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ABSTRACT

BACKGROUND AND PURPOSE: Carotid webs are increasingly recognized as an important cause of (recurrent) ischemic stroke in patients
without other cardiovascular risk factors. Hemodynamic flow patterns induced by these lesions might be associated with thrombus
formation. The aim of our study was to evaluate flow patterns of carotid webs using computational fluid dynamics.

MATERIALS AND METHODS: Patients with a carotid web in the Multicenter Randomized Clinical Trial of Endovascular Treatment of
Acute Ischemic Stroke in the Netherlands (MR CLEAN) were selected for hemodynamic evaluation with computational fluid dynamics
models based on lumen segmentations obtained from CT angiography scans. Hemodynamic parameters, including the area of recirculation
zone, time-averaged wall shear stress, transverse wall shear stress, and the oscillatory shear index, were assessed and compared with the
contralateral carotid bifurcation.

RESULTS: In our study, 9 patients were evaluated. Distal to the carotid webs, recirculation zones were significantly larger compared with
the contralateral bifurcation (63 versus 43 mm2, P � .02). In the recirculation zones of the carotid webs and the contralateral carotid
bifurcation, time-averaged wall shear stress values were comparable (both: median, 0.27 Pa; P � .30), while transverse wall shear stress and
oscillatory shear index values were significantly higher in the recirculation zone of carotid webs (median, 0.25 versus 0.21 Pa; P � .02 and 0.39
versus 0.30 Pa; P � .04). At the minimal lumen area, simulations showed a significantly higher time-averaged wall shear stress in the web
compared with the contralateral bifurcation (median, 0.58 versus 0.45 Pa; P � .01).

CONCLUSIONS: Carotid webs are associated with increased recirculation zones and regional increased wall shear stress metrics that are
associated with disturbed flow. These findings suggest that a carotid web might stimulate thrombus formation, which increases the risk of
acute ischemic stroke.

ABBREVIATIONS: CFD � computational fluid dynamics; IQR � interquartile range; OSI � oscillatory shear index; TAWSS � time-averaged wall shear stress;
TransWSS � transverse wall shear stress; WSS � wall shear stress

Carotids webs are fibrous shelf-like lesions causing narrowing

in the proximal internal carotid bulb. Although these lesions

are rare, carotid webs are an important cause of (recurrent) isch-

emic stroke in patients without cardiovascular risk factors.1,2 Pre-

vious studies reported that carotid webs are more frequently ob-

served in younger women and are associated with a high risk of

recurrent ischemic stroke.1,3 The underlying mechanism for the

association between carotid webs and stroke is unknown, but it

was speculated that the impact of the web morphology on flow

patterns might lead to thrombus formation1; nonetheless, this

speculation has never been studied.

Hemodynamic flow patterns have been extensively studied

in atherosclerotic carotid arteries by computational fluid dy-

namics (CFD).4-7 This computer-based technique simulates

fluid flow patterns based on the Navier-Stokes equations. By

means of the image-based geometry of vessels, boundary con-

ditions, and fluid properties, it is possible to simulate hemo-
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dynamic patterns. For example, areas of recirculation of blood

flow can be investigated and quantified. These recirculation

zones are observed in healthy carotid bifurcations but increase

in size distal to a stenosis.8-13 In addition, frictional force in-

duced by the blood flow (ie, wall shear stress [WSS]) can be

investigated by CFD models. WSS affects many pathophysio-

logic processes related to atherosclerosis and is associated with

ischemic stroke.4,14 Several WSS-derived parameters may be of

interest in patients with webs. Time-averaged WSS (TAWSS)

describes the wall shear stress magnitude over a cardiac cycle.

Lower TAWSS values might stimulate atherosclerosis, while

high values can cause endothelial trauma.4 Evaluating trans-

verse WSS (TransWSS) can quantify multidirectional flows.15

TransWSS is the average of all WSS components perpendicular

to the mean flow direction, consequently taking multidirec-

tionality into account. This recently defined metric corre-

sponds with the location of atherosclerotic lesions.16 Finally,

the oscillatory shear index (OSI) can be assessed to character-

ize the temporal variability of WSS during a cardiac cycle.17

Larger changes in the direction of WSS during a cardiac cycle

result in a higher OSI and are associated with atherogenesis.18

Both carotid webs and atherosclerotic stenosis are narrowing

of the lumen at the level of the carotid bifurcation. However, the

hemodynamic profiles may not be comparable due to differences

in 3D morphology. In general, at the proximal part of both le-

sions, the lumen becomes gradually smaller. However, the lumen

distal to the carotid webs differs from an atherosclerotic stenosis

due to the shelf-like fibrous lesion, which may greatly influence

the distal flow patterns. Gaining insight into the flow patterns of

carotid webs might improve the understanding of the risk of (re-

current) ischemic stroke in patients with carotid webs.

