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ORIGINAL RESEARCH
ADULT BRAIN

Optimization of DARTEL Settings for the Detection of
Alzheimer Disease

X J. Komatsu, X I. Matsunari, X M. Samuraki, X K. Shima, X M. Noguchi-Shinohara, X K. Sakai, X T. Hamaguchi, X K. Ono,
X H. Matsuda, and X M. Yamada

ABSTRACT

BACKGROUND AND PURPOSE: Although Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) has been
introduced as an alternative to conventional voxel-based morphometry, there are scant data available regarding the optimal image-
processing settings. The aim of this study was to optimize image-processing and ROI settings for the diagnosis of Alzheimer disease using
DARTEL.

MATERIALS AND METHODS: Between May 2002 and August 2014, we selected 158 patients with Alzheimer disease and 198 age-matched
healthy subjects; 158 healthy subjects served as the control group against the patients with Alzheimer disease, and the remaining 40 served
as the healthy data base. Structural MR images were obtained in all the participants and were processed using DARTEL-based voxel-based
morphometry with a variety of settings. These included modulated or nonmodulated, nonsmoothed or smoothed settings with a 4-, 8-, 12-,
16-, or 20-mm kernel size. A z score was calculated for each ROI, and univariate and multivariate logistic regression analyses were performed
to determine the optimal ROI settings for each dataset. The optimal settings were defined as those demonstrating the highest �2 test
statistics in the multivariate logistic regression analyses. Finally, using the optimal settings, we obtained receiver operating characteristic
curves. The models were verified using 10-fold cross-validation.

RESULTS: The optimal settings were obtained using the hippocampus and precuneus as ROIs without modulation and smoothing. The
average area under the curve was 0.845 (95% confidence interval, 0.788 – 0.902).

CONCLUSIONS: We recommend using the precuneus and hippocampus as ROIs without modulation and smoothing for DARTEL-based
voxel-based morphometry as a tool for diagnosing Alzheimer disease.

ABBREVIATIONS: AD � Alzheimer disease; AUC � area under the curve; CDR � Clinical Dementia Rating; DARTEL � Diffeomorphic Anatomical Registration
Through Exponentiated Lie Algebra; HS � healthy subjects; MMSE � Mini-Mental State Examination; ROC � receiver operating characteristic; VBM � voxel-based
morphometry

Statistical neuroimaging analysis techniques such as voxel-

based morphometry (VBM) have been widely used to evaluate

structural MR imaging data, but in recent years, such methods

have been suggested as a diagnostic aid for the early detection of

Alzheimer disease (AD).1,2 However, conventional VBM has of-

ten been criticized due to its imperfect registration of individual

images of the standard brain.3 Diffeomorphic Anatomical Regis-

tration Through Exponentiated Lie Algebra (DARTEL) has been

introduced as an alternative method to conventional VBM due to

novel abilities allowing precise segmentation and normalization

of images.4 Some studies have reported that DARTEL-based VBM

provides a greater diagnostic accuracy for the detection of AD

than conventional VBM methods.5 Modulation, which involves

the scaling of images depending on the extent of expansion or

contraction, is considered an important processing step for
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DARTEL-based VBM. The smoothing before statistical image

analysis is also an important factor that can affect VBM results.

However, there are scant data available regarding the optimal im-

age-processing settings for DARTEL-based VBM.

Shima et al6 previously demonstrated that a subset of patients

with AD demonstrate atrophy in neocortical areas such as the

posterior cingulate gyri and parietal lobe rather than in traditional

areas such as the hippocampus, which is particularly true in early-

onset AD. Therefore, it would be conceivable to hypothesize that

optimal ROI settings for the detection of AD might vary according

to age.

The purpose of this study was to optimize image-processing

and ROI settings for the discrimination of patients with AD from

age-matched healthy subjects using DARTEL-based VBM.

