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ORIGINAL RESEARCH
PEDIATRICS

Measurement of Lactate Content and Amide Proton
Transfer Values in the Basal Ganglia of a Neonatal Piglet

Hypoxic-Ischemic Brain Injury Model Using MRI
X Y. Zheng and X X.-M. Wang

ABSTRACT

BACKGROUND AND PURPOSE: As amide proton transfer imaging is sensitive to protein content and intracellular pH, it has been widely
used in the nervous system, including brain tumors and stroke. This work aimed to measure the lactate content and amide proton transfer values
in the basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model by using MR spectroscopy and amide proton transfer imaging.

MATERIALS AND METHODS: From 58 healthy neonatal piglets (3–5 days after birth; weight, 1–1.5 kg) selected initially, 9 piglets remained
in the control group and 43 piglets, in the hypoxic-ischemic brain injury group. Single-section amide proton transfer imaging was performed
at the coronal level of the basal ganglia. Amide proton transfer values of the bilateral basal ganglia were measured in all piglets. The ROI of
MR spectroscopy imaging was the right basal ganglia, and the postprocessing was completed with LCModel software.

RESULTS: After hypoxic-ischemic insult, the amide proton transfer values immediately decreased, and at 0 –2 hours, they remained at
their lowest level. Thereafter, they gradually increased and finally exceeded those of the control group at 48 –72 hours. After hypoxic-
ischemic insult, the lactate content increased immediately, was maximal at 2– 6 hours, and then gradually decreased to the level of the
control group. The amide proton transfer values were negatively correlated with lactate content (r � �0.79, P � .05).

CONCLUSIONS: This observation suggests that after hypoxic-ischemic insult, the recovery of pH was faster than that of lactate
homeostasis.

ABBREVIATIONS: APT � amide proton transfer; APTw � amide proton transfer–weighted; HI � hypoxic-ischemic; HIBI � hypoxic-ischemic brain injury

The neonatal brain is in a process of continuous development

and maturation and has a great demand for oxygen. Nor-

mally, brain activities are primarily supported by energy pro-

duced from the aerobic metabolism of glucose.1-3 In a physiologic

state, 90%–95% of brain energy is consumed by neurons, but 80%

of glucose use happens in astrocytes, which suggests that a glucose

mesostate released by astrocytes is absorbed and used by neurons

to support their high energy consumption. A study4 has shown

that during glucose metabolism in the brain, lactate is a carrier of

energy and facilitates interaction between astrocytes and neurons.

Astrocytes absorb glucose and transform it into lactate and then

provide lactate to neurons. Therefore, lactate is an important me-

sostate during energy metabolism in the brain.

Normally, this astrocyte-neuron-lactate shuttle maintains a

dynamic balance. However, when the brain is exposed to a hypoxic-

ischemic (HI) environment, aerobic energy metabolism is inter-

rupted5-7 and becomes anaerobic. During anaerobic metabolism,

lactate is produced, causing an increase of lactate in brain tissue.

As a result, the accumulated lactate suppresses glucose metabo-

lism and uses up adenosine triphosphate, thus exacerbating intra-

cellular acidosis.8,9 Meanwhile, lactate is a crucial substrate for

neurons that restores aerobic energy metabolism after an HI in-

sult and plays an important role in the early stage of HI insult.

Therefore, the study of lactate metabolism changes in the brain

after HI insult furthers the understanding of neuronal energy me-

tabolism and post-hypoxic-ischemic brain injury (HIBI) neuro-

nal energy recovery and neuron protection mechanisms.

Brain acidosis often occurs after HI insult, for which the ad-

justment of the brain pH is critical. pH is especially important for

protein structure and enzyme activity in the brain. Therefore, it is

essential to timely detect and regulate the intracellular pH of brain

tissues.

Amide proton transfer (APT) imaging is a recently developed

MR imaging technique. In theory, APT signal intensity primarily
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depends on the exchange rate between amide protons and water

protons10-12; this exchange rate is associated with the protein

content, pH, and temperature. If it is assumed that other vari-

ables remain unchanged, when the pH decreases, the exchange

rate slows and APT signal intensity weakens.13-15 Thus, APT

imaging can also be considered pH-weighted imaging. The

magnetization transfer ratio asymmetry (3.5 ppm) is called the

amide proton transfer–weighted (APTw) intensity, to reflect

the APT effect, which is contaminated by the conventional

magnetization transfer ratio asymmetry and nuclear Over-

hauser enhancement.

