
of April 20, 2024.
This information is current as

Multicenter Dataset
Atrophy Rate Measurement in a Large 
Reproducibility of Deep Gray Matter

Alzheimer's Disease Neuroimaging Initiative
van Schijndel, K.S. Cover, H. Vrenken and for the 
A. Meijerman, H. Amiri, M.D. Steenwijk, M.A. Jonker, R.A.

http://www.ajnr.org/content/early/2017/11/30/ajnr.A5459
2017

 published online 30 NovemberAJNR Am J Neuroradiol 

http://www.ajnr.org/cgi/adclick/?ad=57533&adclick=true&url=https%3A%2F%2Flinkprotect.cudasvc.com%2Furl%3Fa%3Dhttps%253a%252f%252fwww.genericcontrastagents.com%252f%253futm_source%253dAmerican_Journal_Neuroradiology%2526utm_medium%253dPDF_Banner%2526utm_c
http://www.ajnr.org/content/early/2017/11/30/ajnr.A5459


ORIGINAL RESEARCH
ADULT BRAIN

Reproducibility of Deep Gray Matter Atrophy Rate
Measurement in a Large Multicenter Dataset

X A. Meijerman, X H. Amiri, X M.D. Steenwijk, X M.A. Jonker, X R.A. van Schijndel, X K.S. Cover, and X H. Vrenken, for the
Alzheimer’s Disease Neuroimaging Initiative

ABSTRACT

BACKGROUND AND PURPOSE: Precise in vivo measurement of deep GM volume change is a highly demanded prerequisite for an
adequate evaluation of disease progression and new treatments. However, quantitative data on the reproducibility of deep GM structure
volumetry are not yet available. In this paper we aim to investigate this reproducibility using a large multicenter dataset.

MATERIALS AND METHODS: We have assessed the reproducibility of 2 automated segmentation software packages (FreeSurfer and the
FMRIB Integrated Registration and Segmentation Tool) by quantifying the volume changes of deep GM structures by using back-to-back
MR imaging scans from the Alzheimer Disease Neuroimaging Initiative’s multicenter dataset. Five hundred sixty-two subjects with scans at
baseline and 1 year were included. Reproducibility was investigated in the bilateral caudate nucleus, putamen, amygdala, globus pallidus,
and thalamus by carrying out descriptives as well as multilevel and variance component analysis.

RESULTS: Median absolute back-to-back differences varied between GM structures, ranging from 59.6 –156.4 �L for volume change, and
1.26%– 8.63% for percentage volume change. FreeSurfer had a better performance for the outcome of longitudinal volume change for the
bilateral amygdala, putamen, left caudate nucleus (P � .005), and right thalamus (P � .001). For longitudinal percentage volume change,
Freesurfer performed better for the left amygdala, bilateral caudate nucleus, and left putamen (P � .001). Smaller limits of agreement were
found for FreeSurfer for both outcomes for all GM structures except the globus pallidus. Our results showed that back-to-back differ-
ences in 1-year percentage volume change were approximately 1.5–3.5 times larger than the mean measured 1-year volume change of those
structures.

CONCLUSIONS: Longitudinal deep GM atrophy measures should be interpreted with caution. Furthermore, deep GM atrophy measure-
ment techniques require substantially improved reproducibility, specifically when aiming for personalized medicine.

ABBREVIATIONS: AD � Alzheimer disease; ADNI � Alzheimer Disease Neuroimaging Initiative; BTB � back-to-back; FIRST � FMRIB Integrated Registration and
Segmentation Tool; LoA � limit of agreement; MCI � mild cognitive impairment; SEM � standard error of measurement

Neurodegeneration occurs in Alzheimer disease (AD). The

process is characterized by neuronal loss and axonal and

synaptic degeneration.1-4 Growing evidence reveals that this pro-

cess happens within early phases of the disease and before making
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a clinical diagnosis.5,6 The development of neurodegeneration on

a large scale during disease leads to loss of tissue volume (the

so-called atrophy), which can be quantified by using structural

MR imaging.

