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ABSTRACT

BACKGROUND AND PURPOSE: Resting-state fMRI readily identifies the dorsal but less consistently the ventral somatomotor network.
Our aim was to assess the relative utility of resting-state fMRI in the identification of the ventral somatomotor network via comparison
with task-based fMRI in patients with brain tumor.

MATERIALS AND METHODS: We identified 26 surgically naïve patients referred for presurgical fMRI brain mapping who had undergone
both satisfactory ventral motor activation tasks and resting-state fMRI. Following standard preprocessing for task-based fMRI and
resting-state fMRI, general linear model analysis of the ventral motor tasks and independent component analysis of resting-state fMRI
were performed with the number of components set to 20, 30, 40, and 50. Visual overlap of task-based fMRI and resting-state fMRI at
different component levels was assessed and categorized as full match, partial match, or no match. Rest-versus-task-fMRI concordance
was calculated with Dice coefficients across varying fMRI thresholds before and after noise removal. Multithresholded Dice coefficient
volume under the surface was calculated.

RESULTS: The ventral somatomotor network was identified in 81% of patients. At the subject level, better matches between resting-state
fMRI and task-based fMRI were seen with an increasing order of components (53% of cases for 20 components versus 73% for 50
components). Noise-removed group-mean volume under the surface improved as component numbers increased from 20 to 50, though
ANOVA demonstrated no statistically significant difference among the 4 groups.

CONCLUSIONS: In most patients, the ventral somatomotor network can be identified with an increase in the probability of a better
match at a higher component number. There is variable concordance of the ventral somatomotor network at the single-subject level
between resting-state and task-based fMRI.

ABBREVIATIONS: BOLD � blood oxygen level– dependent; ICA � independent component analysis; rs-fMRI � resting-state fMRI; tb-fMRI � task-based fMRI;
VSMN � ventral somatomotor network; VUS � volume under the surface

Functional MRI is widely used as a noninvasive tool for presur-

gical localization of the eloquent cortex, typically involving

somatomotor and language mapping. Mapping of these eloquent

brain areas with fMRI correlates well with invasive methods such

as intraoperative electrocortical stimulation1 and can result in

reduced surgical time, increased extent of resection, and de-

creased craniotomy size.2 In addition, postoperative morbidity

correlates with the distance of the resection margin from fMRI-

identified eloquent cortex.3 In current clinical practice, changes in

blood oxygen level– dependent (BOLD) signal are measured

across time as the patient performs a specific task (ie, task-based

fMRI [tb-fMRI]).4 These BOLD signal changes reflect character-

istic hemodynamic responses to neural activity. However, tb-

fMRI has several limitations. Primarily, accurate localization of

function is dependent on the patient’s cooperation and ability to
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adequately perform the task, which can be an important limita-

tion in those with physical or mental debilitation or those who

cannot understand the instructions such as children. The patient

must be awake and cooperative during the task; therefore, seda-

tion cannot be used; this feature is a limitation in the pediatric

population. Furthermore, due to the inherently low signal-to-

noise ratio of this technique, long and repeated acquisitions are

often required to ensure adequate data sampling for analysis.5,6

Resting state fMRI (rs-fMRI) is a promising method of assess-

ing brain function that can overcome some of the limitations of

tb-fMRI. In rs-fMRI, spontaneous fluctuations in BOLD signal

are measured across time while no specific task is performed.