In the normal physiologic state, lactate is absent or rare,16 but

in an HI environment, lactate is increased; this change indicates

enhanced anaerobic metabolism. To date, studies that explore the

role of lactate in energy metabolism, particularly in neuron recov-

ery after hypoxic-ischemic brain injury, and investigate the non-

invasive detection of intracellular pH in brain tissues are few but

promising. In the present study, we simulated pathophysiologic

changes by using a neonatal piglet HIBI model and simultane-

ously evaluated the time course of lactate and APT changes in

hypoxic-ischemic injury.

MATERIALS AND METHODS
Experimental Animals
Initially, 58 healthy piglets (Yorkshire piglets or Large White pigs,

3–5 days after birth; weight, 1–1.5 kg) were selected; then, 6 ani-

mals were excluded because of in-process death, modeling failure,

and motion artifacts. Data were collected from the remaining 52

animals, and they were randomly assigned to the control group

(n � 9) and model group (n � 43). On the basis of the MR

imaging time after the HI procedure, the model group was further

divided into 6 subgroups (0 –2 hours, n � 8; 2– 6 hours, n � 8;

6 –12 hours, n � 6; 12–24 hours, n � 10; 24 – 48 hours, n � 5; and

48 –72 hours, n � 6). All experiments in animals were performed

in compliance with the Regulations for the Administration of Af-

fairs Concerning Experimental Animals (http://www.asianlii.org/

cn/legis/cen/laws/rftaoacea704/) and Measures for the Adminis-

tration of Licenses Concerning Experimental Animals (http://

www.chinalawedu.com/news/23223/23228/24345.htm).

Establishment of Experimental
Models

Control Group. In the operating room

with a temperature of 28°�30°C, 0.6

mL/Kg of Su-mian-xin,16 an anesthetic

agent (Changchun Military Veterinary

Institute, Academy of Military Medical

Science, Beijing, China), was intramuscu-

larly injected; then tracheal intubation
(2.5-mm cannula) was performed, and

the tracheal intubation was connected to

a TKR-200C small-animal ventilator (Ji-
angxi TELI Anesthesia & Respiration
Equipment, Jiangxi Province, China) for
mechanical ventilation (100% oxygen
ventilator parameters: inspiratory/expi-
ratory ratio, 1:1.5; respiratory frequency,

30 breaths/minute; pressure, 0.05– 0.06 MPa). The heart rate and
blood oxygen saturation were monitored with a TuffSat hand-held
pulse oximeter (GE Healthcare, Milwaukee, Wisconsin). A catheter
was inserted via an ear vein and then fixed in position. Thereafter, the
neck skin was disinfected with iodophors, a median incision was
made, and the bilateral common carotid arteries were isolated. Fi-
nally, the incision was sutured. During the operation, the piglet’s
body was covered with a quilt. After the surgery was completed, it was
immediately put into an incubator (Shenzhen Reward Life Technol-
ogy 912–005; Guangdong Province, China). Rectal temperature was
maintained between 38° and 40°C.

HIBI Model Group. The same procedures as in the control group

were performed on model piglets. In addition, when their statuses

became stable after 30 minutes of rest, the bilateral common ca-

rotid arteries were clamped with artery clamps to occlude blood

flow and 6% oxygen was mechanically delivered (Dalian Special

Gases, Liaoning Province, China) for 40 minutes; then 100% ox-

ygen (Dalian Special Gases) was inhaled, the blood supply of bi-

lateral common carotid arteries was restored, and the neck inci-

sion was sutured. After the model was established, the piglet was put

into the incubator. The heart rate and blood oxygen saturation were

monitored throughout the process. Intraoperative and postoperative

shock and convulsion were treated promptly.17,18 After the animals

resumed spontaneous breathing, the ventilator was withdrawn.