Atrophy has been found to be associated with impaired neu-

rologic and neurocognitive performance.7-10 More recently, re-

search revealed that deep GM atrophy specifically plays an impor-

tant role in the characterization, course, and progression of

AD11-17 and in other diseases like MS18-20 and Parkinson dis-

ease.21-23 Measurements of deep GM atrophy could therefore be

of importance in the evaluation of neuroprotective treatment (eg,

in investigating drug efficacy). Currently, a growing number of

clinical trials are incorporating brain volume changes as an early

biomarker.24 To use atrophy as a reliable biomarker for the extent

of neurodegeneration and axonal damage, the precision and re-

producibility of volume change measurement techniques should

be evaluated. Of note, having precise and reproducible methods

would increase statistical power, which reduces sample sizes for

detecting effects in clinical trials.

Among automated tissue segmentation software for deep GM

structures, FreeSurfer (http://surfer.nmr.mgh.harvard.edu)25 and

the FMRIB Integrated Registration and Segmentation Tool (FIRST;

part of FSL, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST)26-29 are freely

available and widely used. Whereas FreeSurfer has a longitudinal

pipeline by which multiple time points can be analyzed, FIRST is a

cross-sectional technique that analyses only a single time point. De-

spite the importance of the measurement of deep GM atrophy rate,

little is known about reproducibility of the measurements over time

in large multicenter datasets.

In this paper, to assess reproducibility, we used data from the

Alzheimer Disease Neuroimaging Initiative (ADNI) study30 ac-

quired at 1.5T, including 2 back-to-back (BTB) 3D T1-weighted

images at each time point.31 We quantified reproducibility by

using BTB differences of 1-year volume change and of percentage

volume change for the bilateral amygdala, caudate nucleus, glo-

bus pallidus, putamen, and thalamus. To this end, we used 3 dif-

ferent statistical methods. First, we used descriptive statistics by

which median absolute differences are reported. This method is

frequently used, but its outcome measures cannot be compared

statistically between methods. Therefore, we additionally used an-

alytical statistics based on the difference in the regression coeffi-

cient. Lastly, we used the method of determination of the standard

error of measurement, which very precisely maps reproducibility

by modeling different components related to variability in BTB

measures.

MATERIALS AND METHODS
ADNI Dataset
Data used in this study were taken from the ADNI1 study.30

The primary goal of the ADNI has been to test whether serial

MR imaging, PET, other biologic markers, and clinical and

neuropsychologic assessments can be combined to measure

the progression of mild cognitive impairment (MCI) and early

AD.

A total of 800 included subjects from 55 sites in the US and

Canada were enrolled between 2004 and 2010 and were followed

up in a 2- to 3-year time interval. Written informed consent was

obtained before each baseline visit. Inclusion criteria were age

between 55–90 years, having a study partner able to provide an

independent evaluation of functioning, and speaking either Eng-

lish or Spanish. All subjects were willing and able to undergo all

test procedures including neuroimaging and agreed to longitudi-

nal follow-up. Exclusion criteria were specific psychoactive med-

ications. For control subjects, inclusion criteria were as follows:

Mini-Mental State Examination scores between 24 –30 (inclu-

sive), a clinical dementia rating of 0, and no history of depression,

MCI, and dementia. The age range was matched to that of MCI

and AD subjects. For subjects with MCI, inclusion criteria were as

follows: Mini-Mental State Examination scores between 24 –30

(inclusive), a memory complaint, objective memory loss mea-

sured by education-adjusted scores on the Wechsler Memory

Scale Logical Memory II, a clinical dementia rating of 0.5, absence

of high levels of impairment in other cognitive domains, essen-

tially preserved activities of daily living, and an absence of demen-

tia. For subjects with mild AD, inclusion criteria were as follows:

Mini-Mental State Examination scores between 20 –26 (inclu-

sive), clinical dementia rating of 0.5 or 1.0, and meets National

Institute of Neurological and Communicative Disorders and

Stroke/Alzheimer’s Disease and Related Disorders Association

criteria for probable AD. A standardized imaging protocol carried

out over qualified sites included the acquisition of 2 sequential 3D

T1-weighted MPRAGE scans (ie, BTB) at baseline and at the

1-year study time point.32

Subjects
Our study involved 562 subjects who had exactly 2 MPRAGE

scans acquired at both the baseline and at 1 year, with 3D T1-

weighted BTB images acquired at both time points at 1.5T. Three

hundred twenty-two (57.3%) subjects were male and 240 (42.7%)

were female. The median age at baseline was 75.3 years (inter-

quartile range, 8.7). One hundred fourteen (30.4%) were diag-

nosed with probable AD, 277 (49.3%) with MCI, and 171 (20.3%)

were healthy controls. Data were requested after written compli-

ance to the ADNI data use agreement and data sharing policy and

were obtained from the ADNI data image and data archive LONI

(Laboratory of Neuro Imaging; http://adni.loni.usc.edu). All

data were received anonymized by ADNI procedures and with

assignment of a unique ADNI study number to subjects.