Temporal correlations of these spontaneous fluctuations can be

organized into spatially distinct intrinsic networks.5 These net-

works are now described as resting-state networks, many of which

have topography similar to that of networks engaged in sensory,

motor, and cognitive tasks.7 These intrinsic resting-state net-

works persist, though somewhat modified, in states of decreased

awareness such as sleep8 or sedation.9 Rs-fMRI has thus gained

interest as a potential viable alternative to tb-fMRI, especially in

pediatric or cognitively/neurologically impaired patients. Multi-

ple studies have investigated the potential role of rs-fMRI in pre-

surgical mapping of somatomotor5,10-12 and language2,6,13 net-

works. In a limited number of subjects, moderate overlap between

rs-fMRI and tb-fMRI was found for mapping of the motor cor-

tex.5,11,12 Furthermore, there is good qualitative concordance be-

tween intraoperative cortical stimulation and rs-fMRI in the lo-

calization of the eloquent motor cortex.10 With quantitative

analysis, rs-fMRI and tb-fMRI perform comparably, but the

shortest distance to stimulation points is observed for tb-fMRI.11

Rs-fMRI has been shown to identify a larger pattern of the motor

network compared with tb-fMRI.11,14 In addition, localization by

rs-fMRI and tb-fMRI may include different parts of the sensori-

motor network.11,15 While the motor system at large has been the

target of most prior investigations, distinct subnetworks of the

motor network exist. We narrowed our focus to the ventral motor

area, which largely reflects oral somatomotor function. Three re-

cent studies evaluated the concordance of rs-fMRI and tb-fMRI in

the localization of the face representation area of the primary

motor cortex in addition to limb motor areas in a limited number

of patients with a variety of brain lesions in different loca-

tions.11,12,16

To our knowledge, no study has specifically investigated the

concordance between tb-fMRI activation and the rs-fMRI-

derived ventral somatomotor network (VSMN) maps in a large

cohort of patients with lesions close to or involving the VSMN.

We hypothesized that the ventral motor network can be identified

in patients with brain tumors and that there is good concordance

with tb-fMRI with a tongue motor paradigm. In addition, we

hypothesized that a higher number of components in indepen-

dent component analysis (ICA) may yield a better concordance

between rs-fMRI and tb-fMRI.

MATERIALS AND METHODS
Study Subjects
The institutional review board approved this retrospective study.

Searching the Radiology Information Systems, we identified pa-

tients who underwent fMRI for presurgical brain mapping be-

tween January 1, 2009, and July 31, 2014. Fifty-eight patients un-

derwent rs-fMRI in addition to tb-fMRI during the same imaging

session. Seventeen patients had a prior history of a brain opera-

tion (including biopsy) and were excluded. One patient had im-

aging features characteristic of an arteriovenous malformation

and was excluded. At the Johns Hopkins Hospital, tb-fMRI for

presurgical mapping is tailored for each patient, predominantly

based on the location of their tumor and the relation of eloquent

regions along the expected surgical trajectory and in the immedi-

ate vicinity of the lesion. Among the remaining 40 patients, 26

with brain tumors involving or in close proximity to the ventral

somatomotor network who had undergone both tb-fMRI for lo-

calization of the VSMN and rs-fMRI were included for final anal-

ysis (age range, 21– 69 years; mean age, 43.6 years; 15 men and 11

women).

Brain Tumor Characterization
Tumor location, volume (in cubic millimeters), pathology, and

World Health Organization histologic grade (when available)

were recorded by a subspecialty board-certified neuroradiologist

for each patient. Lesion volume was measured by manually draw-

ing the ROI on FLAIR images in the Medical Image Processing,

Analysis, and Visualization application software (MIPAV; Na-

tional Institutes of Health, Bethesda, Maryland; http://mipav.cit.

nih.gov). For high-grade brain tumors, we assessed the entire re-

gion of T2 signal abnormality, which represents a combination of

infiltrative neoplasm and vasogenic edema.

MR Imaging
A 3T Tim Trio system (Siemens, Erlangen, Germany) with a 12-

channel head matrix coil was used. Structural images included a 3D

T1 sequence (TR � 2300 ms, TI � 900 ms, TE � 3.5 ms, flip angle �

9°, FOV � 24 cm, acquisition matrix � 256 � 256 � 176, section

thickness � 1 mm) and a 2D T2 FLAIR sequence (TR � 9310 ms,

TI � 2500 ms, TE � 116 ms, flip angle � 141°, FOV � 24 cm,

acquisition matrix � 320 � 240 � 50, section thickness � 3 mm).

Functional T2*-weighted BOLD images for both tb-fMRI and rs-

fMRI were acquired by using 2D gradient-echo echo-planar imaging

(TR � 2000 ms, TE � 30 ms, flip angle � 90°, FOV � 24 cm, acqui-

sition matrix � 64 � 64 � 33, section thickness � 4 mm, section

gap � 1 mm, interleaved acquisition). Instructions for rs-fMRI were

the following: try to keep still, keep your eyes closed, and do not fall

asleep. For rs-fMRI, 180 volumes were acquired (6 minutes).

