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ORIGINAL RESEARCH
ADULT BRAIN

The Brain Thermal Response as a Potential Neuroimaging
Biomarker of Cerebrovascular Impairment

X C.C. Fleischer, X J. Wu, X D. Qiu, X S.-E. Park, X F. Nahab, and X S. Dehkharghani

ABSTRACT

BACKGROUND AND PURPOSE: Brain temperature is critical for homeostasis, relating intimately to cerebral perfusion and metabolism.
Cerebral thermometry is historically challenged by the cost and invasiveness of clinical and laboratory methodologies. We propose the use
of noninvasive MR thermometry in patients with cerebrovascular disease, hypothesizing the presence of a measurable brain thermal
response reflecting the tissue hemodynamic state.

MATERIALS AND METHODS: Contemporaneous imaging and MR thermometry were performed in 10 patients (32–68 years of age) undergoing
acetazolamide challenge for chronic, anterior circulation steno-occlusive disease. Cerebrovascular reactivity was calculated with blood oxygen
level–dependent imaging and arterial spin-labeling methods. Brain temperature was calculated pre- and post-acetazolamide using previously
established chemical shift thermometry. Mixed-effects models of the voxelwise relationships between the brain thermal response and cerebro-
vascular reactivity were computed, and the significance of model coefficients was determined with an F test (P � .05).

RESULTS: We observed significant, voxelwise quadratic relationships between cerebrovascular reactivity from blood oxygen level–
dependent imaging and the brain thermal response (x coefficient � 0.052, P � .001; x2coefficient � 0.0068, P � .001) and baseline brain
temperatures (x coefficient � 0.59, P � .008; x2 coefficient � �0.13, P � .001). A significant linear relationship was observed for the brain
thermal response with cerebrovascular reactivity from arterial spin-labeling (P � .001).

CONCLUSIONS: The findings support the presence of a brain thermal response exhibiting complex but significant interactions with tissue
hemodynamics, which we posit to reflect a relative balance of heat-producing versus heat-dissipating tissue states. The brain thermal
response is a potential noninvasive biomarker for cerebrovascular impairment.

ABBREVIATIONS: ACZ � acetazolamide; ASL � arterial spin-labeling; BOLD � blood oxygen level– dependent; BTR � brain thermal response; CMRO2 � cerebral
metabolic rate of oxygen; CVR � cerebrovascular reactivity; MRSI � MR spectroscopic imaging; OEF � oxygen extraction fraction

Chronic cerebrovascular disease remains a common cause of

death and disability. While treatment advances have reduced

stroke rates in such individuals, there exists a subset of patients at

heightened ongoing risk linked to a tenuous state of so-called

misery perfusion and characterized by exhaustion of hemody-

namic compensatory mechanisms.1-4 Although individual pa-

tients may deviate from the proposed paradigm of decompensa-

tion, misery perfusion confers an increased risk for future

ischemic injury, and refined characterization of the pathophysio-

logic underpinnings may allow improved prognostication or

therapy selection in such patients.1,2

Historically, 15O-PET has been used to identify misery perfu-

sion as defined by disturbances in CBF, CBV, oxygen extraction

fraction (OEF), and the cerebral metabolic rate of oxygen

(CMRO2).5-7 Challenges inherent to 15O-PET, including reliance

on short half-life radioisotope tracers and radiation exposure,

compel the development of pragmatic, ideally noninvasive and

noncontrast, MR imaging biomarkers to identify and characterize

misery perfusion. Such approaches would enable safe and repeat-
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able imaging, allowing structural and functional characterization