In this study, we evaluated simulated flow patterns of carotid

webs in patients with acute ischemic stroke with the use of pa-

tient-based CFD and compared these with the flow patterns in the

contralateral carotid bifurcation.

MATERIALS AND METHODS
Patients and Imaging Data
Patients were selected from the Multicenter Randomized Clinical

Trial of Endovascular Treatment of Acute Ischemic Stroke in the

Netherlands (MR CLEAN trial).19 Briefly, patients were included

in the MR CLEAN trial (n � 500) if a proximal intracranial arte-

rial occlusion was radiographically confirmed and had a mini-

mum score of 2 on the NIHSS at baseline. The study protocol was

approved by a central medical ethics committee and the research

board of each participating center. Written informed consent be-

fore randomization was provided by all patients or their legal

representatives. The MR CLEAN trial is registered under No.

NTR1804 in the Dutch trial register and under ISRCTN10888758

in the International Standard Randomised Controlled Trial

Number (ISRCTN) register.

Patients with a carotid web (n � 9) had a CTA scan with a slice

increment of 0.5 mm and an average in-plane resolution of 0.46 �

0.46 mm2. Stenosis measurements on CTA were semiautomati-

cally performed by a cross-sectional area measurement at the level

of the narrowest lumen divided by the disease-free area distal to

the lesion.

Segmentation and Meshing
Semiautomated segmentations of both carotid arteries using a

region-growing algorithm were performed with the open-source

DICOM viewer Horos (Version 2.0.1).20 Due to different rates of

contrast load in each CTA scan, the threshold intensity value was

chosen for each patient on the basis of the best representation of

morphology by 1 observer (K.C.J.C.). Vascular side branches and

remaining calcifications were removed from the 3D volume-ren-

dered lumen. The final segmentation included the common ca-

rotid artery, external carotid artery, and internal carotid artery.

Flow extensions were added with a length of 3 diameters at the

inlet and both outlets. Volumetric meshes of tetrahedral elements

and prism layers were generated using ICEM CFD software, Ver-

sion 17.1 (ANSYS, Canonsburg, Pennsylvania). The number of

elements ranged between 2.45 � 106 and 7.80 � 106, with a min-

imal and maximal element size of 0.05 and 0.15 mm, respectively.

Computational Fluid Dynamics and Analysis
A plug-like inflow profile was chosen. The average inlet velocity

was calculated as a function of the diameter to obtain a wall shear

stress of 1.2 Pa at the inlet flow extension.21 Due to the absence of

patient-specific boundary conditions and because no (�50%)

stenosis was present, the outflow ratios for the internal carotid

artery/common carotid artery and external carotid artery/com-

mon carotid artery were assumed to be, respectively, 0.65 and

0.35.22 Blood was modeled as an incompressible fluid with a den-

sity of 1.06 g/cm3, and the Carreau model was applied to account

for the non-Newtonian shear thinning behavior.23 Time-depen-

dent simulations were performed using generic flow waveform

shapes as proposed by Lee et al.24 Two cardiac cycles were in-

cluded, with a time-step of 0.01 seconds. Because the first cycle

potentially contains numeric artifacts, only the results of the sec-

ond cycle were used for the analyses.

From the time-dependent simulations, we extracted various

hemodynamic parameters: TAWSS, TransWSS, and OSI. 2D-

TAWSS maps were created and used to determine the region of

reversed flow (recirculation zone). Subsequently, the total surface

area (square millimeters) and length (millimeters) of the recircu-

lation zone were computed.25 Furthermore, TAWSS was assessed

at the minimal lumen area of the carotid web or stenosis and in the

recirculation zone. Transverse WSS and OSI were both assessed in

the recirculation zone (On-line Fig 1). Transverse WSS was intro-

duced by Peiffer et al15 as follows:

TransWSS �
1

T
�0

T�����n�
�0

T���dt

��0
T���dt���dt,

where n� represents the normal-to-arterial surface.

For illustration, streamlines were created on the basis of the

time-average velocity field. All CFD simulations were performed

within Fluent 17.1 (ANSYS) using standard numeric techniques.

Statistical Analysis
Descriptive statistics of the characteristics of flow patterns are

presented as medians and interquartile ranges (IQR) due to a

non-normal distribution. Hemodynamic parameters of flow pat-

terns in carotid bifurcations with a web were compared with the
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contralateral carotid bifurcation (control group) in patients and

evaluated with a paired Wilcoxon signed rank test. The degree of

stenosis was correlated with the length of the recirculation zone

using a Spearman rank correlation test. Statistical analyses were

performed using R Studio (Version 3.4.2; http://rstudio.org/

download/desktop) and R packages haven, Hmisc, foreign, gg-

paired, and ggpubr.

