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ORIGINAL RESEARCH
ADULT BRAIN

Synthetic MRI in the Detection of Multiple Sclerosis Plaques
X A. Hagiwara, X M. Hori, X K. Yokoyama, X M.Y. Takemura, X C. Andica, X T. Tabata, X K. Kamagata, X M. Suzuki,

X K.K. Kumamaru, X M. Nakazawa, X N. Takano, X H. Kawasaki, X N. Hamasaki, X A. Kunimatsu, and X S. Aoki

ABSTRACT

BACKGROUND AND PURPOSE: Synthetic MR imaging enables the creation of various contrast-weighted images including double
inversion recovery and phase-sensitive inversion recovery from a single MR imaging quantification scan. Here, we assessed whether
synthetic MR imaging is suitable for detecting MS plaques.

MATERIALS AND METHODS: Quantitative and conventional MR imaging data on 12 patients with MS were retrospectively analyzed.
Synthetic T2-weighted, FLAIR, double inversion recovery, and phase-sensitive inversion recovery images were produced after quantifica-
tion of T1 and T2 values and proton density. Double inversion recovery images were optimized for each patient by adjusting the TI. The
number of visible plaques was determined by a radiologist for a set of these 4 types of synthetic MR images and a set of conventional
T1-weighted inversion recovery, T2-weighted, and FLAIR images. Conventional 3D double inversion recovery and other available images
were used as the criterion standard. The total acquisition time of synthetic MR imaging was 7 minutes 12 seconds and that of conventional
MR imaging was 6 minutes 29 seconds The lesion-to-WM contrast and lesion-to-WM contrast-to-noise ratio were calculated and
compared between synthetic and conventional double inversion recovery images.

RESULTS: The total plaques detected by synthetic and conventional MR images were 157 and 139, respectively (P � .014). The lesion-
to-WM contrast and contrast-to-noise ratio on synthetic double inversion recovery images were superior to those on conventional
double inversion recovery images (P � .001 and � 0.001, respectively).

CONCLUSIONS: Synthetic MR imaging enabled detection of more MS plaques than conventional MR imaging in a comparable acquisition
time. The contrast for MS plaques on synthetic double inversion recovery images was better than on conventional double inversion
recovery images.

ABBREVIATIONS: CNR � contrast-to-noise ratio; DIR � double inversion recovery; PD � proton density; PSIR � phase-sensitive inversion recovery; QRAPMASTER �
quantification of relaxation times and proton density by multiecho acquisition of saturation recovery with TSE readout; SI � signal intensity; T1IR � T1-weighted
inversion recovery

MS is a CNS demyelination disorder that usually strikes

young adults. MR imaging serves an important role in MS

diagnosis and surveillance via the detection and follow-up of focal

and diffuse CNS lesions. Monitoring new or enlarging MS plaques

is suitable for following disease activity when evaluating treat-

ment effects.1 The number of lesions detected early in the disease

process is associated with future relapse, disability accumulation,

or cognitive deficits.2 Several reports have shown the utility of

double inversion recovery (DIR) and phase-sensitive inversion

recovery (PSIR) images for detecting MS plaques, especially in

intracortical or mixed WM-GM areas.3-6 Relative to FLAIR and

T2-weighted images, DIR suppresses WM and CSF signals,

thereby increasing the conspicuity of lesions in both GM and

WM.7 PSIR is a T1-weighted inversion recovery (T1IR) sequence

with phase-sensitive reconstruction that provides a greater dy-

namic range of signal intensity (SI) and higher tissue contrast than
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conventional T1IR sequences by additively combining positive

and negative longitudinal magnetization.8 However, the addi-

tional acquisition time required has hindered the clinical use of

DIR and PSIR images.

Synthetic MR imaging enables the production of images with

almost any contrast-weighting, including DIR and PSIR, by vir-

tually adjusting the TR, TE, and TI after quantifying the longitu-

dinal T1 and transverse T2 relaxation times and the proton den-

sity (PD).9,10 Quantification of relaxation times and proton

density by multiecho acquisition of saturation recovery with TSE

readout (QRAPMASTER), an MR imaging quantification pulse

sequence, was recently introduced into the clinical setting and has

greatly shortened the time required for quantifying these param-

eters.11 A recent phantom study revealed that T1, T2, and PD

measurements made with the QRAPMASTER pulse sequence

were sufficiently accurate and reproducible.12 Synthetic MR im-

aging of the brain generates images inferior in quality but compa-

rable in diagnostic power with those acquired by conventional

MR imaging.13 Synthetic MR imaging is reported to be useful in

evaluating brain metastases14 and Sturge-Weber syndrome.15,16

Moreover, some reports have demonstrated the utility of syn-

thetic MR imaging in evaluating patients with MS.17-19 How-

ever, the added value of synthetic PSIR and DIR to detect MS

plaques remains to be examined. The research described above

suggests that generating PSIR and DIR images in addition to

T2-weighted and FLAIR images may boost the detectability of

MS plaques by MR imaging.