Volumetric Measurements
MR image acquisition included standard automated adjustments

with no additional postprocessing such as intensity nonunifor-

mity correction or gradient warp correction. DICOM images of

subjects were converted to NIfTI format for further processing

by using dicom2nifti (http://www.cabiatl.com/mricro/mricron/

dcm2nii.html).

Automated deep GM segmentations were performed on the

NCAgrid (a 64-bit Linux computer cluster with 512 cores) by

using 2 freely available and frequently used software packages:

FreeSurfer version 5.3.025 and FIRST implemented in FSL version

5.0.8.26-29

For FreeSurfer, images were segmented by using the longitu-

dinal image processing stream, which analyzes 2 time points si-

multaneously to improve the estimation of volumes and volume
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change. Within FIRST, the default parameters were used.25 Seg-

mentations were carried out for both BTB scans at baseline and at

the 1-year study time point, leading to a total number of 134,880

segmentations.

Outcome Measures
The 2 derived main outcome measures in our study were the

longitudinal volume change and percentage volume change. The

volume change (�V, in �L) was calculated for each longitudinal

scan pair (two BTB1 and two BTB2) as:

�V1 � VYear 1(BTB1) � VBaseline(BTB1)

and

�V2 � VYear 1(BTB2) � VBaseline(BTB2)

The percentage volume change for both �V1 and �V2 was calcu-

lated separately as:

100 � (�V � VBaseline)

Fig 1 schematically shows study time points and the calculation

of the volume change and percentage volume change by using BTB

scans.

In both BTB scans (BTB1 and BTB2), at each time point, the brain

is assumed to be identical; therefore �V2 � �V1 can be used as a

measure of reproducibility for each outcome measure (ie, absolute

and percentage volume change).

Statistical Analysis
Data distribution and missing data were carefully checked before

all statistical analyses. Reproducibility according to BTB scans is

reported by using 3 methods of analysis for both software pack-

ages. First, we used median absolute BTB differences. Second, we

compared the absolute BTB differences based on differences in

the regression coefficient (effect size). This involved the construc-

tion of separate linear multilevel models for each deep GM struc-

ture and each hemisphere. Data were natural log-transformed

before analysis to avoid fitting the model to a skewed distribution

of our data. In our multilevel models, a random intercept was

chosen to correct for the dependency of observations clustering

within each same subject. Variance around the intercept was as-

sumed to be normally distributed. Statistics were reported as P

values, back-transformed effect sizes, and their corresponding

95% confidence intervals.

Finally, as a third method, we assessed reproducibility by de-

termining the limit of agreement (LoA), which is considered as a

very sensitive method of analysis.33-35

This was done by constructing separate
linear multilevel models for each deep

GM structure summing the variance

components attributable to BTB scans

to determine the level of random bias in

both outcome variables. Because the

method is based on variance, contrary to

the first 2 methods, it uses the original

(nonabsolute) values of each volume

change analysis. Fixed factors in our
multilevel model included hemisphere,

software package (FreeSurfer or FIRST),

sex, diagnostic group, and all possible interactions between these

variables. Random factors in the model included hemispheres,

software package, time point, all possible interactions between

them, and the use of a random intercept on the subject level.

Nesting of the factors was carried out according to the method

described by Mulder and colleagues.35 We used restricted maxi-

mum likelihood as the estimating procedure in all multilevel anal-

yses and assumed an independent covariance matrix. The best

fitting model to the data was then chosen based on the lowest

Akaike information criterion. Interscan standard errors of mea-

surement (SEMs) attributable to BTB scans for each software

package were calculated by summing the random variance

components of the multilevel models related to BTB (ie, the

variance attributable to the interaction between the random

chosen variables and time point; see Equation 1 below). The

separate variance components required to sum SEM were as-

sumed to be independent of each other. The variance compo-

nent containing the highest interaction (ie, �2 [time point �

hemisphere � software package) was considered to be com-

pletely part of the error variance in our calculations. Further-

more, all variance components containing a time point were

allowed to vary within software package.