MATERIALS AND METHODS
Subjects
This prospective study was performed as a part of the Ishikawa

Brain Imaging Study, which included any research to seek and

develop imaging biomarkers for early and objective assessment of

AD and other forms of neurodegenerative diseases using PET and

MR imaging.7,8 The study protocol was approved by the Medical

and Pharmacological Research Center Foundation ethics com-

mittee, and written informed consent was obtained from all sub-

jects before participation in the study. Of the 594 consecutive

patients who were examined by neurologists and who underwent

MR imaging (3D-T1-weighted, T2-weighted, MR angiography)

at our memory clinic between May 2002 and August 2014, we

selected 240 patients with a clinical diagnosis of probable AD at an

early stage. Of the MR imaging scans, 3D-T1-weighted scans were

used for both screening and analysis, whereas T2-weighted MR

imaging and MR angiography were used for screening. Diagnosis

of AD was based on the criteria of the National Institute of Neu-

rologic and Communicative Disorders and Stroke and the Alzhei-

mer’s Disease and Related Disorders Association.9 Forty-three

patients were excluded from the study on the following

grounds: 1) evidence of moderate-to-severe cognitive distur-

bance: grade 2 or more on the Clinical Dementia Rating

(CDR),10 with evidence of severe language, attentional, or be-

havioral disturbances that might complicate neurologic assess-

ment; 2) uncontrolled major systemic disease or other neuro-

logic disorders; and 3) evidence of focal brain lesions

determined by MR imaging. We also excluded 39 patients with

AD older than 80 years of age because it was impossible to find

suitable age-matched healthy controls. Finally, 158 patients

with AD were enrolled for analysis.

Regarding the generation of a control group for the construc-

tion of a healthy data base and for comparison against patients

with AD, healthy subjects (HS) were recruited in response to ad-

vertisements. The following criteria were used to define healthy:

1) no history of brain trauma, psychiatric or neurologic disorders,

or uncontrolled major systemic diseases and no current use of

centrally acting drugs; 2) no abnormalities following general

and neurologic examination; 3) a Mini-Mental State Examina-

tion (MMSE)11 score of �28 and no clinical evidence of de-

mentia; and 4) no evidence of asymptomatic cerebral infarc-

tion or brain vessel abnormalities on MR imaging. From the

criteria, 704 subjects were determined to be HS among the

1369 recruited volunteers. From the 704 subjects, 198 age-

matched subjects were selected; of these, 158 served as the

control group against the patients with AD and the remaining

40 served as the healthy database.

Imaging Procedure
Both patients with AD and HS underwent structural MR imaging

analysis. The structural MR imaging studies were performed us-

ing a 1.5T system (Signa Horizon; GE Healthcare, Milwaukee,

Wisconsin). A 3D volumetric acquisition of a T1-weighted gradi-

ent-echo sequence produced a gapless series of thin transaxial

sections using a magnetization-prepared rapid acquisition of

gradient-echo sequence (TE/TR, 2.0/9.2 ms; flip angle, 20°; acqui-

sition matrix, 256 � 192; number of slices, 124; pixel size, 0.78 �

1.04; slice thickness, 1.4 mm).

Image Processing
MR imaging data were analyzed with DARTEL-based spatial nor-

malization with SPM8 software (http://www.fil.ion.ucl.ac.uk/

spm/software/spm12).4 MR images from 158 patients with AD

and 198 HS were used to create templates for the DARTEL-based

normalization technique. During spatial normalization, brain re-

gions are expanded or contracted. Modulation involves scaling by

the amount of expansion or contraction, so that the total amount

of gray matter intensity in the modulated gray matter remains the

same as it would be in the original images. Thus, gray matter

intensity on modulated images should represent tissue volume

rather than tissue concentration on nonmodulated images. Dur-

ing processing, both modulated and nonmodulated gray matter

images were obtained for DARTEL-based VBM analysis. Modu-

lated and nonmodulated gray matter images were nonsmoothed

or smoothed, which is an image blurring using a function with a

4-, 8-, 12-, 16-, or 20-mm full width at half maximum Gaussian

kernel, respectively, to investigate the effect of smoothing kernel

size on DARTEL-based VBM. Twelve image datasets for each sub-

ject were generated.