Here, we assessed the usefulness of synthetic MR imaging,

which enables creation of any contrast-weighted images in-

cluding PSIR and DIR, for detecting focal MS plaques by com-

paring images obtained from synthetic and conventional MR

imaging.

MATERIALS AND METHODS
Study Participants
The study was approved by the institutional review board of Jun-

tendo University Hospital, Tokyo, Japan. Given its retrospective

nature, written informed consent was not required. Data from 22

consecutive patients with MS who had undergone quantitative

and conventional MR imaging from August 2015 through No-

vember 2015 were retrospectively reviewed. These patients were

diagnosed according to standard criteria.20-22 Of the 22 patients,

10 had diffusely abnormal white matter23 and were excluded from

the study because the number of plaques was difficult to count

accurately. Therefore, data from 12 patients (1 male and 11 fe-

males; mean age, 35.5 years; age range, 16 –50 years) were evalu-

ated. Of the 12 patients, 10 had relapsing-remitting MS and 2 had

clinically isolated syndrome. The median score on the Expanded

Disability Status Scale24 at imaging was zero (range, 0 –3.0), and

the mean disease duration was 6.2 � 5.1 years.

MR Imaging
For all patients, MR imaging was performed on a 3T scanner

(Discovery MR750w; GE Healthcare, Milwaukee, Wisconsin)

with a 12-channel head coil. All patients underwent quantitative

2D axial imaging and conventional 2D axial T1IR, T2-weighted,

FLAIR, and 3D sagittal DIR imaging.

Quantitative MR imaging was performed by using the 2D axial

QRAPMASTER pulse sequence.11 This is a multisection, multi-

echo, multisaturation delay saturation-recovery turbo spin-echo

acquisition method in which images are collected for different

combinations of TEs and saturation delay times. At our institu-

tion, 2 TEs and 4 delay times were used to generate 8 real images

and 8 imaginary ones, which were then used to quantify longitu-

dinal T1 and transverse T2 relaxation times and the PD. The TEs

used were 16.9 and 84.5 ms, and the delay time was set as defined

by the manufacturer of SyMRI software (SyntheticMR, Linköping,

Sweden). The parameters used for quantitative MR imaging were

as follows: FOV, 240 � 240 mm; matrix, 320 � 320; echo-train

length, 10; bandwidth, 31.25 kHz; section thickness/gap, 4.0 mm/

1.0 mm; and sections, 30. The data acquired at each section were

used to produce T1, T2, and PD maps, which were then used to

calculate the synthetic MR images. Quantification map acquisi-

tion and raw data processing were performed with SyMRI soft-

ware (Version 8.0; SyntheticMR).

The parameters used to produce synthetic T2-weighted im-

ages were TR, 4500 ms; and TE, 100 ms. Those used to generate

FLAIR images were TR, 15,000 ms; TE, 100 ms; and TI, 2900 ms.

Finally, those used to obtain PSIR images were TR, 6000 ms; TE,

15 ms; and TI, 500 ms. The parameters for DIR image synthesis,

which were optimized for each patient, are shown in the following

section.

The parameters used to obtain conventional T1IR images were

the following: TR, 3294 ms; TE, 18 ms; TI, 908 ms; FOV, 240 �

216 mm; matrix, 352 � 256; echo-train length, 8; section thick-

ness/gap, 4 mm/1 mm; and sections, 30. Those used to obtain

T2-weighted images were the following: TR, 4500 ms; TE, 111 ms;

FOV, 240 � 240 mm; matrix, 512 � 512; echo-train length, 24;

section thickness/gap, 4 mm/1 mm; and sections, 30. Those used

to obtain FLAIR images were the following: TR, 9000 ms; TE, 124

ms; FOV, 240 � 240 mm; matrix, 320 � 224; echo-train length,

16; section thickness/gap, 4 mm/1 mm; and sections, 30. Finally,

those used to produce 3D sagittal DIR images were the following:

TR, 7000 ms; TE, 90 ms; first TI, 2892 ms; second TI, 546 ms;

FOV, 256 � 256 mm; matrix, 192 � 192; echo-train length, 160;

section thickness, 1.0 mm; and sections, 160. The first TI was

defined as the interval between the first 180° inversion pulse and the

90° excitation pulse. The second TI was defined as the interval be-

tween the second 180° inversion pulse and the 90° excitation pulse.

