






tected on CT (see subsequent “CT” section). The fluid sign has

proved to be a strong indicator of benign VCFs in prediction

models, though rarely it can develop in malignant VCFs.9,18,19,26

Use of postgadolinium T1WI, ideally with fat suppression,

may also yield beneficial information.11-13,15,16 As described

above, findings in the epidural and paravertebral spaces on post-

contrast MR imaging can help discriminate benign and malignant

VCFs. In addition, the pattern and degree of intraosseous en-

hancement relative to normal adjacent vertebrae or noncontrast

T1WI help to distinguish benign from malignant VCFs. Hetero-

geneous and relatively increased enhancement tends to be an in-

dicator of malignancy (Fig 5).12,13,15 Typically benign fractures

will have enhancement that is equivalent to adjacent normal ver-

tebrae, the so-called “return to normal signal intensity,” with ad-

ditional horizontal bands of high or low SI parallel to the fractured

endplate.12,13,15 In certain cases, an initial MR imaging, even with

contrast, can be equivocal or can suggest malignancy even when

clinical and other diagnostic tests do not indicate it. In equivo-

cal cases, 1 option for problem solving is a follow-up gadolin-

ium-enhanced MR imaging performed 2–3 months later. Be-

nign VCFs will typically show a decrease or resolution of

enhancement, while malignant VCFs will demonstrate persis-

tent or progressive enhancement.28

Diffusion-Weighted Imaging. Application of DWI in relation to

VCF evaluation is relatively new. As with its use intracranially, the

technique is based on the ability to measure changes in the mo-

bility of water molecules (Brownian motion) in various tissues.30

Diffusion is presumed to be increased in osteoporotic fractures

due to bone marrow edema, which allows relatively unimpeded

extracellular water molecule movement (Fig 9). With malignant

VCF, diffusion is predicted to be restricted due to the typically

high cellularity of tumor tissue (Fig 9).31 Restricted diffusion will

appear as a hyperintensity, signifying tumor on DWI, with corre-

sponding hypointensity on apparent coefficient images, whereas

benign edema will be hypo- or isointense on DWI.31,32

DWI can also be quantitatively assessed. An ROI is selected

within the vertebrae, and an ADC value is calculated. The ADC

value is a measure of water molecule displacement per unit of

time, with units of square millimeters/second.30 Multiple MR im-

aging sequences have been explored to maximize the distinction

between the signal intensity and ADC values of benign and malig-

nant VCFs, including steady-state precession, spin-echo, fast spin-

echo, echo-planar imaging, and single-shot fast spin-echo diffusion-

weighted techniques, as well as optimization of b-values.18,27,30,32-45

The results have been mixed because some of these studies can sep-

arate benign and malignant VCFs similar to conventional MR imag-

ing, while others fail to find similar conclusions. Thus, it is unclear

whether DWI provides an advantage over conventional MR imag-

ing.27 One possible reason for conflicting results is the presence of

intravertebral hematoma. One study evaluated patients with low-

impact trauma, high-impact trauma, and known metastatic VCFs.

Those with high-impact trauma were found to have intermediate

ADC values, similar to metastatic disease.46 DWI may provide ben-

eficial information in combination with conventional imaging; re-

cently, Sung et al42 have shown improved sensitivity, specificity, and

accuracy when the 2 were used in conjunction.

Dynamic Contrast-Enhanced Imaging. Dynamic contrast-en-

hanced imaging is a technique in which contrast uptake is mea-

sured as changes in signal intensity across time. It allows qualitative

and quantitative assessment of vascularity and hemodynamics, typ-

ically referred to as perfusion. Multiple perfusion parameters have

been assessed, some of which included peak contrast percentage,

enhancement slope, time-intensity curves, interstitial volume,

plasma flow, plasma volume, permeability, wash-in slope, and

area under the curve. The ability of perfusion parameters to dif-

ferentiate benign and malignant VCFs is not convincingly differ-

ent from that of conventional MR imaging. One early study was

FIG 4. Diffuse abnormal marrow signal in a malignant VCF. Sagittal
T1WI of the lumbar spine demonstrates a malignant VCF of L2 with
marked complete replacement of the normal high T1 vertebral body
marrow signal. The diffuse T1 hypointensity indicates tumor infiltration.
Note the convex, expanded border of the posterior vertebral body ver-
sus the normal posterior concavity of the adjacent vertebral bodies.

