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BRIEF/TECHNICAL REPORT
INTERVENTIONAL

Early Hemodynamic Response Assessment of Stereotactic
Radiosurgery for a Cerebral Arteriovenous Malformation

Using 4D Flow MRI
X C.Q. Li, X A. Hsiao, X J. Hattangadi-Gluth, X J. Handwerker, and X N. Farid

ABSTRACT
SUMMARY: Brain AVMs treated with stereotactic radiosurgery typically demonstrate a minimum latency period of 1–3 years
between treatment and nidus obliteration. Assessment of treatment response is usually limited to evaluation of AVM nidus
structural changes using conventional MR imaging and MRA techniques. This report describes the use of 4D Flow MRI to also measure
radiation-induced hemodynamic changes in a Spetzler-Martin grade III AVM, which were detectable as early as 6 months after
treatment.

ABBREVIATION: SRS � stereotactic radiosurgery

S tereotactic radiosurgery (SRS) is an effective treatment op-

tion for brain arteriovenous malformations that are not

amenable to microsurgical resection or endovascular emboli-

zation. Nidus obliteration is thought to result from radiation-

induced endothelial cell proliferation causing progressive ves-

sel wall thickening and eventual occlusion.1 When successful,

this process typically results in a latency period of 1–3 years

between treatment and nidus obliteration,2 though the nidus

can persist in approximately 20% of AVMs even 5 years after

treatment.3

Although MR imaging and MRA have widely supplanted DSA

as the mainstay modalities for following AVMs posttreatment,

prior studies evaluating their ability to assess the response to SRS

have only examined AVM structure, specifically nidus volume.4-8

Advanced MRA techniques capable of measuring intracranial

flow dynamics, such as 4D Flow MRI (https://www.arterys.com/

4d-flow), have not yet been leveraged to study SRS treatment

effects on AVMs.9

4D Flow MRI acquires time-resolved phase-contrast data

with 3D velocity-encoding throughout the cardiac cycle, pro-

ducing a 4D dataset of velocity vectors. This 4D dataset can be

retrospectively analyzed to measure flow in any direction, as

well as to calculate numerous other fluid dynamic metrics such

as velocity, pressure gradients, vorticity, wall shear stress, tur-

bulence, and so forth.10 Flow vectors can also be rendered in

3D in various display formats for qualitative visualization.11

We report imaging and hemodynamic data from serial 4D

Flow MRI of a Spetzler-Martin grade III AVM treated with SRS as

a proof-of-concept application of 4D Flow, and we compare this

technique with traditional MR imaging/MRA.

MATERIALS AND METHODS
A 19-year-old man was diagnosed with an unruptured 3.5 �

2.9 � 2.5 cm Spetzler-Martin grade III AVM in the medial left

temporal lobe on a trauma work-up. Conventional angiography

showed primary arterial supply from the left MCA with secondary

contribution from the left posterior cerebral artery (Fig 1A, -B).

Venous drainage was solely via the left basal vein of Rosenthal (Fig

1C). The nidus was treated with single-fraction SRS to a prescrip-

tion dose of 1800 cGy (mean dose, 2000 cGy; maximum, dose

2200 cGy) using a linear accelerator– based volumetric arc ther-

apy technique. The patient experienced no acute or subacute

complications.

Baseline MR imaging and serial follow-up MR imaging

were performed at 1, 6, 12, and 20 months after SRS. All scans

were obtained on a 3T Discovery 750 scanner (GE Healthcare,

Milwaukee, Wisconsin), including simple 4-point-encoded

4D Flow MRI with variable-density Poisson disc undersam-

pling,11,12 with E-SPIRiT (eigenvector-based iTerative Self-

consistent Parallel Imaging Reconstruction) combined parallel

imaging and compressed-sensing image reconstruction.13,14
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The combination of variable-density Poisson undersampling

and E-SPIRiT reconstruction provides the mechanism for

compressed sensing, which preserves signal to noise while re-

ducing 4D Flow acquisition time. The parallel imaging accel-

eration factor was 3.6 overall (1.8 in phase-encode and 2.0 in

slice-encode directions). Additional specific acquisition pa-

rameters are listed in the Table. At each time point, blood flow

(liters/minute) was measured in bilateral distal ICAs, bilateral

proximal MCAs, and the draining left basal vein of Rosenthal.