MR Imaging Protocol
1H-MR Spectroscopy Scanning and Data Processing. The scan-

ning was performed by using a 3T MR imaging scanner (Achieva

3.0T TX; Philips Healthcare, Best, the Netherlands) with pencil

beams, second-order shimming, body coils for emission, and

8-channel head coils (sensitivity encoding) for receiving. MR

spectroscopy was implemented with a point-resolved spectros-

copy single-voxel sequence, and the sequence was performed with

the following parameters: TR/TE � 2000/37 ms, number of signal

averaged � 64, VOI � 10 mm � 10 mm � 10 mm. The right basal

ganglia were selected as the ROI (Fig 1A). Before scanning, fluid

attenuation and shimming were finished automatically by the

scanner. Conventional MR imaging was performed before MR

spectroscopy to obtain T1WI and T2WI for brain morphology

FIG 1. Definition of ROIs in MR spectroscopy and APT images. A, Illustration of the ROI in MR
spectroscopy. For all animals, the right basal ganglia were selected as the ROI. B and C, Illustra-
tions of ROIs in APT images (the T2WI serves as reference for the selection of ROIs in this study).
In the control and HIBI groups, the bilateral basal ganglia were selected as ROIs, as shown by the
areas marked with a solid line in B and C.
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observation and MR spectroscopy positioning. After HI insult,

MR imaging was performed at the time points specified for each

group (time � 0 was defined as control group). The raw image

data were postprocessed by Linear Combination Model (LCModel;

http://www.lcmodel.com/) software.19 NAA is at 2.02 ppm; Cr, at

3.02 ppm; Cho, at 3.2 ppm; and lactate, at 1.33 ppm. When MR

imaging was performed, the piglet was carefully wrapped with a thick

quilt to maintain body temperature. If spontaneous breathing was

not restored after the operation, MR imaging was performed with

artificial balloon breathing instead of mechanical ventilation.17,20,21

APT Data Acquisition and Processing

Acquisition of APT Data. The coil used for the APT experiments

was the same as that used for the 1H-MR Spectroscopy. All piglets

were positioned at the level of the basal ganglia by using coronal

T2WI. An off-resonance continuous-wave radiofrequency satu-

ration pulse was used. APT single-section imaging was per-

formed, and the saturation time, at 2 �T excitation power, was

500 ms (the maximum time available for this body coil22-24). The

acquisition mode was TSE, and the factor was 38. We used the

following settings: TR � 4000 ms, TE � 8.1 ms, matrix � 108 �

71, FOV � 170 mm � 145 mm, section thickness � 5 mm, scan

time � 4 minutes 16 seconds. For APT imaging, the multiacqui-

sition method with multiple radiofrequency pulses was per-

formed to enhance the signal-to-noise ratio.25 During acquisi-

tion, saturated radiofrequency pulses of 31 frequencies were

acquired at different offsets from the water resonance frequency

(0, �0.25, �0.5, �0.75, �1, �1.5, �2, �2.5, �3 [2], �3.25 [4],

�3.5 [8], �3.75 [4], �4 [2], �4.5, �5, �6 ppm), where the

number in brackets represents the number of repeat acquisitions

when different from 1, and the images acquired without radiofre-

quency saturation served as normalized images. This acquisition

protocol enabled the correction of the B0 field and the acquisition

of APT images with a high SNR. When the experimental animals

were scanned, a constant body temperature was maintained to

avoid signal changes caused by temperature fluctuations.

Postprocessing of APT Data. The acquired APT raw data were

imported into the IDL application (Research Systems, Boulder,

Colorado) for analysis, measurement, and reconstruction of

pseudocolor images. First, voxel-based Z-spectra were obtained

and then fitted by using a 12-order polynomial to identify the

trough of the Z-spectrum and construct B0 heterogeneity; this

process completed the field correction. In the corrected Z-spec-

trum, the symmetric data points at �3.5 ppm were selected for

asymmetry analysis (magnetization transfer ratio asymmetry, [3.5

ppm] � Ssat[�3.5 ppm] / S0 �Ssat[�3.5 ppm] / S0, where Ssat

denotes the signal intensity with the radiofrequency pulse and S0

represents the signal intensity without the radiofrequency pulse).