Tongue Motor Task
The face representation area of the primary motor cortex was

mapped by using the vertical tongue movement task as a robust

and spatially extensive representative of the ventral/face motor

network.17,18 The duration of the task is 3 minutes and consists of

3 cycles of 30-second blocks of rest alternating with 30-second

blocks of repetitive vertical tongue movement. For each pa-

tient, a board-certified neuroradiologist with experience in

fMRI provided instructions and practice sessions on the

tongue motor task outside the scanner. The quality of the tb-

fMRI maps was monitored in real-time by the neuroradiologist

monitoring the session. Per protocol, if real-time maps dem-
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onstrated suboptimal activation or excessive noise, the task

was repeated. Tasks were presented with the environment im-

plemented in the Prism Acquire software (Prism Clinical Im-

aging, Elm Grove, Wisconsin). Only runs that met quantitative

quality control criteria (�2-mm net head displacement along

any axis) were considered.

Image Processing
fMRI data were processed by using Statistical Parametric Map-

ping, Version 8 (SPM8 software; http://www.fil.ion.ucl.ac.uk/

spm/software/spm12) and custom Matlab (MathWorks, Natick

Massachusetts) scripts. Processing of tb-fMRI included section-

timing correction, motion correction, normalization to a Mon-

treal Neurological Institute 152 template, and spatial smoothing

included a 6-mm full width at half maximum Gaussian kernel.

For processing the rs-fMRI data, section-timing correction

and motion correction were performed. The motion-correction

step included registration of tb-fMRI and rs-fMRI to each other.

The ArtRepair toolbox (http://cibsr.stanford.edu/tools/human-

brain-project/artrepair-software.html)19 was used to detect vol-

umes with large shifts in global average signal intensity, which

include contributions from scan-to-scan motion. The outlier vol-

umes and additional volumes recommended for deweighting in

ArtRepair were tagged for subsequent removal from analysis (ie,

scrubbing). The rs-fMRI data were then linearly detrended. Rs-

fMRI and T1-weighted images were coregistered and normalized

to perform physiologic nuisance regression of rs-fMRI with the

component-based noise-correction method.20 The same trans-

formation matrix was used for normalization between tb-fMRI

and rs-fMRI to ensure that spatial comparison between these 2

was valid for each subject. Bandpass filtering from 0.01 to 0.1 Hz

and smoothing were performed with a 6-mm full width at half

maximum Gaussian kernel. At the end, previously tagged images

by ArtRepair were scrubbed.

Statistical Analysis

Tb-fMRI Analysis. We used a general linear model analysis for

tb-fMRI implemented in SPM8 with the canonical hemodynamic

response function convolved with the boxcar function for each

task with standard parameters previously described.6 High-pass

filtering was performed at the default setting to remove drift. The

hemodynamic response function-convolved task vectors were in-

put into a design matrix, and a contrast was created to target the

associated parameter comparing the hemodynamic response

function-weighted time engaged in the task with rest. The SPM

t-contrast maps were generated without clustering because these

activation maps were subsequently thresholded across multiple

levels for comparison as previously described.6 Activation maps

were reviewed to ensure that ventral motor activation was

present.

Rs-fMRI Analysis. Rs-fMRI was analyzed with the Group ICA of

the fMRI Toolbox Software (GIFT; http://mialab.mrn.org/

software/gift/). Independent component analysis was per-

formed separately for each subject by using the InfoMax algo-

rithm with ICASSO (http://research.ics.aalto.fi/ica/icasso/) set

at 5 repeats,21 including selection of the “best run” to ensure

consistent estimates. ICA maps were generated for 20, 30, 40,

and 50 components, designated here as ICA20, ICA30, ICA40,

and ICA50, respectively. Following scrubbing, 1 subject had

only slightly �50 volumes left; therefore, the maximum num-

ber of components was limited to 50. For each ICA group, the

component that best represented the VSMN based on overlap

with tb-fMRI was selected visually (Fig 1). Any component

whose spatial map was specific and limited to the ventral peri-

rolandic cortices corresponding to the tb-fMRI activation

maps was considered a “full match.” If the component in-

cluded additional networks outside these regions, it was con-

sidered a “partial match,” indicating that the VSMN was pres-

ent but not separated from other networks. If no VSMN was

identified, a “no match” designation was assigned to that ICA

group for that subject. A mixed-effects logistic regression anal-

ysis was performed to see whether there was a significant in-

crease in the probability of getting a full match as a function of

the number of ICA components.