Tomographic Z Score Mapping
After the preprocessing of MR imaging data, gray matter MR im-

ages were compared with the mean and SD of normal database

gray matter images using a voxel-by-voxel z score analysis with a

software program developed by Matsuda et al12: Z Score � ([Con-

trol Mean] � [Individual Value]) / (Control SD). This compari-

son was performed so that a positive z score value would represent

reduced gray matter concentration or volume. These z score maps

were displayed by overlay on tomographic sections. In each z

score map, WFU Pick atlas-based ROIs (Department of Radiol-

ogy of Wake Forest University School of Medicine, Winston-Sa-

lem, North Carolina; fmri.wfubmc.edu)13 were drawn on the

amygdala, hippocampus, parahippocampus, posterior cingulate

gyrus, precuneus, frontal lobe, occipital lobe, parietal lobe, and

temporal lobe.

Analysis
For each dataset, we investigated the diagnostic ability of each

technique to discriminate patients with AD from HS. We per-
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formed 10-fold cross-validation to optimize image-processing

and ROI settings and test the diagnostic performance. The sub-

jects were randomly divided into 10 folds, with the same number

of patients with AD and HS in each fold. In each iteration, 9 of the

folds were used for discovery (optimal setting determination) and

the remaining one was used for validation (diagnostic perfor-

mance test). The scheme of 10-fold cross-validation is illustrated

in Fig 1.

On the basis of the z score, the optimal ROIs for the dis-

crimination of AD under each processing condition were de-

termined using univariate and multivariate logistic regression

analyses referring likelihood ratio �2 test statistic. Although

our patients with AD and healthy subjects were matched for

age and number as a whole, they were not individually

matched. Therefore, we used regular logistic regression rather

than the conditional logistic regression to analyze our datasets.

The optimal settings were defined as the settings demonstrat-

ing the highest �2 test statistics in the multivariate logistic re-

gression analyses. Multivariate logistic regression analyses

were performed using a stepwise back-

ward elimination procedure. To assess

the aging effect, age was entered as a

variable for both univariate and mul-

tivariate analysis.

The validation group was used to es-

timate the diagnostic performance of the

optimal setting with receiver operating

characteristic (ROC) analysis. Diagnos-

tic accuracy was assessed by the area un-

der the curve (AUC). Data were ex-

pressed as mean � SD. Comparisons of

mean values were performed with

ANOVA. When assumptions required

for the ANOVA were not met, the non-

parametric 2-sided Kruskal-Wallis test

was used. The proportional difference

among the groups was assessed using a

�2 test. Statistical significance was de-

fined as P � .05 (2-sided). All the statis-

tical analyses were performed using a

statistical software package (JMP 10;

SAS Institute. Cary, North Carolina).

RESULTS
Clinical characteristics of patients with

AD, HS, and the healthy database are

summarized in Table 1. Clinical charac-

teristics of the discovery and valida-

tion groups in the tests 1–10

are shown in On-line Tables 1A–10A.

The results of univariate and multivari-

ate analyses for the discrimination of pa-

tients with AD from HS in the tests 1–10

are shown in On-line Tables 1B–1G,

2B–2G, 3B–3G, 4B– 4G, 5B–5G, 6B– 6G,

7B–7G, 8B– 8G, 9B–9G, and 10B–10G.

The summaries of the optimal ROIs and

diagnostic performance expressed as

AUCs for each image-processing setting are shown in On-line Ta-

bles 1H–10H. Finally, the summary of 10-fold cross-validation is

shown in Table 2.

Determination of Optimal Image-Processing and ROI
Settings
When the smoothing kernel size was set to 8 –20 mm, the

amygdala and parietal lobe ROIs mainly contributed to the dis-

crimination of AD regardless of the use of modulation (On-

line Tables). When images were modulated and the smoothing

kernel size was set to 0 – 4 mm, the amygdala and posterior cingu-

late gyrus ROIs were the main contributor. When images were

nonmodulated and the smoothing kernel size was set to 0 – 4 mm,

the hippocampus and precuneus ROIs were the predominant

contributor (On-line Tables).

The results of multivariate analysis are summarized in Ta-

ble 2. In 8 of 10 tests, the highest �2 statistic was obtained when

images were nonmodulated and nonsmoothed. Furthermore,

FIG 1. The scheme of 10-fold cross-validation. One hundred fifty-eight subjects with AD and 158
HS were randomly divided into 10 folds, with the same number of subjects with AD and HS in each
fold. In each iteration, 9 of the folds were used for discovery (optimal setting determination) and
1 fold was used for validation (diagnostic performance test).