APT Imaging: Selection of ROIs. After the raw data were analyzed

automatically by the software, the acquired APT images were eval-

uated by 2 senior radiologists and then quantified. After we com-

bined the conventional coronal T2WI, ROIs (bilateral basal gan-

glia, Fig 1B) were manually drawn carefully on the APT images.

The APT value of this ROI indicates the signal intensity. The ROIs

should avoid the interference of the skull, CSF, and cerebral

ventricles.

Statistical Analysis
The statistical analysis of data was performed by using SPSS for

Windows (Version 17.0; IBM, Armonk, New York). Data were

presented as mean � SD (X� � SD). The difference in APT values

between the left and right basal ganglia was analyzed with the

independent-samples t test. The statistical differences in APT val-

ues and lactate content between the control and HIBI groups at

different time points were analyzed by ANOVA. The correlation

between APT values and lactate content was analyzed by Spear-

man rank correlation analysis. P � .05 was a statistically sig-

nificant difference.

RESULTS
Measurements of APT Values and Lactate Content
Because no statistical difference in APT values was observed be-

tween the left and right basal ganglia (P � .82), APT values of the

bilateral basal ganglia were averaged to calculate a mean APT

value for each group. The APT values of the control group and

HIBI groups differed significantly (control group versus 6 –12

hours, P � .029; control group versus 24 – 48 hours, P � .009;

other groups, P � .001) except for control group versus the 12- to

24-hour group (P � .762). The time-related changes of APT val-

ues in the control and HIBI model groups are shown in the Table

and Fig 2.

1H-MR Spectroscopy
In the HIBI group, lactate content was maximal at 2– 6 hours;

thereafter, it gradually decreased and finally was similar to that of

the control group, as shown in the Table and Fig 3. The lactate

content of the control and HIBI groups did not differ significantly

at 12–24 hours, 24 – 48 hours, or 48 –72 hours (control versus

12–24 hours, P � .16; control versus 24 – 48 hours, P � .87; and

control versus 48 –72 hours, P � .96), but it differed significantly

at other time points (0 –2 hours versus the control group, P � .02;

2– 6 hours and 6 –12 hours versus the control group, P � .001).

The lactate content at different time points is presented as X� � SD,

as shown in the Table.

MR images and spectra fitted by the LCModel of the control

and HIBI groups are shown in Figs 4 and 5.

Correlation between APT Values and Lactate Content
Time-related changes of APT values and lactate content are

shown in Fig 6. APT values decreased at 0 –2 hours and thereafter

APT and lactate measurements at different time points

Parameters Control

Model Group

0–2 Hours 2–6 Hours 6–12 Hours 12–24 Hours 24–48 Hours 48–72 Hours
APT (%) 0.50 � 0.12 �0.46 � 0.25 0.02 � 0.14 0.26 � 0.04 0.47 � 0.09 0.80 � 0.11 1.31 � 0.43
Lactate 0.43 � 1.30 3.78 � 4.31 20.45 � 5.28 13.07 � 1.10 2.31 � 1.55 0.16 � 0.25 0.51 � 0.86
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increased; lactate content continued increasing at 2– 6 hours and

thereafter trended toward decreasing.

As shown by Spearman rank correlation test, the APT values were

negatively correlated with lactate content (r � �0.79, P � .036).

DISCUSSION
HIBI is a hypoxic-ischemic brain impairment caused by many

factors during the perinatal period and also a type of reperfusion

brain injury after HI insult of the whole brain. The brain tissues

undergo a series of pathophysiologic changes in the transition

from hypoperfusion to reperfusion. Therefore, it is essential to

develop a noninvasive neonatal MR imaging examination tech-

nique to evaluate molecular pathophysiologic changes of the

brain after an HI procedure. In a study of middle cerebral artery

occlusion in mouse models, Zhou et al10,26 found a marked

change in pH in lesions before and after ischemic insult, but no

obvious variation in amide content was found during a short pe-

riod. The exchange rate decreasing 50%–70% with a pH decrease

of 0.5 U supports the application of APT imaging in HI insult.

