within 6

hours after stroke onset. EVT was used in combination with

standard-of-care IV-tPA, resulting in an absolute risk reduc-

tion of stroke disability by 14%–31% (the number of patients

needed to treat for one patient to have good outcome ranged

from 3 to 6).

So why did these trials work when other endovascular trials,

including the Interventional Management of Stroke-III,7 the Me-

chanical Retrieval and Recanalization of Stroke Clots Using Em-

bolectomy (MR RESCUE),8 and the Local Versus Systemic

Thrombolysis for Acute Ischemic Stroke9 trials, had failed? A ma-

jor contributor to the success of these endovascular trials was

superior mechanical thrombectomy devices resulting in safer,

faster, and higher rates of reperfusion. Another contributor to the

success of these trials seems to have been the use of rapid and

accurate imaging screens to select patients with the greatest po-

tential to benefit from the EVT.10,11

As treatment for stroke has advanced, the demands for imag-

ing to help select appropriate patients for various treatments have

increased. Initially, imaging was used primarily to rule out hem-

orrhage and stroke mimics. With the more advanced therapeutic

options that are currently available, imaging is now used to deter-

mine the following: 1) the location of thrombus, 2) the volume of

the infarct core, 3) tissue viability, and 4) the degree of collateral

circulation. In this portion of the review, we will debate the merits

of multimodal CT versus multimodal MR imaging as a tool to

identify candidates for intervention, address safety and quality
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issues in stroke imaging, and highlight key aspects of vessel wall

imaging.

Multimodal CT as an Effective Screening Tool for Acute
Stroke Treatment
A review of each of the positive randomized controlled trials for

acute ischemic stroke treatment revealed that CT was the imaging

technique of choice to select patients for treatment (Table). Only

a few randomized controlled trials, Echo planar Imaging Throm-

bolytic Evaluation trial,12 Study of Desmoteplase In Acute Isch-

emic Stroke phase II,13 and MR RESCUE,8 used MR imaging as a

screening tool (some also permitted CTP); but none of these trials

demonstrated efficacy. Multimodal CT, including NCCT, CTP,

and CTA, is capable of addressing all the acute imaging needs

required for screening thrombectomy candidates: ruling out

hemorrhage and identifying large-vessel occlusion, detecting in-

farct core and penumbra, and assessing collateral flow. Most im-

portant, in most settings, accessibility to CT is fast and efficient.

Rule Out Hemorrhage. NCCT is widely accepted as the criterion

standard for imaging intracerebral hemorrhage and can reliably

identify acute hemorrhage with high sensitivity. Despite the

heightened sensitivity of SWI to microbleeds, several studies sug-

gest that neither the presence nor the number of cerebral microb-

leeds is associated with a significantly increased risk of hemor-

rhagic transformation in tPA-treated or untreated patients.14-16

One study showed a higher risk of symp-

tomatic hemorrhage after intravenous

thrombolysis in patients with �5 microb-

leeds but no association with less favor-

able outcome.17 More studies to assess the

safety and effectiveness of thrombolysis in

patients with microbleeds are needed.