The acquisition time was 7 minutes 12 seconds for quantita-

tive MR imaging, 1 minute 50 seconds for conventional T1IR, 2

minutes 6 seconds for conventional T2-weighted, 2 minutes 33

seconds for conventional FLAIR, and 6 minutes 15 seconds for

conventional 3D DIR images. These images were saved as

DICOM files and analyzed with OsiriX Imaging Software, Version

7.0 (http:// www.osirix-viewer.com) on a personal computer.

Synthetic DIR Optimization
The parameters for creating synthetic DIR images were optimized

for each patient by adjusting the second TI to intensify the con-

trast between MS plaques and WM (Fig 1). All other parameters

were the same for each patient, as follows: TR, 15,000 ms; TE, 100

ms; and first TI (TI1), 3750 ms. The second TI (TI2) was selected

to suppress the WM and CSF signals while maximizing the GM
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signal, in accordance with the method of Gabr et al.25 This proce-

dure was accomplished by minimizing the following expression:

SIWM � SICSF

SIGM
,

where SIWM, SICSF, and SIGM denote the signal intensities (SIs) of

WM, CSF, and GM, respectively. For each tissue type, we mea-

sured T1, T2, and PD on SyMRI software to estimate the SI by

using the following expression, modified from the work of Red-

path and Smith26:

SI � PD�1 � 2exp��TI2 / T1	 � 2exp
��TI1 � TI2	 / T1�

� exp��TR / T1	
2exp�TE / 2T1	 � 1���exp��TE / T2		.

Here, T1, T2, and PD of each tissue type were averaged from

the following ROIs (3 � 3 voxels, corresponding to 2.25 � 2.25

mm2): CSF, bilaterally in the anterior horns of the lateral ventri-

cles; GM, bilaterally in the thalamus, occipital cortex, and frontal

cortex; and WM, in the corpus callosum— one in the genu and

another in the splenium—and bilaterally in the centrum semi-

ovale. The second TI of each image fell in the range of 460 – 480 ms

after optimization of the synthetic DIR images for each patient.

Image Analysis

Qualitative Analysis of Conventional and Synthetic Images. An

experienced neuroradiologist (K.K.), blinded to the clinical infor-

mation, individually counted the number of lesions in the syn-

thetic and conventional image sets, which were shown in random

order in 1 session. One synthetic image set included T2-weighted,

FLAIR, DIR, and PSIR images for each patient (Fig 2). One con-

ventional image set included T2-weighted, FLAIR, and T1IR im-

ages. Lesions at least 3 mm in diameter were counted. To confirm

the accuracy of lesion counts, an experienced neuroradiologist

(M.S.) also independently conducted MR imaging evaluations of

the same imaging datasets. Conventional 3D DIR images and all

other images were used as criterion standards by an experienced

neuroradiologist (A.H.) to determine whether a counted lesion

was a true- or false-positive and to classify the lesion according to

its location as an infratentorial, deep GM, periventricular WM,

deep WM, juxtacortical WM, or mixed WM-GM lesion. If a lesion

was detected only on the conventional image set or the synthetic

image set but not on conventional 3D DIR images, we defined it as

a false-positive.

Quantitative Analysis of Conventional and Synthetic DIR Images.
The lesion-to-WM contrast and the contrast-to-noise ratio

(CNR) were among the indices used to quantify synthetic and

conventional DIR images. To assess image quality, we also analyzed

the GM-to-WM contrast, GM-to-CSF contrast, and CNR. To match

the section thickness between synthetic and conventional DIR im-

ages, we reconstructed conventional 2D axial DIR images (thickness,

4 mm; gap, 1 mm) from conventional 3D DIR sagittal images.

ROI analyses were performed on synthetic and conventional

DIR images by a single investigator (M.N.) blinded to the clinical

information. For the quantitative analysis, the signal intensities of

the MS lesions and corresponding WM were measured by ROI

analyses and their mean values were recorded. A circular ROI that

covered almost the entire lesion was placed on each MS plaque

that measured �5 mm in diameter. The ROI was then copied and

pasted on the corresponding WM (Fig 3). For a supratentorial

lesion, the corresponding WM was defined as the normal-appear-

ing WM contralateral to that lesion. For an infratentorial lesion, it

was defined as the normal-appearing WM in the brain stem in the

same section.