Our study results showed that after HI injury, APT values

trended toward decreasing sharply at first (Table and Fig 2); if it is

assumed that the protein content and temperature in the brain

remains unchanged for a short period after HI insult, the change

of APT signal may be primarily related to pH changes. Such a

signal change reflects a reduction of intracellular pH in brain tis-

sues within a short time after HI insult, primarily depending on

acidosis secondary to aerobic dysmetabolism caused by HI insult

(aerobic dysmetabolism refers to glucose metabolic disturbances,

and the acidosis related to HI leads to an increase in anaerobic

metabolism; it is not a dysmetabolism of the mitochondria, but a

change in cellular processes). Intracellular acidosis is not only

caused by lactate accumulation but also attributed to the aerobic

dysmetabolism of glucose that occurs in the acute stage of HI

insult. Furthermore, the cell membrane is unable to maintain the

normal ion pump function that leads to intracellular H� reten-

tion in the early stage of HIBI.10 Subsequently, APT values grad-

ually increased and recovered to the level of the control group at

12–24 hours. Such recovery of APT values is achieved by pH nor-

malization after HI reperfusion, perhaps because locally accumu-

lated metabolites are excreted by reperfusion, accompanied by the

restoration of aerobic metabolism. The intracellular pH in mam-

mal brain tissue is 7.2–7.3, and the extracellular pH is 7.3–7.4.27-29

The intracellular pH in HI brain tissue can impact cell survival

and brain tissue outcomes. Studies have shown that when brain

tissue undergoes HI injury, pH decreases transiently and then

increases, inducing rebound alkalosis. Patients with alkalosis have

a poor prognosis.30-33 Furthermore, an in vivo trial revealed that

neuronal protection could be achieved by timely intervention to

treat alkalosis.27

When the brain experiences HI insult, the relevant signaling

pathways in astrocytes are activated, and lactate, as an important

neurotransmitter, can regulate energy metabolism and secrete

neuroprotective substances to achieve neuron protection through

a series of biochemical changes and has a regulatory effect on cell

FIG 2. Time-related changes of APT values of the basal ganglia. After
HI insult, APT values immediately decrease and reach the lowest level
at 0 –2 hours; thereafter, the values gradually increase, recover to the
level of the control group at 12–24 hours, and then continue increas-
ing. They are higher than the control group level at 48 –72 hours.

FIG 3. Time-related changes of lactate in the control and HIBI
groups. After HI insult, lactate increases immediately, reaches maxi-
mal value at 2– 6 hours, and thereafter decreases gradually; in the HIBI
model group, lactate is similar to that of the control group at 48 –72
hours after HI injury.

FIG 4. Coronal T1WI, T2WI, and APT scans at the basal ganglia area in
the control and the model groups (2 hours, 4 hours, and 68 hours after
hypoxia-ischemia reperfusion). The APT signal demonstrates the hy-
pointensity at 2 hours after HI, and then the signal gradually increases.
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apoptosis.34,35 Lactate can be transmitted and absorbed via

monocarboxylic acid transporters between astrocytes and neu-

rons to provide the substrate of energy metabolism for neuronal

activities.36-38 Thus, lactate produced by glycolysis is transmitted

out of astrocytes via monocarboxylic acid transporter-4 on the

cell membrane, accumulates in the extracellular spaces, is then

absorbed by neurons via monocarboxylic acid transporter-2 on

neuronal membranes, is transformed into pyruvic acid via lactate

dehydrogenase, and finally enters into the tricarboxylic acid cycle

of aerobic metabolism.

An increase of lactate was observed in the early stage of HI

insult (Table and Fig 3), which is an important sign of brain hyp-

oxia-ischemia. This finding is consistent with that in a previous

study.39 After reperfusion, lactate is gradually decreased due to

both aerobic metabolism recovery and lactate excretion.