Comparison of tb-fMRI and rs-fMRI. The level of tb-fMRI T-map

thresholding may affect the degree of rs-tb fMRI concordance. At

low thresholds, there will be artificially high concordance due to

the introduction of a higher percentage of voxels, many of which

may not represent true activation but rather statistical noise that

FIG 1. Task-based fMRI map demonstrating activation of the VSMN with the vertical tongue movement task in a single subject (A). Rs-fMRI maps
with the best visual correlates to tb-fMRI at different ICA groups (B–E) were selected.
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exceeds this threshold. Although there are strategies to determine

the level of optimum fMRI thresholding, there is no consensus for

reproducible results at a subject level.18 To minimize this issue, we

used a multithresholding technique to compare concordance

across a wide range of thresholds as previously described

(Fig 2).6,22 We calculated Dice coefficients as a quantitative mea-

sure of overlap across each threshold to generate a matrix of rs-

versus-tb overlap (left map, Fig 3).6 Dice coefficients vary between

0 and 1 and give an objective evaluation of similarity or concor-

dance between 2 sets of data. At very low thresholds, high Dice

coefficients result from overlap of random noise as can be seen in

Fig 2. We used a previously described noise-removal method6

briefly described here.

For calculation of noise, an ICA component representing the

anterior ventricular signal was selected for each subject. After re-

moving negative values, we normalized image maps in value from

0 to 1, and we subsequently used multiple thresholds of this nor-

malized map to calculate Dice coefficients between ventricular

“noise” and task maps (middle map, Fig 3). The resultant noise-

versus-task Dice map was subtracted from the resting-versus-task

Dice map (right map, Fig 3).6 Noise-corrected resting state-ver-

sus-task-based Dice map volume under the surface (VUS) was

calculated across different ICA orders. The VUS measurement

collapses this multithresholded dice map into a single variable

that can be used as a metric; the VUS is equivalent to the area

under the curve in a 2D graph (such as a receiver operating char-

acteristic curve); however, because the multithresholded dice

map has 3 dimensions (the rs-fMRI threshold, the task-threshold,

and value), a volume under the surface is computed. One-way

ANOVA was performed to determine significant differences in

VUS across the 4 ICA orders. Maximum Dice coefficient values at

the group level and subject level were calculated.

RESULTS
Tumors
The On-line Table summarizes the patients’ demographic data,

location and volume of lesions, pathology, World Health Organi-

zation grade (if applicable), and the distance from the edge of

the lesion to the edge of the ventral somatomotor activation

cluster based on the clinical task-fMRI maps. Brain lesions

were mainly centered in the left cerebral hemisphere (19 pa-

tients), and 4 lesions were primarily located in the right cere-

bral hemisphere. Tumor size ranged from 0.84 to 159.05 cm3

(mean, 41.82 cm3).

FMRI Comparison
Twenty-six patients met the inclusion criteria and were included

for analysis. In 21 patients (81%), rs-fMRI successfully identified

a VSMN (Fig 4). Among these, 2 patients were considered a partial

match because the VSMN was not distinct from the dorsal so-

matomotor network. There was an increase in the number of full

matches with an increase in the ICA order (14 patients at ICA 20

and 19 patients at ICA 50). In 14 patients, a separate VSMN was

identified at all ICA groups. Mixed-effect logistic regression dem-

onstrated a significant increase in the probability of getting a full

match as a function of the number of components (P � .00001).

This probability is shown in Table 1.

In 5 patients, rs-fMRI failed to identify a VSMN at any of the

ICA levels. In 3 of these 5 patients, only the dorsal somatomotor

FIG 2. Rs-fMRI ICA maps (yellow) and Tb-fMRI T-maps (red) were
thresholded, and 100 threshold maps were generated for each in a
single subject. At a low threshold, there is artificially higher overlap
(orange) between the maps due to noise. At a very high threshold, the
overlap is smaller.