In synthetic MR imaging, the SI of the surrounding air is set to

zero. Hence, the median SD of the SIs of the following 12 ROIs, all

of which were 2.4 � 2.4 mm2, was defined as the noise for each

patient: ROIs in the CSF (bilaterally in the anterior horns of the

lateral ventricles), in the GM (bilaterally in the thalamus, occipital

cortex, and frontal cortex), and in the WM (in the corpus callo-

sum— one in the genu and another in the splenium—and bilat-

erally in the centrum semiovale). This approach was a modified

version of the method used by Blystad et al.13

To assess the effect of optimizing WM signal suppression on

the image quality of DIR images, we compared the SI of GM

(SIGM) with the SIs of WM (SIWM) and CSF (SICSF). SIGM, SIWM,

and SICSF were obtained by averaging the values of the 6, 4, and 2

regions above, respectively, for each patient.

FIG 1. An example of DIR optimization. A DIR image with a second TI of 460 ms (A) (as determined according to the equations in the main text)
shows better delineation of MS plaques than a DIR image with a second TI of 360 ms (B) or 560 ms (C).
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The lesion-to-WM contrast was defined as the difference be-

tween the mean SI of a lesion and that of the corresponding WM

divided by the SI of the corresponding WM. The lesion-to-WM

CNR was defined as the difference between the SI of a lesion and

that of the corresponding WM divided by the noise of each se-

quence. The GM-to-WM and GM-to-CSF contrasts and CNRs

were calculated likewise.

Statistical Analysis
Statistics were computed by using the free software R, Version

3.2.1 (R statistical and computing software; http://www.r-project.

org/). Because none of the datasets were normally distributed, we

used the nonparametric Wilcoxon signed rank test to compare the

number of lesions detected in the synthetic and conventional im-

ages as well as the contrasts and CNRs of synthetic and con-

ventional DIR images. A 2-sided P value � .05 was considered

significant.

RESULTS
The total number of lesions detected by K.K. on synthetic images

was significantly larger than that on conventional images (Table

1). However, no significant difference was detected in any indi-

vidual region. Several lesions were easier to find on synthetic DIR

or PSIR images than on conventional images and were detected only

on the synthetic image set but not on the conventional image set by

K.K. (Fig 4). All false-positives on synthetic images were located next

to the CSF (Fig 5), because the surface of the brain tended to become

hyperintense on synthetic FLAIR and DIR images.

The interobserver reproducibility between the 2 observers

(K.K. and M.S.) for the total number of detected lesions was then

measured. The interclass correlation coefficient of synthetic MR

imaging was 0.858 (95% CI, 0.496 – 0.959). That of conventional

MR imaging was 0.950 (95% CI, 0.824 – 0.986).

FIG 2. Representative sections of synthetic T2-weighted (A), FLAIR (B), PSIR (C), and DIR (D) images, along with conventional T2-weighted (E),
FLAIR (F), and T1IR (G) images.

FIG 3. An example of ROI placement. A plaque (arrow) is shown on
the synthetic DIR image (A). A circular ROI (arrow) that covers almost
the entire lesion is placed in B. The ROI was copied and pasted on the
contralateral normal-appearing WM (arrowhead).

Table 1: Multiple sclerosis plaques detected by a
neuroradiologist on synthetic and conventional MR images

Region
Synthetic
MRI (No.)

Conventional
MRI (No.)

P
Value

Infratentorial 2 2 1
Periventricular WM 31 28 .374
Deep WM 87 82 .198
Juxtacortical WM 25 20 .547
Mixed WM-GM 6 5 .773
Deep GM 6 2 .203
Total 157 139 .014
False-positives 3 1 .586
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The lesion-to-WM, GM-to-WM, and GM-to-CSF contrasts

and their corresponding CNRs of synthetic DIR images were sig-

nificantly higher than those of conventional DIR images (Table 2

and Fig 6).

DISCUSSION
Synthetic MR imaging enabled us to detect more MS plaques than

conventional MR imaging in a comparable acquisition time (7

minutes 12 seconds versus 6 minutes 29 seconds). Previous re-

ports have shown that DIR and PSIR im-

ages are superior to T2-weighted and

FLAIR images for detecting intracortical

or mixed WM-GM lesions3,4,6; these re-

ports were of MR images of �3-mm sec-

tion thickness. However, the ability to

detect mixed WM-GM plaques did not

differ significantly between synthetic

and conventional MR images in our

study, which were obtained with a sec-

tion thickness of 4 mm. In a study of DIR

images with a section thickness of 5 mm,

significantly more MS plaques were de-

tected on DIR images than on FLAIR

and T2-weighted images, but not in the

case of mixed WM-GM lesions.5 Likewise, our use of a section

thickness of 4 mm and a small number of patients may have hin-

dered the detection of more mixed WM-GM lesions on synthetic

than on conventional MR imaging. Including more patients in

our study may have enabled the detection of more intracortical or

mixed WM-GM plaques on synthetic than on conventional MR

imaging.