FIG 5. Increased enhancement in malignant VCF. Sagittal T1WI post-
gadolinium with fat saturation of the lumbar spine demonstrates an
enhancing malignant VCF of L2. The enhancement is greater than that
of the normal adjacent vertebral bodies. Also demonstrated is an
expanded posterior convex border.
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unable to find perfusion differences, specifically in cases of acute

osteoporotic VCFs.47 However, subsequent studies using more

sophisticated analytic tools have been more successful in separat-

ing acute benign and malignant VCFs, though with slightly con-

flicting results based on the perfusion parameter assessed.48-50

Chemical Shift. In-phase and opposed-phase imaging is an addi-

tional MR imaging technique relatively recently being applied for

the assessment of differentiating benign and malignant VCFs.

With in-phase imaging, at 1.5T and a TE of 4.6 ms, both fat and water

protons will contribute to the radiofrequency signal and increased

SI.51 On opposed-phase imaging, at 1.5T and a TE of 4.6 ms, the fat

dipole is opposite that of water and cancels the radiofrequency signal

of water, resulting in lower net signal intensity.51 Normal red and

yellow bone marrow has varying amounts of both fat and water com-

ponents, which have loss of SI on opposed-phase imaging.52 In con-

trast, malignant spinal lesions infiltrate bone marrow causing no or

only slight loss on opposed-phase imaging.52 The signal intensity

ratio or the ratio of opposed-phase to in-phase SI is a measurement

that, at values of �0.8, is a fairly sensitive and specific sign of malig-

nancy.18,52 Ratios of �1.0 are even more specific.53

CT
CT is a readily accessible technique that can be used to evaluate

patients with back pain and suspected VCFs. Laredo et al54 were

FIG 6. Retropulsion of a bone fragment in a benign VCF. Sagittal T1WI (A) and T2WI (B) with fat saturation of the lumbar spine demonstrate a
retropulsed bone fragment (arrow) compressing the thecal sac and narrowing the spinal canal in this benign VCF (C), best seen on the axial T2WI.
A similar appearance is demonstrated on the axial (D) and sagittal (E) reformatted thoracic spine CT scans.

FIG 7. Linear horizontal fracture line in a benign VCF. As seen on the sagittal reformat from a thoracic spine CT in bone windows (A), there is a
lucent fracture line (arrow) paralleling the superior endplate of T11. On MR imaging, this fracture is seen as a linear horizontal line (arrow) of T1
and T2 hypointensity through the T11 vertebral body, T1WI (B) and T2WI (C).
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the earliest group to evaluate the diagnostic value of CT. They

reported several CT features that were more frequently found in

benign VCFs, with the following findings achieving statistical sig-

nificance: fracture of the anterolateral or posterior cortex of the

vertebral body, a retropulsed bone, fracture lines within cancel-

lous bone, and a diffuse thin paraspinal soft-tissue thickening.

The “puzzle sign” is a descriptive term of the presence of sharp

fracture lines without cortical destruction so that the displaced

bone fragments could be reconstructed into their original posi-

tion to complete the “puzzle” (Fig 2). In addition, although un-

common and not reaching statistical significance, an intraverte-

bral vacuum phenomenon (air-filled cleft) was never visualized in

malignant fractures.

CT findings predictive of malignant VCFs revolve around de-

struction and the presence of masses. Any form of destruction

whether of cortical bone, cancellous bone, or the pedicle was

predictive of malignant VCF. As with MR imaging, an epidural

or focal paravertebral soft-tissue mass also favors a malignant

VCF.54,55

The use of various scoring systems and prediction models

can be a helpful strategy for delineating benign from malignant

VCFs.10,19,56 Yuzawa et al10 found that the combination of CT

characteristics and MR imaging features enhanced the accuracy of

differentiating benign from malignant fractures. The CT findings

used in this scoring system included sharp fracture lines without

osteolytic destruction in benign VCFs and osteolytic destruction

in malignant VCFs. While MR imaging is typically superior in the

depiction of most spine pathology, such studies exemplify the
FIG 8. Fluid cleft in a benign VCF. Sagittal T2WI with fat saturation of
the lumbar spine demonstrates a triangular fluid cleft (arrow) seen
within this benign VCF.

FIG 9. DWI of benign and malignant VCFs. Multiple benign osteoporotic VCFs (A–C, arrows) are seen in the lower thoracic spine. Sagittal DWI
(A) and the corresponding ADC map (B) demonstrate the absence of diffusion restriction. Sagittal fat-saturated T2WI (C) demonstrates T2
hyperintensity about the fracture lines compatible with edema from an acute/subacute fracture. In contrast, malignant lymphomatous
involvement of T12 (D–F, arrow) demonstrates diffuse diffusion restriction (D) with corresponding low ADC values (E). On the sagittal T1WI (F),
there is slight loss of height of the superior and inferior endplates and diffuse T1 hypointensity compatible with marrow replacement.
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utility of CT in providing excellent characterization of cortical

and cancellous bone and fracture margins.