Detection of Large-Vessel Occlusion.
Vascular imaging was required in all 4 of

the positive endovascular trials. CTA was

the imaging technique of choice in the 4

randomized controlled trials for thrombectomy.18 CTA can be

performed immediately following NCCT. It is fast, less prone to

motion, and widely available in the community. It is safe and can

be performed without first screening for renal function (discussed

below). The only contraindication to CTA is a severe contrast

allergy, in which case MRA can be performed but will poten-

tially delay time-sensitive therapies by 18 –30 minutes.19,20

Detection of Core and Penumbra. Patients with a large infarct

core are unlikely to benefit from endovascular therapy. One sur-

rogate measure for the extent of the core is the semiquantitative

Alberta Stroke Program Early CT Score (Figure), which quantifies

early ischemic changes in the middle cerebral artery territory on

NCCT.21 This 10-point scoring system systematically rates early

signs of ischemia in defined brain regions; a score of 10 indicates a

scan with normal findings, and 1 point is subtracted for each

abnormal brain region. A score of �4 is considered significant,

indicating a large infarct core, and is associated with increased risk

of hemorrhagic transformation and poor outcomes after throm-

bolysis.22 Because of these associations, patients with an

ASPECTS of �6 were excluded from enrollment in 3 of the 4

positive thrombectomy trials.4-6

The ischemic penumbra, defined as brain tissue that will die if

untreated but survive if reperfused, can be assessed with either

MR perfusion or CTP. There are strong advocates for using CTP

to select patients for endovascular therapy, though a growing

number think that CTP is inappropriate in an individual patient,

arguing that the error bars associated with the noisy postprocessing

algorithms are large.23,24 CTP was used in 3 positive randomized

controlled trials of endovascular therapy (ESCAPE,4 EXTEND-IA,5

and SWIFT-PRIME6) and a trial using IV tenecteplase25 (geneti-

cally modified tissue plasminogen activator), to identify the pen-

umbra before inclusion in the trials. These outcomes do not es-

tablish the necessity of CTP for identifying patients who will

benefit from reperfusion therapy because numerous trials that did

not use perfusion imaging still demonstrated efficacy.

Detection of Collateral Flow. Multiphase CTA is a new tech-

nique that allows a quick visual assessment of collateral flow in the

affected territory.26 The technique requires 3 scans after a contrast

bolus to capture the arterial, midvenous, and late venous phases.

The degree of enhancement of pial arteries distal to the occlusion

positively correlates with the degree of collaterals (On-line Fig-

ure). In the setting of a proximal large-vessel occlusion, the pres-

ence of good collateral vessels is more likely to be associated with

a smaller core and more salvageable brain tissue and has been

shown to be a strong predictor of good outcomes. Patients with

FIGURE. ASPECTS21 scoring on an NCCT of a 52-year-old woman 2.5
hours after the onset of a left hemiparesis. Ten defined regions of the
MCA distribution are identified on a normal left cerebral hemisphere
at ganglionic (A) and supraganglionic (B) levels: the caudate nucleus
(C), the lentiform nucleus (L), the internal capsule (IC), the insular
cortex (I), and M1, M2, M3, M4, M5, and M6. The outlined areas in the
right hemisphere show hypoattenuation in 8 regions given an
ASPECTS score of 2.

Efficacious acute stroke randomized controlled trials
Trial Time Window (hr) Treatment Screening Imaging Modality

NINDS1 0–3 IV-tPA NCCT
ECASS III2 3–4.5 IV-tPA NCCT
TNK25 0–6 IV tenecteplase NCCT�CTA�CTP
MR CLEAN3 0–6 IA thrombectomy NCCT�CTA/MRA/DSA
ESCAPE4 0–12 IA thrombectomy NCCT�multiphase CTA
EXTEND-IA5 0–6 IA thrombectomy NCCT�CTA�CTP
SWIFT-PRIME6 0–6 IA thrombectomy NCCT�CTA/MRA�CTP/MRP

Note:—NINDS indicates National Institute of Neurological Disorders and Stroke; ECASS, European Cooperative
Acute Stroke Study; TNK, tenecteplase; MR CLEAN, Multicenter Randomized Clinical Trial of Endovascular Treatment
for Acute Ischemic Stroke in the Netherlands; IA, intra-arterial; MRP, MR perfusion.
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poor collaterals were excluded from the ESCAPE and SWIFT

PRIME trials, to help refine patient selection. The challenge of

using collateral-based selection is the following: the nonstandard-

ized approach to collateral grading and the dependence of the

technique on noninvasive evaluation.27

CT has the advantage of having a rapid and efficient workflow

(see discussion below). “Time is brain” is an important concept

that stems from meta-analyses of IV-tPA trials demonstrating

that the number of patients needed to be treated for 1 good out-

come increases from 5 to 9 to 15 patients with every 90-minute

delay in treatment.28 A similar inverse relationship is seen be-

tween outcome and time to reperfusion for endovascular inter-

ventions.29 The total scan time for a multimodal CT is approxi-

mately 5 minutes, while rapid MR imaging protocols can be

reduced to 10 –15 minutes. Although the difference in actual im-

aging time between CT and MR imaging is small, a number of

additional hurdles can add significantly to MR imaging times: the

availability of a scanner, screening for MR imaging safety, trans-

porting patients to the scanner often outside the emergency de-

partment, transferring patients in and out of the scanner with MR

imaging– compatible equipment, positioning the patient, and so

forth. These delays of 18 –30 minutes may seem small, but when

considering an emergency department arrival to groin puncture

times of 95 minutes, the delays are significant.19,20 In addition to

delays, MR imaging is contraindicated in up to 20% of patients

with acute stroke due to patient-related factors such as cardiac

pacemakers and medical instability.30

In summary, MR imaging may be equivalent or superior to CT

in its ability to address all imaging goals for acute ischemic stroke.