Table 1: Clinical characteristics of AD group and HS group
AD (n = 158) HS (n = 158) NDB (n = 40) P Value

Age (yr) 69 � 8 68 � 8 69 � 6 .881a

Onset age (yr) 67 � 8 –
Sex (M/F) 80:78 87:71 20:20 .692b

MMSE 22.7 � 3.6 29.0 � 0.7 29.6 � 0.6 �.001a

CDR (0.5/1) 20/138 –
Term of education (yr) 11.7 � 2.6 12.2 � 2.9 12.1 � 2.3 .196c

Note:—NDB indicates normal data base.
a ANOVA.
b �2 test.
c Kruskal-Wallis test.
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the optimal ROIs for the above settings mostly included the

hippocampus and precuneus. Age did not survive as a variate

to discriminate patients with AD from HS in any test. Thus, the

optimal settings for the discrimination of patients with AD

from HS were obtained when ROIs were set to the hippocam-

pus and precuneus without modulation and smoothing in 7 of

the 10 tests.

Most interesting, following modulation, the z score of the

amygdala was increased, and conversely, that of the hippocampus

was reduced. Examples are presented in Fig 2.

Diagnostic Performance of DARTEL-Based VBM Using the
Optimal Image-Processing Settings and ROIs
Using the optimal image-processing and ROI settings deter-

mined by multivariate analyses of the training groups, we per-

formed ROC analyses in each test group to assess the diagnos-

tic ability as shown in Table 2. The AUC ranged from 0.738 to

0.945. When only the results of the ROI settings of the hip-

pocampus and precuneus without modulation and smoothing

(tests 2, 3, 4, 7, 8, 9, and 10) were summarized, the average of

the AUC was 0.845 (95% confidence interval, 0.788 – 0.902).

Additionally, there was a general trend for the ROC results to

get worse along with smaller �2 statistics as the smooth func-

tion kernel size increased, particularly in nonmodulation set-

tings (On-line Tables).

DISCUSSION
The major finding of this study was that the diagnostic ability of

DARTEL-based VBM was highest when MR images were non-

modulated and nonsmoothed with ROIs set to the hippocampus

and precuneus.

Impact of Modulation on the Discrimination of AD in
DARTEL-Based VBM
In the present study, modulation significantly influenced the di-

agnostic performance of DARTEL-based VBM for AD. Following

modulation, volumetric differences in the amygdala became in-

creasingly visible, and conversely, those of the hippocampus be-

came more obscure. In theory, perfect spatial normalization

Table 2: Summary of 10-fold cross-validationa

Optimized
Image-Processing Condition

Optimal ROI
Likelihood Ratio
�2 Test Statistic P Value AUCModulation

Smoothing Kernel
Size (mm)

Test 1 � Nonsmoothed Hippocampus 111.92 �.001 0.830
Test 2 � Nonsmoothed Hippocampus 113.55 �.001 0.945

Precuneus
Test 3 � Nonsmoothed Hippocampus 120.76 �.001 0.869

Precuneus
Test 4 � Nonsmoothed Hippocampus 126.04 �.001 0.756

Precuneus
Test 5 � 4 Hippocampus 123.10 �.001 0.871

Precuneus
Parahippocampus

Test 6 � 8 Amygdala 118.83 �.001 0.738
Frontal lobe
Parietal lobe

Test 7 � Nonsmoothed Hippocampus 124.73 �.001 0.836
Precuneus

Test 8 � Nonsmoothed Hippocampus 119.94 �.001 0.871
Precuneus

Test 9 � Nonsmoothed Hippocampus 126.26 �.001 0.851
Precuneus

Test 10 � Nonsmoothed Hippocampus 127.45 �.001 0.787
Precuneus

a Likelihood ratio �2 test statistic and P values were determined by multivariate logistic regression analyses. Optimal image-processing condition and ROI and diagnostic
performance are expressed as area under the curve for each validation group.