1) SEM2 � �2 (time point) � �2 (time point

� hemisphere) � �2 (time point

� software package) � �2 (error)

Then, LoA, as a measure of reproducibility, was derived and re-

ported from the SEM for each software package by using Equation 2.

The lower the LoA, the better the reproducibility.

2) LoA � 	1.96 � 
2 � SEM

The quality of all MR images was inspected visually. Regarding the

quality of the segmentation, we identified severe outliers based on

implausible results of the outcome measures. Implausible outliers in

terms of longitudinal volume change or percentage longitudinal vol-

ume change were considered to be a consequence of a failure in seg-

mentation. An implausible outlier was identified if the longitudinal

BTB difference was more than 25% of its corresponding baseline vol-

ume. We created separate linear multilevel models with and without

implausible large outliers to evaluate their impact on our SEM. These

outliers were treated as missing data in our final analysis. In addition,

we compared the number of outliers between FreeSurfer and FIRST

in all deep GM structures. This was carried out by using the binominal

FIG 1. Scheme showing both BTB scans at each time point and calculation of the volume change
and percentage volume change.
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test, which tested an equal distribution of the number of outliers for

both FreeSurfer and FIRST.

For illustrating agreement, Bland-Altman plots were created. A

Bland-Altman plot represents the difference in BTB of an outcome

measure versus its mean.36,37 We created plots for both outcome mea-

sures of FreeSurfer and FIRST, with and without implausible outliers.

In this paper, for this method, we present the results of analysis per-

formed on data excluding implausible outliers.

All statistical analysis was carried out by using SPSS version 21

(IBM, Armonk, New York) except for the modeling of data to obtain

SEM and derived LoAs, which was carried out by using SAS Studio

version 3.4 (SAS Institute, Cary, North
Carolina). The level of significance in our
models was set to 0.05 (5%).

RESULTS
Median follow-up time (�2 � 1.566; df,
2; P � .45) and age (�2 � 0.992; df, 2;
P � .60) did not differ between the 3
study groups. To enable a direct com-
parison of reproducibility metrics to the
measured (percentage) volume change
values, nonannualized median atrophy
rates are presented in Table 1. As ex-
pected, atrophy rates were generally
higher in patients with AD compared
with patients with MCI and control pa-
tients, with the highest rates found for
the amygdala. For 2 different male
healthy control patients, FreeSurfer and
FIRST segmentation failed. Therefore,
for each software package, 561 subjects
were included in the longitudinal data
analysis. A typical example of FreeSurfer
and FIRST segmentations is shown in
Fig 2. BTB differences are illustrated by
the example in Fig 3, which shows Bland-

Altman plots of BTB difference in longitu-

dinal volume change for the left caudate nucleus for both FreeSurfer

and FIRST, excluding the improbable outliers.

Descriptive Statistics
Descriptive statistics for each hemisphere for each deep GM

structure for measuring longitudinal volume change and lon-

gitudinal percentage volume change are presented in Tables 2

and 3, respectively. Based on these reported descriptive statis-

tics (median absolute BTB differences with corresponding

90th percentile indicating spread), as expected, the smaller

FIG 2. A, An example of a 3D T1-weighted image segmented with B, FIRST and C, FreeSurfer.