of the tissue state.8 Among MR imaging techniques, cerebrovas-

cular reactivity (CVR) measured from blood oxygen level– depen-

dent (BOLD) imaging or calculated from arterial spin-labeling

(ASL) has been proposed using hemodynamic augmentation

such as induced hypercapnia or acetazolamide (ACZ) administra-

tion.8-10 Impaired CVR is strongly associated with ischemic risk in

patients with carotid steno-occlusive disease, suggesting that early

identification combined with appropriate intervention may im-

prove outcomes.11,12

Under-represented in such studies is the role of brain temper-

ature, a homeostatic variable inextricably linked to CBF and cere-

bral metabolism.13,14 Increased brain and systemic temperatures

strongly potentiate ischemic injury due to the high sensitivity of neu-

ronal substrate to even small temperature fluctuations.15-19 Cerebral

thermoregulation remains poorly understood, owing to historically

limited methodologies consisting of highly invasive and costly im-

plantable probes. Past study has thus relied primarily on animal

models or used systemic temperature as a surrogate for brain tem-

perature, with limited empirical exploration of the effect of hemody-

namic impairment on thermal dynamics.15,17,20-22

Our goal was to explore the feasibility of a “brain thermal

response” (BTR) as a potential MR neuroimaging biomarker for

hemodynamic impairment by characterizing the relationship be-

tween BTR and CVR. We propose BTR as a measurement of dy-

namic brain temperature fluctuations in response to a hemody-

namic maneuver, hypothesizing the presence of detectable,

coherent temperature response differences paralleling tissue-level

hemodynamic impairment.

MATERIALS AND METHODS
Experimental Design
Retrospective analysis was performed on data acquired in patients

undergoing treatment for chronic, unilateral anterior circulation

steno-occlusive disease and recurring neurovascular events (mi-

nor stroke or transient ischemic attack), referred by a vascular

neurologist to undergo a standardized institutional protocol in

our chronic neurovascular disease patient population. A waiver of

Health Insurance Portability and Accountability Act authoriza-

tion and informed consent was approved by the institutional re-

view board. Exclusion criteria included contraindications to MR im-

aging, renal impairment, sensitivity to sulfa derivatives, extreme head

motion during the scan, or inability to comply with the study proto-

col for 2-day multiphasic MR imaging (3 subjects excluded). After

exclusion, 10 subjects between 32 and 68 years of age (mean, 46 � 13

years) were included in the study (8 women, 32–68 years of age;

mean, 41 � 12 years; 2 men, 56 and 61 years of age).

MR Imaging and Spectroscopy
Subjects completed a standardized, 2-day MR imaging protocol

with ACZ challenge (Fig 1). Multivoxel MR spectroscopic imag-

ing (MRSI), ASL, and BOLD data were acquired both pre- and

post-ACZ. All scanning was performed on a Tim Trio 3T whole-

body MR imaging scanner (Siemens, Erlangen, Germany) with a

32-channel head-array coil. A 3D T1-weighted MPRAGE (TR/

TE � 1900/3.5 ms, T1 � 900 ms, flip angle � 9°, 1 mm isotropic

resolution) anatomic image was used to guide MRSI grid place-

ment and to plan the ASL and BOLD experiments. A 6-minute

multi-TI ASL sequence with background suppression was ac-

quired with a multidelay single-shot 3D gradient- and spin-echo

readout and flow-sensitive alternating inversion recovery tagging

with the following parameters: TR/TE � 3600/19.3 ms, FOV �

320 � 160 mm, section thickness � 3.5 mm, 32 sections, 5 aver-

ages, and 10 postlabel delays: first TI � 300 ms, increment � 300

ms. A 20-minute continuous BOLD study was performed, begin-

ning with 5 minutes of baseline acquisition, after which ACZ (Di-

amox, 1 g dissolved in 10 mL of normal saline) was administered

without scan interruption or patient repositioning. ACZ was de-

livered via slow, manual IV infusion for 3–5 minutes in aliquots of

approximately 2 mL per minute, followed by a normal saline

flush, after which the remaining �10 minutes of continuous and

uninterrupted BOLD imaging was performed. BOLD data were

acquired with a gradient-echo echo-planar imaging sequence

(TR/TE � 2000/30 ms, FOV � 220 mm, matrix � 64 � 64,

section thickness � 4 mm, 30 sections).

MRSI scans for thermometry were acquired pre- and post-

ACZ injection with the semi-localized by adiabatic selective refo-

cusing sequence23-25 with an 8 � 8 voxel ROI with the center of

the grid aligned over the midline of the brain (TR/TE � 1700/35

ms, 3 averages, 10 � 10 � 15 mm3 nominal voxel size, 16 � 16

voxel acquisition matrix with lipid saturation outside the ROI,

50-Hz water-suppression bandwidth).