RESULTS
In the 20 months following SRS, the patient’s left temporal lobe

AVM nidus gradually decreased in size from approximately 3.5 �

2.9 � 2.5 cm to 2.0 � 1.5 � 1.3 cm, as measured on 3D time-of-

flight MRA. Time-resolved color-coded 3D volumetric render-

ings of 4D Flow velocity data demonstrated visibly decreasing

flow velocity in the left MCA, the dominant arterial supply, de-

noted by decreasing red and yellow velocity vectors and increasing

green velocity vectors (Fig 2). Video renderings of 4D Flow data

collected throughout the cardiac cycle are available in the On-line

Videos.

Blood flow measurements performed using 4D Flow data ini-

tially showed asymmetrically greater flow to the left MCA and

ICA compared with the contralateral side 1 month posttreatment,

which began to normalize by the 6-month follow-up examina-

tion. In contrast, flow in the right anterior circulation slightly

increased between the 1- and 6-month follow-ups.

By the 20-month follow-up scan, flow in the left MCA and ICA

had decreased by 51% (0.51 to 0.25 L/min) and 34% (0.59 to 0.39

L/min) compared with initial values, respectively, while the net

change in right MCA and ICA flow was �11% (Fig 3A). Blood

flow in the draining vein also decreased with time, from 0.25 to

0.07 L/min by the 20-month follow-up, a net reduction of 80%

(Fig 3B).

DISCUSSION
Treatment response following SRS therapy for AVMs is most

commonly assessed with conventional MR imaging and MRA

techniques, which are tailored to evaluate brain parenchyma and

vascular anatomy. This case of a patient with an unruptured

AVM treated with curative SRS demonstrates the ability of 4D

Flow MRI to quantify radiation therapy-induced hemody-

namic changes that are not captured by traditional anatomic

imaging modalities.

While radiation-induced endothelial hyperproliferation typi-

cally results in a 1- to 3-year latency period between SRS and AVM

nidus obliteration, we quantified a decrease in blood flow through

a left temporal lobe AVM as early as 6 months after treatment,

previously unreported using MRA techniques. We also quantified

an increase in flow to the contralateral anterior circulation at the

6-month follow-up, which may suggest reversal of a left-to-right

steal phenomenon as flow to the AVM decreased.15 These find-

ings underscore the ability of 4D Flow MRI to quantify flow dy-

namics across the entire brain in 1 scan and represent the first

application of this technique in the evaluation of SRS treatment

effects on AVMs.16

Future studies will follow cohorts of patients to explore the

relationship between flow dynamics measured by 4D Flow

MRI and long-term outcomes, such as hemorrhage risk, length

of latency period, and rate of eventual obliteration. Additional

hemodynamic measures, such as intravascular pressure gradi-

ents, turbulence, and wall shear stress can be examined as well.

Flow-mapping capabilities could evaluate changes in flow con-

nectivity in complex AVMs with multiple feeding and draining

vessels and perhaps help to further optimize SRS treatment

targets.17

FIG 1. Conventional angiography of a left temporal lobe AVM. Early arterial phases show primarily MCA supply (arrow) on a left frontal
oblique left ICA injection (A), with secondary posterior cerebral artery supply via a small branch artery (arrow) on a lateral left vertebral
artery injection (B). Late arterial phase (C) shows early opacification of the left basal vein of Rosenthal, the exclusive venous drainage
(arrow).

4D Flow MRI acquisition parameters
Parameter

Contrast volume 15–20 mL of gadobenic acid
Voxel size 1.12 � 0.98 � 1.60 to 1.16 � 1.02 � 1.80 mm
Flip angle 15°
TR 4.96–5.05 sec
TE 2.40–2.57 ms
Scan time 7 min 45 sec to 9 min 3 sec
Velocity encoding 100–200 cm/s
Bandwidth 62 kHz
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