However, obstacles for its use in the acute setting of stroke may

limit its utility, though these obstacles may be overcome with

workflow optimization. CT is faster and, some argue, able to sat-

isfy the various imaging requirements for current time-sensitive

therapeutics in a wider population. Most important, it is the most

consistently used imaging technique in the trials of acute ischemic

stroke treatments that were shown to be efficacious.

Multimodal MR Imaging as an Effective Screening Tool
for Acute Stroke Treatment
All of the recent positive trials used CT for imaging selection. As

such, no class I clinical evidence supports patient evaluation by

using MR imaging. However, this lack of evidence does not signify

the superiority of CT, just its greater feasibility in current clinical

practice. Strong evidence supports the use of MR imaging to im-

prove the safety profile and cost-effectiveness of intra-arterial

treatment, which relies primarily on the greater accuracy of DWI

to depict acute brain infarction. Using a streamlined protocol,

MR imaging can provide all the necessary information for treat-

ment decision-making and can be performed without a signifi-

cant time delay.31

Rule Out Hemorrhage. Gradient recalled-echo T2*-weighted

imaging and SWI are highly sensitive to blood-breakdown prod-

ucts. In acute stroke, gradient recalled-echo T2*WI has been

shown to be as accurate as NCCT for the detection of acute intra-

cranial hemorrhage and is superior to CT in the detection of

chronic hemorrhage.32 Within 6 hours of stroke onset (ie, treat-

ment window for reperfusion), 1 study found a 96% concordance

between CT and MR imaging for acute intracranial hemor-

rhage,32 while another study reported a 100% accuracy of MR

imaging for detecting intracerebral hemorrhage by using experi-

enced readers and NCCT as the reference standard.33 On the basis

of these results, MR imaging is an excellent technique for distin-

guishing ischemic and hemorrhagic stroke for consideration of

reperfusion therapy and is supported by recent American Heart

Association guidelines (class I, level of evidence A).34

Documenting Proximal Artery Occlusion. Occlusive thrombus

in the proximal intracranial arteries is the target of intra-arterial

therapy. Therefore, noninvasive vessel imaging is critical for the

rational delivery of this treatment (American Heart Association

class I, level of evidence A).34 Moreover, it provides important

pretreatment data for the neurointerventionalist, who can choose

the appropriate access tools in the case of arterial tortuosity or

when treatment is required for steno-occlusive disease at the ca-

rotid bifurcation.

Although CTA provides the best noninvasive evaluation of the

intracranial vessels,35 MRA appears sufficient for decision-mak-

ing regarding intra-arterial therapy. 3D TOF MRA has been

shown to have 84%– 87% sensitivity and 85%–98% specificity for

identifying proximal artery occlusion.18,36 Contrast-enhanced

MRA offers faster acquisition times, wider coverage, and less flow-

related signal loss but has lower spatial resolution and venous con-

tamination.37 Both CTA and MRA are recommended for noninva-

sive vessel imaging during acute stroke evaluation by American Heart

Association guidelines (class I, level of evidence A).34

Identifying Large Infarcts for Treatment Exclusion. It is biologi-

cally intuitive that patients with large infarcts will do poorly irre-

spective of treatment. Although thresholds that define what is too

large for treatment vary depending on the clinical setting (eg, age,

outcomes of interest), it is generally accepted that infarct volumes

of �70 –100 mL are highly predictive of poor outcome.38,39 This

volume approximates one-third of the MCA territory, but quan-

tification (eg, by using the ABC/2 ellipsoid approximation) im-

proves the precision over the traditional method of gross visual

estimation. Moreover, such infarcts appear to be at higher risk for

treatment-related complications, namely reperfusion hemor-

rhage.38,40 For these reasons, it is important to have an accurate

and reliable method for determining infarct volume in the treat-

ment window.