FIG 3. The Dice coefficient matrix at different thresholds at the subject level between the rs-fMRI (x-axis) at ICA 20 and tb-fMRI (y-axis). An
artificially high Dice coefficient is seen in the top left corner of the left map due to overlap of noise. A noise matrix was generated (middle map)
and was subtracted (right map). Noise-removed Dice coefficient maps were generated for all the subjects across 4 different ICA orders.

4 Yahyavi-Firouz-Abadi ● 2017 www.ajnr.org



network was identified. In the remaining 2 patients, no somato-

motor network was identified.

Group mean Dice maps for each ICA order are shown in Fig 5.

Group mean Dice VUS overall increased with the ICA order (Fig

6); however, 1-way ANOVA demonstrated no significant differ-

ences among the 4 ICA groups (P value �.4). The range of Dice

coefficient values at the subject level is shown in Table 2. Negative

Dice values in these noise-subtracted maps may occur when the

concordance between the noise maps and tb-fMRI at low thresh-

olds is greater than the concordance between rs-fMRI and tb-

fMRI due to the randomness of noise at low thresholds.

DISCUSSION
A growing number of studies have explored the feasibility of rs-

fMRI as a substitute or complement to tb-fMRI for presurgical

mapping of the eloquent somatomotor cortex in patients with

brain tumor. Previous studies have demonstrated the reliability of

rs-fMRI for localization of the hand motor area in comparison

with tb-fMRI in a limited number of patients, with seed-

based10,23 or ICA analysis.12 Concordance of rs-fMRI with intra-

operative cortical stimulation was assessed in a few pa-

tients.10,11,24 In addition, investigators have assessed the entire

somatomotor cortex by using hand, foot, and face paradigms,

with evaluation of the face motor area in a small subset of pa-

tients.11,16,24 A novel data-driven algorithm for mapping the

functional cortex in preoperative planning of motor and language

networks in a small group of patients with tumor and epilepsy has

been reported.25 The existing data predominantly evaluate the

usefulness of rs-fMRI in localization of the hand representation

area of the somatomotor cortex, but there has been very limited

evaluation of the ventral somatomotor cortex to date. In addition,

there is wide variation in analysis methods, and most studies have

only qualitatively compared tb-fMRI and rs-fMRI. To our knowl-

edge, our study represents a relatively large cohort of patients with

brain tumors involving or in close spatial proximity to the VSMN.

In addition, we evaluated the overlap quantitatively by using mul-

tithresholding at different ICA levels.

FIG 4. fMRI comparison among the patients. The number of patients
with full, partial, and no match between tb- and rs-fMRI at different
ICA levels is demonstrated.

FIG 5. Group mean Dice coefficient maps across all the subjects at each ICA order calculated from subject-level noise-removed Dice coefficient
maps. The x-axis depicts the rs-fMRI threshold levels, and the y-axis depicts the tb-fMRI threshold levels with the color bar demonstrating the
Dice coefficient value.

FIG 6. Violin plots of Dice VUS across ICA orders. The mean Dice VUS
for each ICA order is denoted by white diamonds. As the ICA order
increases, there are larger numbers of subjects with higher Dice VUS
values as reflected in the greater width of the violin plots correspond-
ing to kernel densities.

Table 1: Probability of getting a full match between rs-fMRI and
tb-fMRI maps as a function of number of ICA components

ICA 20 ICA 30 ICA 40 ICA 50
Probability 0.53 0.65 0.69 0.73

Table 2: Dice coefficient values range, median, and mean at the
subject level across different ICA orders

Minimum Maximum Median Mean
ICA 20 �0.214 0.528 0.009 0.062
ICA 30 �0.134 0.540 0.015 0.071
ICA 40 �0.056 0.587 0.024 0.085
ICA 50 �0.368 0.616 0.024 0.086
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Our data demonstrate the ability of rs-fMRI to successfully