For each subject, the diseased hemisphere was identified on

contemporaneous 3D time-of-flight brain MRA, as well as on

conventional DSA or CTA when available. All imaging was eval-

uated by a dedicated neuroradiologist with subspecialty certifica-

tion and 8 years of experience in advanced stroke imaging (S.D.),

and a vascular neurologist with �10 years of experience in stroke

and neurovascular imaging (F.N.).

Cerebrovascular Reactivity
CVR pre- versus post-ACZ administration was calculated using

both relative CBF from ASL data (CVRASL) and BOLD signal

augmentation (CVRBOLD). For CVRASL, the CBF map from the

post-ACZ ASL acquisition (CBFpost) was coregistered to the pre-

ACZ CBF (CBFpre) map to correct for motion effects and

smoothed with a Gaussian kernel (full width at half maximum �

8 mm). The raw data were fit with a kinetic model reported else-

where using the inline vendor-supplied processing output.26,27

CVRASL was calculated from Equation 1.

1) CVRASL �
CBFpost � CBFpre

CBFpre
� 100%

CVRBOLD was calculated from BOLD images following realign-

ment to correct for motion and smoothed with a Gaussian kernel

FIG 1. Schematic of MR imaging scan protocol. ACZ was injected 5
minutes after the start of the BOLD sequence and data were acquired
for �10 minutes post-injection. ASL and MRSI were acquired pre- and
post-ACZ.
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(full width at half maximum � 8 mm). The voxelwise mean in-

tensity values from 30 BOLD volumes acquired before ACZ injec-

tion (BOLDpre) and the mean intensity values from the final 30

BOLD volumes (BOLDpost) were calculated. CVRBOLD was then

computed with Equation 2.

2) CVRBOLD �
BOLDpost � BOLDpre

BOLDpre
� 100%

The final CVR maps were coregistered to the T1-weighted images

in the patient coordinate system, to facilitate voxelwise analysis

with the MRSI data, and were resampled to a nominal 1 mm

isotropic resolution. For CVRASL values, augmentation of �30%

was used as a threshold to identify regions of hemodynamic im-

pairment as previously reported.10,28-30 For CVRBOLD, 70% of the

subject-wise mean contralateral CVR value was used as a thresh-

old. The use of an individual cutoff value was chosen to minimize

variation from intersubject BOLD fluctuations. To generate the

CVR maps for display, a brain mask was generated using the T1-

weighted image with the FSL Brain Extraction Tool (http://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/BET),31 and masked CVR color maps

were generated in Matlab (Version 2015a; MathWorks, Natick,

Massachusetts).

Thermometry and Brain Thermal Response
MRSI data for thermometry were processed using LCModel

(http://www.lcmodel.com)32 as reported previously.19,24,25 Tem-

perature analysis and localization of the grid onto CVR maps were

performed using in-house software written in Matlab. Specifi-

cally, absolute temperature was calculated using the difference

between water and NAA proton resonance frequencies and the

relationship �0.01 ppm/°C.33,34 Voxelwise temperature changes

were calculated as a difference between post- and pre-ACZ abso-

lute temperatures (Tpost � Tpre). The unitless parameter, BTR,

was defined as the temperature change normalized to the pre-

ACZ temperature (Equation 3). Temperature maps were calcu-

lated on a voxelwise basis and interpolated using bicubic interpo-

lation for visualization purposes.

3) BTR �
Tpost � Tpre

Tpre

To facilitate the voxelwise analysis between BTR and CVR, the

MRSI grid was localized onto the CVR images. Because the MRSI

grid was planned using the T1-weighted image in the patient co-

ordinate system, the data for both MRSI and CVR use the same

coordinate system. The MRSI grid was first rotated parallel to the

axial plane of the patient coordinate system, followed by a linear

translation of the center of the MRSI grid to the origin (0,0,0 mm).

These same transformations were also applied to the CVR data,

which were then resliced using the trilinear interpolation method

while retaining the nominal 1-mm isotropic resolution. The same

transformation and reslicing were also applied to the T1-weighted

image to visually confirm the location of the MRSI grid onto the

CVR map and to overlay the temperature grid onto the anatomic

image. The final CVR data were interpolated to an 8 � 8 grid

(10 � 10 � 15 mm3 voxel resolution), identical to the MRSI grid,

and an average CVR value was calculated for each MRSI voxel.