Currently, DWI is the best clinically available technique to

depict hyperacute infarction (American Heart Association class I,

level of evidence A).41,42 It has a reported 91%–100% sensitivity

and 86%–100% specificity for infarct detection within the first 6

hours, as well as excellent interrater reliability.43,44 Moreover,

given the superior tissue contrast, it allows volumetric quantifica-

tion. Despite early reports of diffusion lesion reversal, subsequent

studies have shown that true reversal is rare and not clinically

significant.45 Even with near-complete (�90%) reperfusion, the

rate of significant diffusion lesion volume reversal was �5%.46 In

comparison, all the CT-based techniques have major limitations.

Like CTP, CTA source imaging is limited by technique, and hy-

poattenuated lesion volume has been shown to vary depending on

when the brain is imaged during contrast transit.47 The most re-

liable CT sign of early infarction is tissue hypoattenuation on
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NCCT, which reflects a net increase in tissue water. This sign

demonstrates limited sensitivity (�70%) but is highly specific

(100%) for infarction.48

Two recent studies have shown the superiority of DWI over

NCCT for evaluating patients who undergo EVT. The first was a

post hoc analysis of patients receiving EVT in the Diffusion

Weighted Imaging Evaluation for Understanding Stroke Evolu-

tion Study 2 who had pretreatment MR imaging and NCCT. The

investigators found that ASPECTS graded on DWI had superior

interrater agreement (intraclass correlation coefficient, 0.87 ver-

sus 0.58) and predicted 90-day good outcome better (C statistic,

0.71 versus 0.55; P � .03) than NCCT ASPECTS.49 The second

study was a single-center cohort analysis in which 2 separate im-

aging-selection approaches were compared.50 In the first cohort,

patients with proximal artery occlusions were evaluated for intra-

arterial therapy by using NCCT and CTA, and in a subsequent

cohort, DWI was performed in addition to NCCT and CTA. Most

important, in both cohorts, the investigators analyzed outcomes

in patients who were both treated and excluded from treatment

and found that the cohort in which DWI was performed had

better 30-day good outcomes (mRS 0 –2: 23.6% versus 9.1%),

lower mortality (25% versus 48.5%), and lower symptomatic

hemorrhage rates (3.9% versus 10.2%), despite fewer patients be-

ing treated endovascularly (51.7% versus 96.6%). This finding

suggests that MR imaging is appropriately excluding patients who

are being harmed by intra-arterial therapy, namely those with

large infarcts, and it equates to more cost-effective treatment de-

livery. Taken together, these studies support the promise of im-

proved patient selection by using MR imaging.

Quality and Safety in Stroke Imaging

Imaging in the Stroke Workflow. As we integrate the evidence

from the newer trials into our stroke workflow, time is critical.

The national quality-improvement initiative of the American

Heart Association and American Stroke Association to improve

care in acute stroke, termed “Target: Stroke,” highlights best prac-

tice strategies to reduce treatment times.51 Urging rapid

acquisition and interpretation of brain imaging, the authors rec-

ommend that 80% of patients with acute stroke evaluated for

revascularization should have NCCT or MR imaging within 25

minutes, and 80% of patients should have interpretations within

45 minutes of arrival.52

Given the overwhelmingly positive results of the randomized

controlled trials, there will be a shift toward increased use of ad-

vanced imaging in acute stroke. However, the randomized con-

trolled trials also emphasized faster door-to-reperfusion times. In

fact, the stroke workflow needs to run in a parallel fashion rather

than being a linear process.53,54 IV-tPA could be administered in

the imaging suite as soon as the NCCT excludes hemorrhage,

while CTA/CTP imaging is simultaneously being performed.55

The stroke imaging protocols need to be modeled after trauma,

necessitating the same level of urgency, targeting all points of

delay: stroke-alert notification to radiologists, point-of-care test-

ing, forgo blood work to verify creatinine levels, separation of

reads of NCCT from multimodal imaging (CTA/CTP), rapid au-

tomated postprocessing of perfusion when performed, and con-

vergence of teams to CT/MR imaging, where management deci-

sions are made.55

MR imaging protocols usually have longer acquisition times

and limited availability compared with CT, taking up to 15–20

minutes.56 A faster 6-minute multimodal MR imaging protocol

for acute stroke by using a combination of echo-planar and par-

allel acquisition has recently been published.31 Centers that rou-

tinely use MR imaging– based paradigms for stroke need to design

efficient process flows, including the availability of MR imaging in

the emergency department, rapid safety screening (from charts, pa-

tients, family, and examination for scars), point-of-care creatinine

level evaluation to minimize the risk for gadolinium-induced neph-

rogenic systemic fibrosis, and efficient stroke protocols.