Table 1: Nonannualized atrophy rates for deep GM structures for each hemisphere per group

GM Structure Software Hemisphere
Atrophy Rate for

Control Patients, %
Atrophy Rate for

Patients with MCI, %
Atrophy Rate

for Patients with AD, %
Caudate nucleus FreeSurfer Left �0.33 �0.95 �1.63

FIRST Left �0.84 �0.78 �1.72
FreeSurfer Right �0.35 �0.78 �1.58
FIRST Right �1.07 �0.66 �1.42

Putamen FreeSurfer Left �0.04 �0.69 �2.50
FIRST Left �0.44 �1.20 �2.16
FreeSurfer Right �0.37 �0.73 �1.72
FIRST Right �0.61 �1.11 �1.71

Amygdala FreeSurfer Left �0.56 �2.70 �4.67
FIRST Left �0.90 �1.59 �4.36
FreeSurfer Right �0.70 �2.25 �3.95
FIRST Right �0.38 �3.60 �3.57

Globus pallidus FreeSurfer Left �0.45 0.25 0.58
FIRST Left �0.10 �0.92 �1.43
FreeSurfer Right �0.11 �0.38 �0.50
FIRST Right �0.67 �0.90 �1.87

Thalamus FreeSurfer Left �0.88 �1.69 �2.06
FIRST Left �0.90 �0.85 �1.05
FreeSurfer Right �0.78 �1.38 �2.29
FIRST Right �0.62 �0.71 �0.94
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deep GM structures tended to have smaller BTB differences in

longitudinal volume change and larger BTB differences in per-

centage volume change.

Effect Sizes
Effect sizes, based on the difference in the regression coefficient,

corresponding P values, and 95% confidence intervals of compar-

ison between segmentation by using FreeSurfer and FIRST are

presented in Tables 2 and 3. The effect size in these Tables can be

interpreted as the mean improvement of reproducibility in both

longitudinal outcome variables when switching from FSL to Free-

Surfer. For the outcome measure of the absolute BTB difference in

longitudinal volume change, FreeSurfer performed significantly

better than FIRST for the left and right amygdala (both P � .001),

left caudate nucleus (P � .003), left (P � .001) and right (P �

.003) putamen, and right thalamus (P � .001). Concerning the

outcome measure of the absolute BTB difference in longitudinal

percentage volume change, FreeSurfer performed significantly

better than FIRST for the left amygdala (P � .02), left (P � .002)

and right (P � .004) caudate nucleus, and left putamen (P �

.001). For the right amygdala and putamen, results are not pre-

sented because of lack of validity caused by failures in model fit.

Outliers
For the right amygdala, number of outliers were significantly dif-

ferent in all groups, when comparing 2 segmentation software

packages (P � .002). This difference was not significant for other

structures. Table 4 shows the number of excluded cases (extreme

FIG 3. Bland-Altman plots for the left caudate nucleus, presented for the outcome measures of BTB difference in longitudinal volume change,
to illustrate agreement for A, FreeSurfer and B, FIRST. Plots show the difference between the 2 measurements (ie, the “BTB difference”) along
the vertical axis versus the mean of the 2 measurements along the horizontal axis. LoAs for FreeSurfer are obviously smaller (ie, better
reproducibility) than those of FIRST.

Table 2: Median absolute BTB difference in longitudinal volume change for each deep GM structure for both hemispheres. Effect size,
corresponding 95% confidence CI, and P values based on linear multilevel modelling are also presented

GM Structure Software Hemisphere
Median Absolute

Difference, �l
90th

Percentile P Value Effect 95% CI Lower 95% CI Upper
Caudate nucleus FreeSurfer Left 71.80 219.88 .003 0.82 0.72 0.93

FIRST Left 85.84 442.31
FreeSurfer Right 74.20 253.22 .09 0.90 0.79 1.02
FIRST Right 87.26 264.69

Putamen FreeSurfer Left 117.00 315.58 �.001 0.73 0.64 0.84
FIRST Left 156.39 412.49
FreeSurfer Right 114.30 326.22 .003 0.77 0.64 0.91
FIRST Right 142.44 406.71

Amygdala FreeSurfer Left 63.50 173.60 �.001 0.76 0.66 0.87
FIRST Left 84.38 260.14
FreeSurfer Right 77.00 196.54 �.001 0.73 0.64 0.83
FIRST Right 101.25 331.70

Globus pallidus FreeSurfer Left 59.60 180.56 .75 1.03 0.87 1.22
FIRST Left 62.05 185.44
FreeSurfer Right 60.00 164.38 .48 0.96 0.85 1.08
FIRST Right 60.06 200.23

Thalamus FreeSurfer Left 100.90 315.08 .10 1.13 0.98 1.30
FIRST Left 91.76 262.30
FreeSurfer Right 88.20 243.46 �.001 0.78 0.69 0.89
FIRST Right 114.81 308.71
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outliers) for each deep GM structure and their proportion within

each segmentation software used and the total sample size. The

proportion of excluded cases was relatively small in the total sam-

ple of data; however it turned out to be more frequent when using

FIRST compared with FreeSurfer.