identify the VSMN in most patients (81%). There was a signifi-

cant increase in the number of rs- versus tb-fMRI full matches,

with an increase in the number of ICA orders from 20 to 50. In

addition, there was an increase in the mean Dice VUS and maxi-

mum Dice coefficient values, with an increasing number of inde-

pendent components; however, this effect did not reach statistical

significance, potentially due to intersubject variability. The choice

of an ideal number of informative components for ICA analysis is

challenging due to the spatial and temporal dependence of the

BOLD signal.26 Using a higher number of target components

could result in fragmentation of networks to subnetworks; con-

versely, using a lower number of target components may result in

merging different brain networks.7 Concordantly, we qualita-

tively saw better separation of the VSMN and dorsal somatomo-

tor network subnetworks at higher ICA orders. Therefore, using a

higher number of target components in ICA analysis may be sug-

gested in cases in which localizing a specific subnetwork is desired

for preoperative planning, though this needs to be further bal-

anced by the risk of further subsegmenting the networks with

even higher ICA orders.

Our results show a strong concordance between the rs-fMRI

and tb-fMRI in some of the subjects, demonstrating the potential

utility of rs-fMRI as a viable preoperative mapping tool (Fig 7);

however, there is significant variability across subjects. In partic-

ular, if rs-fMRI is to be used without a tb-fMRI acquisition, one

must ensure that a reliability estimate of rs-fMRI can be calculated

from the data itself. Improvement in technique and data analysis

may overcome some of these limitations in the future. Increasing

the scan time may improve the quality of rs-fMRI27 and thus

potentially decrease such intersubject variability. Alternative

methods of analysis such as seed-based analysis that have shown

some promise in localizing the motor network in patients with

brain tumors11,28 may also be considered. However, in the cur-

rent study population of patients with brain tumors, accurate

placement of seeds may be limited due to anatomic gyral distor-

tion or compression. Therefore, an unbiased method such as ICA

may be preferable. In addition, ICA remains an attractive choice

due to availability of easy-to-use software such as the MELODIC

tool in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) or

the GIFT toolbox.

Several limitations in this study should be addressed. rs-fMRI

was performed after tb-fMRI in this clinical cohort of patients to

ensure that the patients tolerated the lengthy scan and performed

well on their tb-fMRI, which was critical for clinical presurgical

mapping. Thus, there may have been an inadvertent task effect on

the observed functional connectivity.29 Another limitation is the

inability to ensure that patients did not fall asleep during rs-fMRI.

We instructed the patients to stay awake during the rs-fMRI and

confirmed that they stayed awake during a postscan interview;

however, the accuracy of their statements could not be verified by

physiologic measures indicating sleep during the acquisition.

While this inability poses a potential limitation because changes

in functional connectivity have been reported in sleep or altered

consciousness,30 functional connectivity in the somatomotor net-

work has been shown to be preserved during different states of

arousal.8 Nevertheless, the effect of sleep or altered arousal on

rs-fMRI concordance with tb-fMRI could be further investigated.

In addition, we used tb-fMRI T-maps to find the best candidate

ICA map to represent the VSMN. However, brain tumors may

cause alteration of somatomotor network organization, and brain

tumor–induced neurovascular uncoupling may further compro-

mise our ability to accurately detect the VSMN. Therefore, using

only rs-fMRI data to identify the best somatomotor map may be

challenging with brain tumors. The use of a data-driven neural

network algorithm to identify the eloquent cortex in 7 patients

with brain tumor with distorted anatomy has shown some

promise.25

CONCLUSIONS
We demonstrate variable concordance of rs- and tb-fMRI at the

single-subject level for detection of the VSMN in patients with

brain tumor. We demonstrate improved reliability of rs-fMRI

VSMN maps with higher ICA orders. Failure of rs-fMRI to iden-

tify the VSMN in about one-fifth of patients in our study limits the

ability of rs-fMRI to completely substitute for tb-fMRI for presur-

gical assessment, though it may be considered as a supplement for

tb-fMRI, for example, when task activation is suboptimal. Further

improvements in technique, processing, and analysis methods

may enhance the potential of using rs-fMRI as a substitute or

complement to tb-fMRI in mapping of the VSMN.
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FIG 7. Sample subject (patient 23 in the On-line Table) demonstrating
an expansile mass lesion centered in the postcentral gyrus (arrows).
Signal abnormality is extended to the subcortical white matter of the
precentral gyrus. Red denotes tongue motor task activation, green
denotes the VSMN network identified from rs-fMRI (ICA 50), and
yellow denotes areas of overlap between tb- and rs-fMRI.
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