In addition, one must optimize data collection to drive system

improvement,57 including time intervals and clinical outcomes,

into a database, trial, or registry such as Get With The Guidelines

Stroke Patient Management Tool (http://www.heart.org/HEARTORG/

HealthcareResearch/GetWithTheGuidelines/GetWithThe

Guidelines-Stroke/Get-With-The-Guidelines-Stroke-Patient-

Management-Tool_UCM_308035_Article.jsp). Standardized

and comprehensive data collection can be a powerful tool in pro-

viding feedback and bench marking to national averages and

eventually changing outcomes.

Radiation Safety. It has been well-publicized in the media that

�200 patients undergoing CTP in 1 center were exposed to �8

times the normal radiation dose, resulting in bandlike alopecia.

One reason cited was an unrecognized alteration in the scanning

protocols that did not diminish image quality and thus went

undetected.58

Dose-length product is routinely used to estimate dose per

patient. This can be converted to millisieverts as a measurement of

“effective dose.” The typical millisievert exposure for a total stroke

imaging NCCT, CTA, and CTP is approximately 9 –10 mSv. If one

puts that into perspective, a head CT with and without contrast is

estimated to have an effective dose of 4 mSv, equivalent to

approximately 16 months’ background radiation.59 Some centers

without CTP are using multiphase CTA, which incurs an incre-

mental 1 mSv of exposure.26

Dose is dependent on tube current (milliampere-second), ki-

lovolt peak, pitch, and collimation. The most frequent method

used to limit dose is to reduce the milliampere-second; however,

this reduction increases image noise. Image noise may be partially

compensated by postprocessing techniques such as iterative re-

construction without incurring a dose penalty. Iterative recon-

struction leads to a qualitative smoothing of image edges. Reduc-

ing kilovolt peak is a well-accepted strategy as long as it is not met

with an automatic increase in milliampere-second to compensate

for image quality. Currently, 80 kilovolt peak is the standard for

CTP, with some newer research exploring the dose benefits of 70

kilovolt peak.60 Another method of potentially reducing exposure

is increasing the sampling interval for CTP examinations without

significantly impacting image quality.61 Therefore, awareness of

the dose parameters affecting imaging quality is imperative. Add

to the CT dosage the new recommendations for fluoroscopically

guided EVT, and radiation exposure in a young patient with

stroke may become a safety consideration.
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Contrast Safety. The overall risk of contrast-induced nephrop-

athy is approximately 2%–5% for patients with a glomerular fil-

tration rate of 15– 40 and higher for patients with a glomerular

filtration rate of �15.62 Multiple studies have demonstrated that

administration of a contrast-enhanced protocol involving CTA/

CTP and DSA in select patients does not appear to increase the

incidence of contrast-induced nephropathy.63,64 The risk of con-

trast-induced nephropathy is overestimated, and a significant

proportion of transient creatinine elevation is due to expected

fluctuation and underlying disease.65 Hence the concern regard-

ing the need to verify renal function before administering iodin-

ated contrast in the acute stroke setting is overstated. Nephro-

genic systemic fibrosis has been virtually eliminated by restricting

gadolinium usage to patients with glomerular filtration rates of

�30.66

Endovascular Treatment Center Availability. Historically, it has

been difficult to estimate the number of patients treated with

EVT.67,68 Increasing demands for EVT will be accompanied by a

commensurate change in the workload for existing regional and

comprehensive stroke centers. Currently, it is estimated that ad-

equate staffing is available to roughly 95% of the US population.69

However, the recent trials have set lofty targets for revasculariza-

tion times. In ESCAPE, the median time from stroke onset to CT

imaging was 134 minutes and an imaging to groin puncture was

51 minutes, resulting in an onset-to-reperfusion time of just �4

hours (241 minutes). In SWIFT PRIME, the median time from

arrival in the emergency department to groin puncture was 90

minutes, and from qualifying image to groin puncture, it was 57

minutes. Achieving these targets will be challenging in regions

where geography limits accessibility to centers with neurointer-

ventional expertise.