FIG 2. Two sample cases of z score maps with and without mod-
ulation from patients with AD. Automated voxel-by-voxel z score
analysis was performed by comparison of the relative gray matter
concentration of patients with the mean and SD of HS. Color-
scaled z score maps were displayed by overlaying them on the
spatially normalized transaxial MR imaging. Smoothing was not
applied. The modulated MR image of the patient with AD (67-year-
old man; MMSE score, 19; CDR, 1) showed a high z score in the
amygdala. The finding became obscure when the MR image was
nonmodulated. Meanwhile, the nonmodulated MR image of an-
other patient with AD (78-year-old man; MMSE score, 21; CDR, 1)
showed a high z score in the hippocampus. The finding disap-
peared when the MR image was modulated.
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would result in no detectable differences between the individual

gray matter images unless modulated.

The negative effect of modulation on the hippocampus

might suggest that the detected differences between patients

with AD and healthy subjects are likely to reflect imperfect

registration between images rather than true volume differ-

ences. By contrast, the positive effect of modulation on the

amygdala might suggest that spatial normalization was suc-

cessful. These findings indicate that the effects of modulation

influence each brain region differently, likely dependent on the

structural complexity of each area.

Optimal Smoothing Kernel Size for the Discrimination of
AD by DARTEL-Based VBM
In statistical image analysis, smoothing is routinely applied to

reduce noise, normalize the distribution, and compensate for im-

perfect image registration.14 A previous modulated DARTEL-

based VBM study reported that optimal kernel size varied accord-

ing to the group size.15 The present study indicated that optimal

kernel size varied depending on the use of modulation and varia-

tion in the ROI. If we took into account the above settings, the

optimal setting was without smoothing the images. This result

could be due to an increased ability to detect localized abnormal-

ities by not smoothing. However, this anatomic difference be-

tween patients with AD and HS would be lost with smoothing,

resulting in a smaller �2 and AUC, particularly in nonmodulation

settings. Like the modulation effects as aforementioned, the ef-

fects of smoothing could also be region-dependent. Furthermore,

our observation might be related to the specific programs used in

this study during data processing. Therefore, one should interpret

our results with caution, taking these circumstances into account.

Optimal ROI for the Discrimination of VAD by DARTEL-
Based VBM
To determine a suitable ROI for the diagnosis of AD, previous

VBM studies analyzed corresponding areas of gray matter volume

for patients with AD and HS using group comparison analy-

ses.1,2,4,5,16,17 In the present study, we extracted areas of signifi-

cant correlation for the discrimination of AD using multivariate

logistic regression analysis and determined such areas as ROIs. As

a result, in addition to medial temporal structures, the precuneus

was designated as an optimal ROI for the detection of AD. This is

in line with a previous study by Shima et al6 demonstrating that

some patients with AD show atrophy in neocortical areas such as

the posterior cingulate gyrus and precuneus rather than in the

medial temporal structures, particularly in young patients. Thus,

the diagnostic performance of VBM for the discrimination of AD

could be improved by combining the neocortical areas with me-

dial temporal structures as ROIs.

Effects of Age on the Diagnostic Accuracy of AD with
DARTEL-Based VBM
We did not find aging effects on the choice of VBM parameters

when age was included as a predictor to discriminate AD from HS

in our regression model. This was perhaps because most of our

patients had late-onset AD as reflected by the mean onset age

(67 � 8 years) and the age range not being wide enough to show

significant effects. This needs to be addressed in further studies

focusing on young patients with AD.

Limitations
There are limitations to the study. First, the diagnosis of probable

AD was made on the basis of clinical examinations and therefore

may differ from that obtained with final pathologic verification, a

limitation present in many such studies. However, it has been

reported that diagnostic accuracy can exceed 90% in an academic

memory disorders clinic setting.18 Second, we investigated the

optimal settings of DARTEL-based VBM to only discriminate be-

tween patients with AD and healthy subjects. Therefore, our data

cannot be applied to other types of dementia. Finally, the data

would be more robust if we could use our optimized model pa-

rameters applied on outside AD datasets such as the Alzheimer’s

Disease Neuroimaging Initiative data (http://adni.loni.usc.edu/).

However, this proposal is beyond the scope of the current study

and should be addressed in future.

CONCLUSIONS
For the discrimination of VAD from HS using DARTEL-based

VBM, we recommend using the precuneus and hippocampus as

ROIs without modulation and smoothing. The use of optimized

ROIs and image-processing settings can provide a high level of

diagnostic accuracy in the discrimination of AD.
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