Statistical Analysis
Statistical analysis was performed with SPSS (Version 22.0; IBM,

Armonk, New York). Hemispheric comparisons (ipsilateral ver-

sus contralateral) of baseline brain temperature and BTR were

performed for both random and fixed effects. However, most of

the analysis was performed voxelwise to permit comparison of

BTR, baseline brain temperature, and CVR and to explore local-

ized impairment across the entire ROI. The voxelwise relation-

ships among these parameters were determined with a mixed-

effects model (Equation 4), in which y� is the vector of measured

BTR or baseline temperature values; X̂ is a matrix of fixed effects

(CVR, square of CVR, and intercept) and the corresponding vec-

tor of fixed-effect coefficients, �� ; Ẑ is a matrix of random be-

tween-subject variations and the corresponding vector of ran-

dom-effect coefficients, b�; and �� is a vector of random errors.

4) y� � X̂�� � Ẑb� � ��

The restricted maximum likelihood estimation with 150 itera-

tions was used to fit the model using either unstructured or first-

order autoregressive covariance structures, along with a random

intercept to account for multiple nonindependent measurements

from voxels within each subject. The best fit models, comparing

both linear and quadratic models along with different covariance

structures for the random effects, were determined with the

Schwarz Bayesian information criterion and a value of �10 to

establish differences among models.35 In the case in which the

Schwarz Bayesian information criterion was �10, parsimony was

applied for the final model selection. df for the mixed-models

were determined with the Satterthwaite approximation. Expo-

nential models were also explored but did not converge. The sig-

nificance of the regression was determined with the mixed-model

F statistic and P � .05.

RESULTS
Patient characteristics are presented in Table 1. Representative

CVRBOLD and CVRASL augmentation maps, the corresponding

BTR map, and a diffusion-weighted image for a patient with uni-

lateral left middle cerebral artery stenosis are presented in Fig 2.

The position of the MRSI grid is shown in white.

Best-fit models and respective parameters for the voxelwise

relationships are summarized in Table 2. We observed a signif-

icant, positive quadratic relationship for all voxels between

BTR and CVRBOLD (Fig 3; CVR coefficient, P � .001; CVR2

coefficient, P � .001). A significant, negative quadratic rela-

tionship between baseline brain temperature and CVRBOLD

was also observed (CVR coefficient, P � .008; CVR2 coeffi-

cient, P � .001). No significant global relationships were ob-

served with CVRASL.

In the analysis of CVRASL, thresholded and dichotomized into

voxels exhibiting either �30% augmentation (impaired) or

�30% augmentation (healthy), a significant linear relationship

was observed for BTR with CVRASL of �30% augmentation (P �

.001). No significant relationships were observed for the thresh-

olded CVRASL values with baseline brain temperature. Similarly,

we used the CVRBOLD values thresholded subject-wise at �70%

(impaired) or �70% (healthy) of the mean contralateral CVR

augmentation. Significant relationships were observed between

AJNR Am J Neuroradiol ●:● ● 2017 www.ajnr.org 3



BTR and CVRBOLD of �70% (positive quadratic: CVR coeffi-

cient, P � .001; CVR2, coefficient, P � .001) and �70% (linear,

P � .02) of the mean contralateral hemisphere. Additionally,

significant relationships for baseline brain temperature and

CVRBOLD of �70% (negative quadratic: CVR, P � .001; CVR2,

P � .001) and �70% (linear, P � .001) of the contralateral

hemisphere were also observed.

We did not observe a significant difference in BTR (P � .58) or

baseline temperature (P � .38) between the ipsilateral and con-

tralateral hemispheres. However, within-subject variations (ran-

dom-effects, Equation 4) were highly

significant for both BTR (P � .001) and

baseline brain temperature (P � .001).