The Future of Hyperacute Stroke Imaging: Emphasis on
Large Vessels?
With the recent excitement over the success of EVT, there will no

doubt be increasing demands on acute multimodal diagnostic

imaging to further guide therapeutic decision-making to enhance

efficacy. In particular, large vessels may need further characteriza-

tion to assess the benefits and risks tailored to specific acute ther-

apies or for subsequent management decisions. Many studies

have focused on direct cranial intravascular thrombus imaging by

using NCCT or MR imaging to predict recanalization efficacy

with EVT. Because a large thrombus burden is associated with

lower rates of recanalization with EVT,70 reconstructed thin-sec-

tion NCCT (0.625–1.25 mm) has been used to improve the sen-

sitivity of clot detection and the accuracy of clot quantification in

the middle cerebral artery.71,72 In addition, unlike pharmacologic

fibrinolysis, recanalization rates by using mechanical thrombec-

tomy are influenced more by the morphology of the target throm-

bus than its volume. One study showed that the recanalization

rate is 3 times more common with a straight unbranched throm-

bus than with a branched tortuous thrombus as measured on

gradient recalled-echo T2*WI by using the Merci device (Concen-

tric Medical, Mountain View, California) for thrombectomy.73

This outcome is primarily due to the mechanical force dispersion

with a different shape of the clot during the retrieval. Thus, imag-

ing characteristics of the thrombus may help in choosing the best

EVT for successful recanalization.

Although past vascular imaging effort was largely focused on

extracranial vessel imaging, some of the same principles may ap-

ply to large proximal intracranial vessels. This research will have

greater application for intracranial atherosclerotic disease and its

treatment than for embolic occlusions, which account for most

conditions of patients undergoing thrombectomy.

MR vessel wall imaging is a powerful tool for extracranial (eg,

carotid) plaque characterization, enabling the determination of

stroke risk from carotid plaque rupture.74 Recently, this tech-

nique has been implemented in several population-based studies

to determine the plaque component prevalence and the associ-

ated risk that leads to stroke.75 Both the Atherosclerosis Risk in

Communities study76 and the Multi-Ethnic Study of Atheroscle-

rosis77 have shown that the extent of carotid plaque and lipid core

presence measured on MR imaging is associated with blood cho-

lesterol levels. However, very few epidemiologic MR imaging

studies have reached adequate numbers of outcomes (stroke

events) since the initial MR imaging study. The Multi-Ethnic

Study of Atherosclerosis carotid MR imaging study first reported

associations of carotid plaque features with future events.78 It

showed that the remodeling index and lipid core presence mea-

sured on MR imaging added a risk for a new event beyond tradi-

tional risk factors in individuals without a history of cardiovascu-

lar disease. Future population-based studies to explore the

predictive value of other high-risk plaque elements (eg, intra-

plaque hemorrhage or fibrous cap thinning/rupture) could pro-

vide insight in identifying asymptomatic individuals at risk for

events. This insight will allow us to define a subgroup of asymp-

tomatic patients who may benefit from therapeutic strategies that

can target such vulnerable features.

Compared with extracranial atherosclerosis, intracranial ath-

erosclerosis has been much less commonly studied in epidemio-

logic research due to the lack of an appropriate diagnostic tool to

depict the intracranial vessel wall. Recent developments in 3D

vessel wall MR imaging enable screening of major intracranial

atherosclerosis79,80 and provides reliable wall measurements in a

population-based study (Atherosclerosis Risk in Communities–

Neurocognitive study81). The prevalence of intracranial athero-

sclerosis in the Atherosclerosis Risk in Communities population

(mean age, 77.1 years) was 34.4% and higher in African Ameri-

cans compared with whites.81 Future prospective epidemiologic

studies that examine intracranial plaque burden in relation to risk

factors and vascular markers (contemporaneous and change from

earlier baseline measures) would contribute to a more compre-

hensive understanding of stroke risk.

Vessel wall imaging techniques have emerged to complement

luminal stenosis assessments by providing a more detailed evalu-

ation of intracranial vasculopathies. For example, recent studies

suggest that multisequence, high-resolution MR wall imaging

may differentiate atherosclerosis from other causes of vessel nar-

rowing, such vasculitis,82 and might aid in determining the etiol-

ogy after acute ischemic stroke, given that culprit atherosclerotic

lesions may preferentially demonstrate wall enhancement.83

Larger, prospective studies with vessel wall imaging techniques

are warranted to examine whether such methods could play a
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more routine role in stroke prevention and diagnosis in patients

with large-vessel atherosclerotic disease.