Limits of Agreement
Based on our third method to evaluate reproducibility, values for the

LoAs of FreeSurfer and FIRST derived from linear multilevel model-

ing are reported in Table 5. This analysis showed a visible trend for a

better performance of FreeSurfer for both the measurement of lon-

gitudinal volume change and longitudinal percentage volume

change, except for the globus pallidus, for which FIRST performed

better. There was also a trend for an influence of the typical cross-

sectional volume of a structure. Smaller deep GM structures showed

smaller LoAs for longitudinal volume change measurement and

larger LoAs for longitudinal percentage volume change.

DISCUSSION
Brain atrophy reflecting neurodegeneration and neuroaxonal

damage is known to be an important characteristic of diseases like

AD and MS. In the current study, we investigated the reproduc-

ibility of volume change and percentage volume change measure-

ment of 5 deep GM structures in a large multicenter dataset. To

this end, we used 2 frequently used segmentation software pack-

ages, FreeSurfer and FIRST.

It is worth mentioning that FreeSurfer does provide a longitu-

dinal pipeline to analyze multiple time points whereas FIRST only

offers a cross-sectional analysis. Strikingly, for both software

packages, the reproducibility error was comparable with the mea-

sured atrophy rates. Our results showed that BTB differences in

1-year percentage volume change (ranging from 1.26% for left

thalamus to 8.63% for right amygdala) were roughly 1.5–3.5 times

larger than the average atrophy rates of these deep GM structures

(approximately 0.9% and 2.5%, respectively).

We used 3 different statistical methods that complement each

other. Although reporting median and 90th percentile absolute

differences alone is an easy and robust way to interpret results,

statistical comparison in outcome measurements between meth-

ods of segmentation is not possible. Therefore, we next performed

additional analytical statistics based on the difference in the re-

gression coefficient. Finally, we used the method of determination

of SEM, which provides a very precise way to map reproducibility

and allows modeling of different sources of variability. This

method is also proposed to be applied in determining agreement

to map measurement error, an important measurement property

in medicine.33,34,38 The sensitivity of this method is mainly attrib-

utable to the determination of specific variance components of a

model, from which LoAs can be determined. In addition, the SEM

method is a more suitable way for determining specific random

variance in an outcome measure, which could provide additional

information of the estimation of variance in a population. Using a

large ADNI dataset makes such estimations more accurate. An-

other advantage of this method is that it is based on spread, con-

trary to the second regression-based method, and instead of

Table 3: Median absolute BTB difference in longitudinal percentage volume change for each deep GM structure for both hemispheres.
Effect size, corresponding 95% CI and P values based on linear multilevel modelling are also presented

GM Structure Software Hemisphere
Median Absolute

Difference, %
90th

Percentile P Value Effect 95% CI Lower 95% CI Upper
Caudate nucleus FreeSurfer Left 2.04 6.04 .002 0.09 0.02 0.41

FIRST Left 2.71 13.37
FreeSurfer Right 2.08 6.92 .004 0.16 0.05 0.55
FIRST Right 2.63 8.15

Putamena FreeSurfer Left 2.48 6.87 �.001 0.07 0.02 0.29
FIRST Left 3.43 9.51
FreeSurfer Right 2.46 6.77 NA NA NA NA
FIRST Right 3.32 9.48

Amygdalaa FreeSurfer Left 6.14 17.64 .02 0.07 0.01 0.69
FIRST Left 6.60 21.29
FreeSurfer Right 6.24 16.52 NA NA NA NA
FIRST Right 8.63 28.95

Globus pallidus FreeSurfer Left 4.32 13.04 .49 1.63 0.40 6.63
FIRST Left 3.65 10.92
FreeSurfer Right 4.30 12.22 .94 0.95 0.29 3.17
FIRST Right 3.54 11.75

Thalamus FreeSurfer Left 1.52 4.61 .33 0.62 0.23 1.64
FIRST Left 1.26 3.53
FreeSurfer Right 1.41 3.82 .05 0.33 0.11 1.01
FIRST Right 1.59 4.31

Note:—NA indicates not available.
a For the right amygdala and putamen, results are not presented because of lack of validity caused by failures in the model fit.