DISCUSSION
The results support the presence of a

BTR as a potential neuroimaging bio-

marker reflecting a hypothesized, con-

volved interaction of hemodynamic and

metabolic tissue properties. The mea-

surement of a BTR is feasible in routine

clinical MR imaging implementations,

FIG 2. Representative CVR percentage augmentation maps calculated with BOLD and ASL, along with a BTR map overlaid on a T1-weighted
image. Images are all from the same subject (a 32-year-old woman) with unilateral left MCA stenosis without infarction. The white grid overlay
represents the MR thermometry grid derived from multivoxel spectroscopy analysis using the water-NAA chemical shift difference. Diffusion-
weighted imaging demonstrates no evidence for acute infarction. Images are displayed in the radiologic convention. Impaired CVR in the left
hemisphere is present in both BOLD and ASL, with a greater severity of impairment in ASL likely related to delay sensitivity and tag decay (see
text). The BTR map demonstrates an asymmetric thermal response, with less brain cooling following vasodilatory stimulus in the diseased left
hemisphere, indicated by lower and more positive BTR values and corresponding primarily to the areas of greatest impairment in the anterior
and posterior MCA borderzone territories.

Table 1: Patient characteristics
Patient

No.
Age

(years) Sex Presentation and Diagnosis
1 41 F Left-sided-predominate supraclinoid ICA stenosis
2 61 M Left cervical ICA stenosis; aphasia
3 39 F Right-sided-predominate ICA stenosis; recurrent minor stroke
4 32 F Left M1 stenosis; left monocular vision loss and recurrent right hemiparesis
5 56 M Intracranial ICA stenosis; recurrent TIA
6 68 F Left ICA stenosis; recurrent left hemispheric TIA and borderzone ischemia
7 33 F Right-sided-predominate supraclinoid ICA stenosis; Moyamoya disease

following STA-MCA bypass and recurrent TIA
8 36 F Left M1 stenosis; recurrent left deep borderzone ischemia
9 38 F Right-sided-predominate intracranial stenosis; recurrent MCA infarctions
10 51 F Left ICA stenosis; recurrent TIA

Note:—STA indicates superficial temporal artery.

Table 2: Parameter estimates calculated with a mixed-effects model of BTR and baseline brain temperature as a function of CVR
CVR CVR2 Intercept

Coefficient F df a P Value Coefficient F df a P Value Coefficient F df a P Valueb

BTR
CVRBOLD �0.052 74.1 1, 513 �.001 0.0068 57.5 1, 619 �.001 0.031 6.0 1, 35 .02
CVRASL 0.0018 1.2 1, 8.0 .30 – – – – �0.069 205 1, 3.8 �.001
CVRBOLD � 70c �0.096 59.7 1, 97 �.001 0.024 25.0 1, 128 �.001 0.031 2.8 1, 11 .12
CVRBOLD � 70c 0.0070 5.5 1, 200 .02 – – – – �0.081 46.0 1, 51 �.001
CVRASL � 30d 0.0018 1.1 1, 7.4 .33 – – – – �0.068 183.2 1, 69 �.001
CVRASL � 30d 0.0014 12.1 1, 47 .001 – – – – �0.10 33.5 1, 44 �.001

Tpre
e (°C)

CVRBOLD 0.59 7.0 1, 598 .008 �0.13 14.8 1, 630 �.001 37.5 4871 1, 27 �.001
CVRASL �0.039 0.9 1, 7.3 .39 – – – – 38.4 8655 1, 6.0 �.001
CVRBOLD � 70c 2.1 19.5 1, 139 �.001 �0.65 12.9 1, 150 �.001 37.1 1810 1, 17 �.001
CVRBOLD � 70c �0.38 10.7 1, 429 .001 – – – – 39.0 4575 1, 28 �.001
CVRASL � 30d �0.049 1.1 1, 6.8 .34 – – – – 38.5 12,953 1, 6.5 �.001
CVRASL � 30d 0.0026 0.01 1, 198 .91 – – – – 37.5 1094 1, 27 �.001

a df calculated with the Satterthwaite approximation are reported as numerator, denominator.
b P value represents the significance of a nonzero intercept.
c CVRBOLD values thresholded to 70% of the subject-wise mean contralateral value.
d CVRASL values thresholded to 30% augmentation.
e Tpre is the baseline brain temperature.
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with significant relationships identified between both BTR and

baseline brain temperature relative to CVR, supporting further

exploration of BTR as a fully noninvasive and dynamic bio-

marker. The use of voxelwise measurements facilitated a nuanced

description of local hemodynamics and temperature, allowing

contemporaneous, multiparametric classification of the diseased

hemisphere, all potentially achievable in a single imaging session.