At the time of acute hypoxia-ischemia, it is assumed that the

amide proton concentration and temperature remain constant,

and the change of APT value is mainly affected by the pH. This

study found that APT values were gradually restored to normal 2

hours after reperfusion; lactate increased in the first 6 hours after

reperfusion and gradually decreased thereafter. Moreover, this

trend matches those in previous experimental study.12 We also

found that there was a relative delay between the peak change in

lactate and the lowest peak value of APT, which indicates that the

removal of H� and lactate is not synchronous. This time delay was

interpreted as the recovery of pH being earlier than the clearance

of lactate after HI reperfusion. Discharge mechanisms of H� in-

clude Na�–H� exchange and HCO3
� neutralization and other

mechanisms.27 Thus, a possible reason for the rapid recovery of

pH and the relatively slow removal of lactate was that glucose

anaerobic glycolysis was conducted continuously after reperfu-

sion and the removal of lactate was first transported out of the cell,

and then carried out by the circulation.40,41 Nevertheless, this

aspect needs to be further studied.

FIG 5. Results of 1H-MR spectroscopy data at selected time points in sample data analyzed by LCModel software. A–D, 1H-MR spectroscopy
spectral curves of the right basal ganglia analyzed by LCModel in the control group and the HIBI group at 2 hours, 4 hours, and 68 hours,
respectively. At 2 and 4 hours after HI insult, the lactate peaks (1.2–1.4 ppm) are markedly elevated, showing an upright single-peak or double-
peak change; at 68 hours, the lactate peak is lower but still higher than that of the control group.
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In this study, the basal ganglia were selected as an ROI for both

APT imaging and 1H-MR spectroscopy scanning because the

basal ganglia are an area of high aerobic metabolism.42 Such an

ROI can increase the sensitivity of biochemical tests and avoid the

interference of lipids at the cerebral margin that influences the

accurate measurement of lactate content.43

In the present study, there were some limitations: 1) The cur-

rent APT imaging sequence used single-section imaging, and the

coronal images of the basal ganglia were selected in this study, so

HI injury of other parts and structures were not displayed and

evaluated. 2) Due to limitations of anatomic structures, resolu-

tion, and other factors, only the basal ganglia were selected as

ROIs, so other cerebral regions (eg, cerebral cortex, subcortical

white matter, and hippocampus) were not evaluated. 3) Even

though the magnetization transfer ratio asymmetry analysis

(which can reduce the direct water saturation effect and semisolid

magnetization transfer effect) was used, the APT effect was mixed

with the nuclear overhauser enhancement.44 4) Only data from

the right basal ganglia were acquired by single-voxel 1H-MR spec-

troscopy scanning, so bilateral tissues could not be compared and

analyzed.
1H-MR spectroscopy data were postprocessed by using

LCModel software, which effectively addresses issues such as

baseline correction, spectral line decomposition, and accurate

measurement of the absolute content of metabolites.45 The

LCModel can automatically perform baseline correction, eddy

current correction, and phase correction and provide an ideally fit

spectral line. The Cramer-Rao Lower Bound estimating produced

by the LCModel avoids extensive examination of each spectro-

scopic image and helps reject low-quality spectra (Fig 4).46 Stud-

ies47,48 have suggested that the coefficient of variation of absolute

substance content calculated by the LCModel is lower than that

for the ratio of metabolites.

In this study, an acute HIBI model was established in piglets, in

which the blood supply of the bilateral common carotid arteries

was interrupted and then the reperfusion was simulated when the

blood supply was restored; it facilitates the investigation of reper-

fusion injury.49-51 In this study, we simulated neonatal patho-

physiologic changes by using a neonatal piglet HIBI model. The

basal ganglia injury shown on MR imaging was consistent with

histologic changes; therefore, this model is suitable for acute and

subacute experimental studies.16,17 The results indicate that this

model is suitable for molecular imaging studies. Compared with

previous studies with a rat hypoxia-ischemia model,49,52,53 the

neonatal pig brain sulcus and gyrus are obvious and similar to the

human brain structure. At present, there is no report in the liter-

ature describing the use of a piglet hypoxia-ischemia model for

APT imaging studies, to our knowledge. Our modeling method

has high reproducibility and can provide reliable experimental

results, though it is somewhat complex. APT and MR spectros-

copy have been measured separately many times in different isch-

emic models; however, they have not been measured together as

in this model. In fact, this relative delay between the peak change

in lactate and the APT value is one of the main novel points of our

work because it has not previously been observed.

CONCLUSIONS
In the present study, the changes in APTw intensity and lactate

content show a relative time delay in their recovery stage, indicat-

ing that recovery of pH was faster than that of lactate.
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