Table 4: Number and proportion of excluded cases (extreme
outliers) presented for each software for each deep GM
structure

GM Structure Software
Number of

Outliers
% Within

Segmentation

% Within
Total

Sample
Caudate nucleus FreeSurfer 1 2.8 0.02

FIRST 35 97.2 0.77
Putamen FreeSurfer 0 0.0 0.00

FIRST 37 100.0 0.82
Amygdala FreeSurfer 33 17.8 0.73

FIRST 152 82.2 3.38
Globus pallidus FreeSurfer 21 39.6 0.46

FIRST 32 60.4 0.71
Thalamus FreeSurfer 0 0.0 0.00

FIRST 29 100.0 0.64
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signed or absolute BTB differences, the clinical variables of inter-

est (eg, volume change, percentage volume change) are modeled

directly. This method for determining LoAs, however, is strongly

affected by large outliers, and its procedure is much more costly

and time-consuming.

Both methods of analytical statistics, namely determination of

SEM with derived LoAs and the method based on difference in the

regression coefficient, were carried out by using linear multilevel

modeling. The general advantages of linear multilevel analysis are

its flexibility in dealing with missing data, the ability to objectively

include factors and covariates into 1 whole model, and a necessary

applied correction for the dependency of data for measurements

within the same subjects.39,40

For both software packages, the reproducibility error was sub-

stantial compared with the measured atrophy (see Table 1 for the

measured atrophy). However, FreeSurfer had better reproducibil-

ity compared with FIRST within the whole longitudinal outcome

spectrum (except for globus pallidus), though the differences

were not very large. The reproducibility was dependent on the

structure baseline volume and also on the desired outcome mea-

sure (ie, volume change or percentage volume change). For ex-

ample, compared with larger structures, smaller GM structures

had smaller reproducibility errors for volume change and larger

reproducibility errors for percentage volume change. For the

structures measured in our study, when measuring the longitudi-

nal volume change, the larger GM structures (putamen and thal-

amus) had BTB differences roughly twice as large as smaller struc-

tures (amygdala, globus pallidus), whereas for the outcome of

longitudinal percentage volume change, this was reversed: here,

larger structures outperformed smaller structures by approxi-

mately a factor of 5. A study on cross-sectional volume measure-

ment by using FreeSurfer,41 reported generally larger relative

scan–rescan errors for smaller structures. Such variability could

cause poorer reproducibility of longitudinal volume change for

smaller structures.

This poor reproducibility could be linked to the poor delinea-

tion of such brain structures by using automated software. To

improve this, increase in the SNR and contrast-to-noise ratio (eg,

by increasing the field strength or by further optimization of the

acquisition) are recommended. In addition, multimodal segmen-

tation, which includes other tissue information such as diffusion

and susceptibility, could increase the accuracy and reproducibil-

ity of the segmentation and volume estimation.

Our study had some limitations. Because of the very large

number of segmentations performed, visual inspection of seg-

mentation results was impractical. However, we used an auto-

mated method to exclude gross segmentation errors by using the

BTB information. The very few occurring implausible outliers in

our outcome measures were assumed to be caused by incorrect

segmentations of 1 or more scans of that subject. To identify such

gross outliers without excluding true atrophies, we applied a very

wide cutoff criterion of 25% in longitudinal volume change or in

percentage volume change compared with the baseline. As ex-

pected, the LoAs were very large when including the improbable

outliers.

CONCLUSIONS
We provided quantitative information for 5 deep GM structures

by using the widely used segmentation algorithms FreeSurfer and

FIRST by 3 different methods of analysis. In general, FreeSurfer

performance was better than that of FIRST. However, our results

showed that BTB differences in 1-year percentage volume change

were roughly 1.5–3.5 times larger than the atrophy rates of those

deep GM structures. This suggests that longitudinal deep GM

atrophy measures should be interpreted with caution. Finally, to

provide a reliable additional biomarker, deep GM atrophy measure-

ment techniques require substantially improved reproducibility, spe-

cifically when aiming for personalized medicine.
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