MR chemical shift thermometry, exploiting the temperature-de-

pendent difference between water and the methyl proton reso-

nance of NAA, was chosen to approximate temperature using our

previously reported protocol for phantom as well as human and

nonhuman primate in vivo thermometry.19,24,25,33 The present

study takes advantage of the unique pathophysiologic attributes

of chronic cerebrovascular ischemia, in a cohort allowing multi-

phasic interrogation of a flow-temperature relationship, which

may not be pragmatic in the clinical acute stroke setting. Ishigaki

et al36 previously reported the use of PET combined with local-

ized, single-voxel MR spectroscopy– based thermometry to ex-

plore the relationship of brain temperature in steno-occlusive dis-

ease, observing positive correlations between the brain

temperature difference (ipsilateral-contralateral hemisphere)

with both CBV and OEF. A limited number of additional studies

using single-voxel MR spectroscopy thermometry have observed

higher temperatures in ischemic brain tissues, further supporting

the investigation of brain temperature in the development of a

pathophysiologic framework defining cerebral energetics.16,36-38

Our analysis of the relationship between BTR and baseline

brain temperature with CVR was performed voxelwise to exam-

ine whole-brain effects in patients with steno-occlusive disease.

CVR and flow augmentation are generally hypothesized to reduce

brain temperature and might, therefore, have been expected to

produce a negative BTR. Our results were, however, more com-

plex, and the observed flow-temperature relationship may not be

immediately intuitive but, on deeper examination, can be recon-

ciled with prevailing theories regarding cerebral blood flow, tem-

perature, oxygen metabolism, and BOLD signal evolution. Exist-

ing models of cerebral temperature homeostasis propose a

dynamic modulation of heat-producing mechanisms (oxygen

cleavage from hemoglobin, glycolysis, and generation of meta-

bolic by-products) and heat dissipation through the inflow of

cooler systemic blood with lesser contributions from conduction

to the brain surface. This is predicated on the notion of heat sink/

radiator effects of inflowing blood, cooling tissues through the

removal of metabolic waste.

We would also anticipate relative heating among those tissues

with insufficient blood flow to meet metabolic demands. Concep-

tually, a linear or at least monotonically changing thermal re-

sponse as a function of flow might be expected. However, several

factors could interfere with this conceptual framework: 1) the

temperature-flow relationship may vary radially within the brain,

whereby superficial structures closer to the surface CSF are cooler

than arterial inflow, thus warming with increasing flow; and 2)

oxygen extraction, a primary contributor to the production of

thermal waste, may be variably upregulated depending on the

depth of misery perfusion, ostensibly at its highest among tissues

with the most impaired flow. However, as demonstrated in several

past studies, the capacity for flow augmentation may remain even

among tissues with OEF elevation. The downregulation of OEF

among such tissues during hemodynamic augmentation may oc-

cur on a time scale shorter than the duration of the BOLD scan

and therefore shorter than the separation in time between CBF or

thermometry imaging. This may, in part, drive a component of

time shifts observed in BOLD signal augmentation if, for instance,

a very high OEF must be overcome before BOLD augmentation

can be detectable (ie, for deoxyhemoglobin dilution to occur suf-

ficiently).39 Accordingly, CVR augmentation following ACZ was

initially anticipated to produce negative BTR values as a result of

the increased inflow of cooler arterial blood, acting as a heat sink

for warmer cerebral temperatures and removing metabolic by-

products, including thermal waste.

Such interactions could underlie the observed quadratic rela-

tionship between BTR with CVRBOLD, wherein a negative BTR-

CVR relationship was present at a low CVR but a positive trend

was observed for CVRBOLD augmentation upward of approxi-

mately 4%. The far left of the curve follows the expected relation-

ship, with decreasing (ie, more negative) BTR accompanied by

increasing CVR augmentation and, indirectly, CBF. The source of

the observed positive correlation between BTR and CVR above

4% remains inconclusive within the limitations of this explor-

atory analysis, in the absence of concurrent OEF and CMRO2

interrogation (see below).