FDG-PET/CT
While MR imaging and CT are widely used in the assessment of

VCFs, they provide primarily anatomic information and occa-

sionally do not yield a definitive diagnosis. In addition, MR im-

aging may not be an option in patients unable to undergo it due to

implanted devices or other limitations. FDG-PET/CT may have

an adjunctive role in differentiating benign and malignant VCFs

by providing metabolic information.57-60 It has been shown that

there is overlap in the appearance of benign and malignant bone

lesions on this technique, but to date, published data are not

extensive.57,58

Generally, fractures due to tumors are expected to accumulate

FDG, while benign fractures are not expected to accumulate FDG

to a similarly high degree. The maximum standard uptake value

(SUV) on PET of malignant pathologic fractures of various bones

(pelvis, long bones, spine, and rib) is significantly higher com-

pared with benign fractures.58 When evaluating vertebrae specif-

ically, the SUV is significantly higher in malignant than in benign

compression fractures (Fig 10).57,59 Most of these studies used a

threshold SUV to classify the lesions, while some incorporated

comparison with liver SUV. The cutoff SUVs ranged from 3 to 4.7.

Alternative criteria included 2 SDs above (malignant) or below

(benign) the liver SUV or direct comparison with the SUV of the

liver in indeterminate (SUV 2–3) lesions.

However, there are limitations to FDG-PET. Case reports have

shown benign fractures with much higher-than-expected SUVs,

even up to 9.3 in an acute pelvic fracture.61 As such cases demon-

strate, acute fractures can be a source of false-positive findings.

FDG uptake was noted to be most intense in the acute phase of a

benign fracture and returned to normal by approximately 3

months.5,62 Failure of a fracture to return to a normal FDG uptake

by 3 months may indicate malignancy or osteomyelitis.5 An ad-

ditional limitation is that patients receiving bone marrow–stimu-

lating agents may have falsely elevated
maximum SUVs related to increased

bone marrow metabolism, so this factor

should be considered in the interpreta-

tion of FDG uptake.57 In summary, the
precise role of FDG PET in imaging of
benign and malignant VCFs has yet to be

defined. It may provide the most benefit
when CT or MR imaging findings are

indeterminate and the exact age of the

fracture is known.

SPECT
Bone scintigraphy has long been used

for the evaluation of intraosseous lesions

in patients with known malignancy and

back pain. In clinical practice, abnormal

uptake within �1 vertebrae is seen rela-

tively commonly, especially in the el-

derly who have a high rate of benign dis-

ease that can cause uptake. SPECT has

the advantage over planar imaging of of-

fering exact localization of vertebral lesions. Because MR imaging

is sometimes not feasible due to implantable devices, claustro-

phobia, or length of the study, a single study evaluated whether

SPECT could be used as a substitute for MR imaging to distin-

guish benign from malignant VCFs.63 Imaging features signifying

malignancy included the following: vertebral body � pedicle up-

take, vertebral body � pedicle � spinous process uptake, and

marginal uptake in a cold lesion. Lesions were classified as benign

if they had uptake in the vertebral body � facet joint or just in the

facet joint. SPECT was found to be comparable with MR imaging

with similar sensitivity and specificity for differentiating benign

and malignant VCFs, though there was significantly lower accu-

racy. In cases in which there was complete replacement of normal

fatty marrow on MR imaging, no significant differences in sensi-

tivity, specificity, or accuracy between SPECT and MR imaging

were seen, suggesting that SPECT may be most useful in this sub-

set of patients.63

CONCLUSIONS
Advanced imaging plays a crucial role in distinguishing benign

from malignant VCFs. The various modalities each have unique

attributes. CT provides excellent information about the osseous

integrity and fracture margins. PET-CT and SPECT have rela-

tively sparse supporting literature, though with comparable diag-

nostic results to CT and MR imaging. MR imaging is the estab-

lished technique of choice, with strong evidence for multiple

distinguishing imaging features, which can allow relatively confi-

dent characterization of the nature of a VCF. Features strongly

predictive of malignancy include expansion of the fractured ver-

tebral body, an epidural and/or paraspinal soft tissue mass, and

discrete lesions within the bone, especially if destructive. Features

strongly predictive of benignity include lack of these malignant

features and at least partial preservation of normal marrow signal,

visible fluid- and/or air-filled fracture lines/clefts, and retropul-

sion of the cortex (Table).

FIG 10. FDG avid malignant VCF. Axial non-attenuation-corrected PET (A) at the level of the
malignant lumbar VCF with increased FDG activity throughout the vertebral body and into the
left pedicle. Corresponding axial T1WI (B) shows the area of low T1 signal tumor infiltration
throughout the vertebral body and left pedicle.
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