All the false-positives on synthetic images were located next to the

CSF (Fig 5). In synthetic FLAIR and DIR images, the surface of the

brain tends to become hyperintense, which is presumably caused by

the partial volume effect. The surface of the brain is even brighter on

synthetic DIR images than on synthetic FLAIR images (Fig 2). This

feature may not be a problem if the existence of these artifacts is

known in advance of reading synthetic MR images.

In this study, even though the interclass correlation coefficient

of synthetic MR imaging between the 2 observers was excellent, it

was lower and had a wider range than that of conventional MR

imaging. One explanation is that these 2 readers had never been

FIG 4. An MS plaque readily detected on PSIR and DIR images. This plaque (arrows) is difficult to identify on synthetic T2-weighted (A) and FLAIR
(B) images and on conventional T2-weighted (E), FLAIR (F), and T1IR (G) images, but it is clearly delineated on synthetic PSIR (C) and DIR (D) images.
The plaque was detected by a neuroradiologist (K.K.) on synthetic but not conventional MR images.

FIG 5. An example of a false-positive lesion. The surface of the brain tends to become hyperin-
tense on synthetic FLAIR and DIR images. Note the hyperintense focus (arrow) in the inferior horn
of the right lateral ventricle on synthetic FLAIR (A) and DIR (B) images; this focus was identified as
an MS plaque by a neuroradiologist (K.K.). No hyperintense focus is seen in the same place on a
conventional FLAIR image (C).

Table 2: Contrast and CNR among lesions, WM, GM, and CSF
Synthetic

DIRa
Conventional

DIRa
P

Value
Lesion-to-WM contrast 9.33 � 5.92 6.74 � 3.58 .001
Lesion-to-WM CNR 23.50 � 7.90 20.20 � 8.30 �.001
GM-to-WM contrast 5.21 � 2.26 3.73 � 1.18 .027
GM-to-WM CNR 13.07 � 2.77 11.10 � 3.89 .012
GM-to-CSF contrast 17.05 � 20.30 3.98 � 1.18 �.001
GM-to-CSF CNR 14.33 � 2.68 11.17 � 3.61 .009

a Values are means � SD.
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exposed to synthetic MR imaging prior to this study. After the

readers become accustomed to synthetic MR imaging, the agree-

ment rate may be higher.

The quality of DIR images was better in synthetic MR imaging

(which was optimized for each patient) than in conventional MR

imaging. No previous report has evaluated the image quality of

synthetic DIR. Synthetic T1-weighted and T2-weighted images

were reported to have higher contrast and comparable CNR com-

pared with conventional images.13 Synthetic FLAIR images were

reported to have lower contrast and lower CNR than conven-

tional FLAIR images. In our study, we succeeded in creating syn-

thetic DIR images with higher contrast and CNR than conven-

tional DIR images by optimizing them for each patient. This result

shows the potential advantage of synthetic MR imaging, which

can be optimized for each patient after image acquisition. A recent

report attempted to optimize the DIR image for each patient.25 In

this report, DIR images were acquired after obtaining T1 and T2

maps separately and then optimizing the acquisition parameters

according to these maps. Because quantification and image cre-

ation can be completed in a single acquisition and on the same

software, the method used in our study has the potential to reduce

the time needed for DIR optimization.

Our study had a number of limitations. First, the sample size

was small. Second, the section thickness of the MR images ac-

quired was 4 mm with a 1-mm gap. This thickness was due to the

technical problem of not being able to obtain synthetic MR images

without a gap of at least 1 mm to reduce cross-talk between sections,

even though current imaging guidelines for MS recommend a sec-

tion thickness of �3 mm without a gap for 2D acquisition.27,28 This

problem should be addressed in future studies. Third, the resolution

was not the same for all sequences. The retrospective nature of this

study hindered the parameter adjustment.

CONCLUSIONS
Synthetic MR imaging enabled the detection of more MS plaques

than conventional MR imaging in a comparable acquisition time,

owing to the creation of useful contrast-weighted images (ie, DIR,

PSIR) not acquired routinely on conventional MR imaging. The

quality of DIR images in synthetic MR imaging optimized for each

patient was superior to that in conventional MR imaging. Our

results show that synthetic MR imaging has the potential to be

useful for detecting MS plaques.
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