An opposing relationship (positive-versus-negative quadratic

curve) was observed between baseline brain temperature and

CVRBOLD, suggesting that resting brain temperature alone may

not fully explain the dynamics of the brain temperature response

to a hemodynamic maneuver. This difference may, in part, reflect

that baseline brain temperature is inherently a known indicator of

diseased tissue energetics, with higher temperature associated

positively with hypoperfusion and ischemia.16,19,36-38 The benefit

of BTR is the ability to quantify a maneuver response, thus pro-

ducing a form of physiologic contrast with the potential for char-

acterizing not only static tissue impairment, as with baseline brain

temperatures, but also the dynamics of the hemodynamic re-

FIG 3. Voxelwise relationship of the BTR versus BOLD MR imaging
signal augmentation following ACZ administration. The blue line and
corresponding equation represent the fit of the raw data (circles)
calculated with a mixed-effects model. A significant quadratic rela-
tionship between BTR and CVRBOLD was identified for all voxels,
wherein an initially negative slope is observed at low CVRBOLD but a
positive trend is observed for CVRBOLD augmentation upward of ap-
proximately 4% (see “Results” and “Discussion”; F, x2 � 57.5, P � .001;
F, x � 74.1, P � .001).
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sponse in a manner similar to that of CVR. The overall quadratic

relationships suggest the presence of multiple regimes of temper-

ature regulation or dysregulation across the brain, determined by

additional hemodynamic parameters such as OEF and CMRO2.

In addition to the relationships observed among BTR, baseline

temperature, and CVRBOLD for all voxels, significant associations

were also observed for the CVRBOLD values thresholded to 70% of

the contralateral hemispheres, demonstrating a robust interac-

tion between BTR and CVRBOLD. The use of thresholding to ex-

plore voxelwise relationships enabled discrimination between im-

paired and healthy voxels, given the absence of a healthy control

cohort undergoing the MR imaging ACZ protocol for compari-

son in this study.

Using CVRASL to study the same relationships resulted in a

single significant correlation for BTR with CVRASL of �30%. In-

herent challenges to ASL perfusion in highly delayed or low-flow

environments, such as expected even in compensated territories

downstream from steno-occlusive disease, may impact its use in

this context, even when using multi-TI approaches to the extent

governed by tag decay. We suspect that several, potentially diver-

gent errors in ASL quantitation in such patients may have con-

founded the BTR relationship with CVRASL, among them: 1) ex-

aggerated hypoperfusion if tagged spins are undelivered to the

vascular network at the selected TI; 2) exaggerated hyperperfu-

sion if tagged spins are delivered but linger in the arterial network

overlying the tissue of interest (particularly when crusher gradi-

ents are not used, or when partial volume effects preclude reliable

segmentation of the cortical tissues from such overlying vessels,

both of which exist in our protocol); or 3) exaggerated hypoper-

fusion due to excessive tag decay, which may affect our measure-

ments, particularly at the longest TI of 3000 ms. An additional

circumstance of negative CVRASL, which we have observed to

occur despite preserved BOLD and dynamic susceptibility con-

trast augmentation, exists in tissues with large delays. Arterial

transit artifacts at baseline that spuriously elevate perfusion are

somewhat cleared following ACZ but appear not to increase the

apparent tissue perfusion to the same extent that the arterial tran-

sit artifacts previously had, therefore leading to apparently nega-

tive CVR. While exploratory, we suspect that temperature dy-

namics, together with flow, blood volume, and oxygen use, may

be better subsumed by CVRBOLD, albeit in an entangled manner

requiring deeper, multiparametric study. Taken together, the ob-

served trends imply the presence of at least 2 distinct regimes for

BTR as a function of CVR augmentation: 1) decreasing BTR in

response to increasing CVR (negative relationship) as predicted

from existing models of brain temperature regulation, which we

hypothesize may be dominated by heat-dissipating CBF augmen-

tation over metabolic heat production, with decreasing tempera-

tures in response to ACZ13,14; and 2) a positive BTR-CVR regime

in which increasing CVR augmentation is accompanied by in-

creasing, or more positive, BTR values.