CONCLUSIONS
As we enter this new era of acute stroke therapeutics, our reliance

on rapid diagnostic imaging to help guide therapy will continue to

increase. The goal of imaging is to enhance the therapeutic index

of available treatment options by selecting patients who have the

greatest potential to benefit. Vital to the efficacy of any acute

stroke treatment is time; therefore, diagnostic tests must be fast,

reliable, and operationally efficient. Current treatment algo-

rithms favor multimodal CT imaging even though MR imaging

may be superior in individual diagnostic tasks. MR imaging shows

promise in providing signatures for penumbra and core and may

one day provide information beyond anatomic large-vessel occlu-

sion to help guide advanced endovascular approaches as our ther-

apeutic and diagnostic technology evolves.

Disclosures: Albert J. Yoo—UNRELATED: Consultancy: Neuravi*; Grants/Grants
Pending: Penumbra,* Neuravi,* Comments: core imaging lab. Ajay Gupta—
UNRELATED: Grants/Grants Pending: Foundation of the American Society of Neu-
roradiology Scholar Award,* National Institutes of Health/National Center for Ad-
vancing Translational Sciences Grant No. UL1TR00457,* Comments: grants support-
ing research related to imaging of stroke and cerebrovascular disease. Ye Qiao—
UNRELATED: Grants/Grants Pending: NIH K99HL106232 and R00HL106232. Com-
ments: MRI imaging of intracranial atherosclerosis. Achala S. Vagal—UNRELATED:
Grants/Grants Pending: Clinical and Translational Science Awards 8 UL1
TR000077– 05 KL2 research award,* Genentech (research grant).* Joshua A. Hirsch—
UNRELATED: Consultancy: Medtronic, CareFusion, Comments: Medtronic, interven-
tional spine, ongoing; CareFusion, single episode in time; taught a spine-related
course; Stock/Stock Options: Intratech, InNeuroCo, Comments: Intratech, develop-
ment-stage stroke company; InNeuroCo, development-stage catheter company.
David M. Yousem—UNRELATED: Expert Testimony: Medicolegal consultations; Pay-
ment for Lectures (including service on Speakers Bureaus): American College of
Radiology Education Center*; Royalties: Elsevier; Payment for Development of Ed-
ucational Presentations: CMEInfo.com for Hopkins Continuing Medical Education
courses.* *Money paid to the institution.

REFERENCES
1. National Institute of Neurological Disorders and Stroke rt-PA Stroke

Study Group. Tissue plasminogen activator for acute ischemic
stroke. N Engl J Med 1995;333:1581– 87 CrossRef Medline

2. Hacke W, Kaste M, Bluhmki E, et al; ECASS Investigators. Throm-
bolysis with alteplase 3 to 4.5 hours after acute ischemic stroke.
N Engl J Med 2008;359:1317–29 CrossRef Medline

3. Berkhemer OA, Fransen PS, Beumer D, et al; MR CLEAN Investiga-
tors. A randomized trial of intraarterial treatment for acute isch-
emic stroke. N Engl J Med 2015;372:11–20 CrossRef Medline

4. Goyal M, Demchuk AM, Menon BK, et al; ESCAPE Trial Investiga-
tors. Randomized assessment of rapid endovascular treatment of
ischemic stroke. N Engl J Med 2015;372:1019 –30 CrossRef Medline

5. Campbell BC, Mitchell PJ, Kleinig TJ, et al; EXTEND-IA Investiga-
tors. Endovascular therapy for ischemic stroke with perfusion-im-
aging selection. N Engl J Med 2015;372:1009 –18 CrossRef Medline

6. Saver JL, Goyal M, Bonafe A, et al; SWIFT PRIME Investigators.
Stent-retriever thrombectomy after intravenous t-PA vs. t-PA
alone in stroke. N Engl J Med 2015;372:2285–95 CrossRef Medline

7. Broderick JP, Palesch YY, Demchuk AM, et al; Interventional Man-
agement of Stroke (IMS) III Investigators. Endovascular therapy af-
ter intravenous t-PA versus t-PA alone for stroke. N Engl J Med
2013;368:893–903 CrossRef Medline