In line with previous work examining hemispheric differences

in the study of hemodynamics and brain temperature,36 we com-

pared BTR and baseline brain temperature across hemispheres.

Our analysis, however, did not reveal differences in baseline brain

temperature and BTR between the ipsilateral and contralateral

hemispheres such as those previously observed following isch-

emic injury.16,36 However, the lack of hemispheric temperature

differences is not surprising because even in cases of unilateral

disease, consequential hemodynamic impairment may not be

limited to the affected hemisphere and compromised function

and tissue damage may exist bilaterally and heterogeneously.3

Consequently, temperature differences resulting from impaired

cerebral perfusion and impaired autoregulation may be averaged

out in coarse hemispheric comparisons. Nevertheless, the pres-

ence of significant random-effects differences in BTR and baseline

brain temperature between hemispheres could suggest that in a

larger sample size, a difference may exist.

We acknowledge several study limitations. While it was de-

signed to test our hypothesis regarding the association between

brain temperature changes and hemodynamic augmentation, the

lengthy, multiparametric protocol necessitated a 2-day study,

which limited the sample size. The findings nevertheless empha-

size the feasibility of dynamic brain thermometry in this setting

and compel more rigorous study of BTR as a prognostic bio-

marker. A challenge in the analysis was the observation of negative

CVR values, suggesting the possibility of vascular steal and limi-

tations in the measurement of CBF.10,29 As discussed above, sev-

eral possible mechanisms may contribute to negative CVR values,

particularly arterial transit artifacts, collateral rather than antero-

grade flow after ACZ, and the time scale of ASL-based measures of

CVR. These may also contribute to spuriously high CVR values.

As a result, continuous BOLD measurements may be a more re-

liable surrogate for the hemodynamic response to ACZ. The tem-

poral dynamics of the ACZ response are worth considering. To

mitigate potential errors related to a rapidly changing baseline,

the initial BOLD signal used for CVRBOLD in our study was de-

rived from a pre-ACZ phase of the examination spanning the

initial 5 minutes of BOLD acquisition. A uniform protocol was

prescribed in which a slow infusion of ACZ was then administered

for 3–5 minutes without patient repositioning or scan interrup-

tion, followed by �10 more minutes of uninterrupted BOLD sig-

nal acquisition. It was recently reported that CVRBOLD increases

continuously following ACZ administration, reaching a plateau at

approximately 8.5 minutes, which continues through the remain-

der of the acquisition.40 While CVR delays beyond 20 minutes are

difficult to exclude, we expect that the window of maximal aug-

mentation is likely captured within this study design.

While we cannot conclusively parcellate the competing hemo-

dynamic effects from the technical challenges, further studies with

MR-based methods to characterize functional activity, CBF, and

metabolism in cerebrovascular disease would complement our

results. While direct estimation of OEF and CMRO2 with MR-

based techniques remains challenging, ongoing efforts to opti-

mize MR oximetry measurements will enable further studies into

the relationship of BTR with these metabolic parameters.8 A more

thorough description could be facilitated through study of a

healthy control population; however, administration of intrave-

nous vasodilatory stimuli is not common practice in our experi-

ence. Other approaches such as induced hypercapnia or breath-

hold may be valuable in this regard, though the mechanism,

depth, and magnitude of flow augmentation may differ. Last, the

relatively small sample size and limited longitudinal follow-up

information in this cohort of patients limit our characterization of
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BTR as a prognostic tool to predict future stroke risk in such

patients. Further study in a larger and, ideally, prospectively col-

lected cohort is warranted to better assess the prognostic power of

BTR in a clinical population.

CONCLUSIONS
These findings suggest the feasibility and potential utility of non-

invasive brain thermometry during the dynamic modulation of

CBF and CVR, supporting further exploration of BTR as a poten-

tial biomarker in patients with steno-occlusive cerebrovascular

disease. These results compel further study into the mechanistic

nature of cerebral temperature regulation and the potential use of

noninvasive MR thermometry in the diagnosis, prognostication,

and treatment selection in chronic steno-occlusive disease.
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