8. Kidwell CS, Jahan R, Gornbein J, et al; MR RESCUE Investigators. A
trial of imaging selection and endovascular treatment for ischemic
stroke. N Engl J Med 2013;368:914 –23 CrossRef Medline

9. Ciccone A, Valvassori L, Nichelatti M, et al; SYNTHESIS Expansion

Investigators. Endovascular treatment for acute ischemic stroke.
N Engl J Med 2013;368:904 –13 CrossRef Medline

10. Albuquerque FC, Fiorella D, Hirsch JA, et al. The tribulations of
stroke trials. J Neurointerv Surg 2013;5:181– 83 CrossRef Medline

11. Fiorella D, Hirsch JA, Mocco J. In search of the optimized stroke trial
design. J Neurointerv Surg 2014;6:249 –51 CrossRef Medline

12. Davis SM, Donnan GA, Parsons MW, et al; EPITHET investigators.
Effects of alteplase beyond 3 h after stroke in the Echoplanar Imag-
ing Thrombolytic Evaluation Trial (EPITHET): a placebo-con-
trolled randomised trial. Lancet Neurol 2008;7:299 –309 CrossRef
Medline

13. Hacke W, Furlan AJ, Al-Rawi Y, et al. Intravenous desmoteplase in
patients with acute ischaemic stroke selected by MRI perfusion-
diffusion weighted imaging or perfusion CT (DIAS-2): a prospec-
tive, randomised, double-blind, placebo-controlled study. Lancet
Neurol 2009;8:141–50 CrossRef Medline

14. Fiehler J, Albers GW, Boulanger JM, et al; MR STROKE Group.
Bleeding risk analysis in stroke imaging before thrombolysis
(BRASIL): pooled analysis of T2*-weighted magnetic resonance im-
aging data from 570 patients. Stroke 2007;38:2738 – 44 CrossRef
Medline

15. Lee SH, Kang BS, Kim N, et al. Does microbleed predict haemor-
rhagic transformation after acute atherothrombotic or cardioem-
bolic stroke? J Neurol Neurosurg Psychiatry 2008;79:913–16 CrossRef
Medline

16. Kakuda W, Thijs VN, Lansberg MG, et al; DEFUSE Investigators.
Clinical importance of microbleeds in patients receiving IV throm-
bolysis. Neurology 2005;65:1175–78 CrossRef Medline

17. Dannenberg S, Scheitz JF, Rozanski M, et al. Number of cerebral
microbleeds and risk of intracerebral hemorrhage after intrave-
nous thrombolysis. Stroke 2014;45:2900 – 05 CrossRef Medline

18. Bash S, Villablanca JP, Jahan R, et al. Intracranial vascular stenosis
and occlusive disease: evaluation with CT angiography, MR angiog-
raphy, and digital subtraction angiography. AJNR Am J Neuroradiol
2005;26:1012–21 Medline

19. Menon BK, Almekhlafi MA, Pereira VM, et al; STAR Study Investi-
gators. Optimal workflow and process-based performance mea-
sures for endovascular therapy in acute ischemic stroke: analysis of
the Solitaire FR thrombectomy for acute revascularization study.
Stroke 2014;45:2024 –29 CrossRef Medline

20. Sheth KN, Terry JB, Nogueira RG, et al. Advanced modality imaging
evaluation in acute ischemic stroke may lead to delayed endovascu-
lar reperfusion therapy without improvement in clinical outcomes.
J Neurointerv Surg 2013;5(suppl 1):i62– 65 CrossRef Medline

21. Pexman JH, Barber PA, Hill MD, et al. Use of the Alberta Stroke
Program Early CT Score (ASPECTS) for assessing CT scans in pa-
tients with acute stroke. AJNR Am J Neuroradiol 2001;22:1534 – 42
Medline

22. Yoo AJ, Zaidat OO, Chaudhry ZA, et al; Penumbra Pivotal and Pen-
umbra Imaging Collaborative Study (PICS) Investigators. Impact of
pretreatment noncontrast CT Alberta Stroke Program Early CT
Score on clinical outcome after intra-arterial stroke therapy. Stroke
2014;45:746 –51 CrossRef Medline
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