RESULTS
Included patients were mostly women (n � 8 [89%]) with a me-

dian age of 59 years (IQR, 45–70 years). All patients had a carotid

web in the symptomatic carotid bifurcation of acute ischemic

stroke, except for 1 patient in whom the carotid web was located

in the asymptomatic carotid bifurcation. One patient had a his-

tory of atrial fibrillation (Table 1).

A representative case of a carotid artery web is shown in Fig 1.

The streamlines show that in the region distal from the carotid

web, a large recirculation zone is observed. Furthermore, at the

minimal lumen area at the location of the web, a high TAWSS is

observed.

The results of the CFD simulation of the carotid bifurcations

are summarized in Table 2 and On-line Fig 2. The severity of the

stenosis caused by the web varied from 13% to 70%. At the con-

tralateral carotid bifurcation, stenoses were observed in 3 patients

(range, 14%–56%). In both carotid arteries with webs as well as in

the contralateral carotid arteries, recirculation zones were ob-

Table 1: Baseline characteristics of included patients

Pt.
Sex,

Age (yr)

Carotid Web in
Symptomatic

Bifurcation

Location
Intracranial
Occlusion

Previous
Stroke Smoking Diabetes

Atrial
Fibrillation

Myocardial
Infarction

1 F, 45 Yes M1 right Yes No No No No
2 M, 77 Yes M1 right No No No Yes No
3 F, 67 Yes M1 right No No No No No
4 F, 44 Yes ICA-T right No No No No No
5 F, 66 Yes M2 right No No No No No
6 F, 45 Yes ICA-T right No No No No No
7 F, 59 Yes M1 right No No No No No
8 F, 46 Yes M1 right No No No No No
9 F, 73 No M1 left No No No No No

Note:—Pt. indicates patient; ICA-T, ICA terminus.

FIG 1. A case with a carotid web in the ipsilateral carotid bifurcation of a patient with ischemic stroke. Images of CTA (A1) and CFD simulations
(A2, streamlines; A3, wall shear stress). Focused on the region distal from the carotid web, a large recirculation zone is observed with low
time-averaged WSS values. At the minimal lumen area at the location of the web, a high TAWSS is observed. Streamlines were based on the
time-averaged velocity field.
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served. However, total surface and length of the recirculation zone

were significantly larger in a carotid bifurcation with a web com-

pared with the contralateral carotid bifurcation (mean within-

patient differences, 38 mm2 and 6 mm, respectively) (Table 2 and

Fig 2A). This difference was present in all patients except the pa-

tient who had a web in the asymptomatic carotid bifurcation (On-

line Table). TAWSS in the recirculation zones of carotid bifurca-

tions with webs and in the contralateral carotid bifurcation did

not significantly differ. Maximum TransWSS values were signifi-

cantly higher in the recirculation zones distal to the carotid web

(mean within-patient difference, 0.09 Pa; 87%) (Fig 2B). Like-

wise, OSI values were significantly higher in the recirculation

zones in the carotid bifurcations with webs (mean within-patient

difference, 0.12; 55%) (Fig 2C). At the minimal lumen area at the

location of the carotid web, simulations showed a significantly

higher maximum TAWSS compared with the contralateral bifur-

cation (mean within-patient difference, 0.20 Pa; 44%) (Fig 2D).

In the carotid bifurcations with a web, no correlation between

the degree of stenosis and the surface or length of the recirculation

zone was observed (� � 0.23, P � .55 and � � 0.27, P � .49,

respectively).

DISCUSSION
This study provided insight into the flow patterns associated with

carotid webs in the carotid bifurcation. We observed that carotid

webs show increased recirculation zones with corresponding

higher OSI and TransWSS values compared with the contralateral

carotid bifurcation in patients with acute ischemic stroke. Fur-

thermore, at the minimal lumen area, higher maximum TAWSS

values were observed in the carotid bifurcations with a web.

Recirculation of blood is associated with an increase in platelet

deposition and aggregation, which could lead to thrombogenesis

with time.26 All patients in our study had a larger total surface of

recirculation in the bifurcation with a carotid web compared with

the contralateral side, except in 1 patient who had a web in the

asymptomatic carotid bifurcation. In our study, we did not find a

significant association between the length or total surface of the

recirculation zone and the degree of stenosis caused by a carotid

web. It is possible that the degree of stenosis does not reflect the

complex geometry distal from the stenosis, which is the main

driver of the hemodynamic patterns.

We observed a high maximum TAWSS at the site of minimal

lumen area caused by the carotid web. This finding has also been

observed proximal to the minimal lumen area in patients with a

stenosed artery due to atherosclerosis.4,21,27 In perspective,

healthy individuals have an averaged WSS in the carotid arteries

of approximately 1.2 Pa.21 However, in recirculation zones, low

WSS is characteristically common.28 Vascular walls exposed to

low WSS are prone to atherosclerosis and platelet aggregation,

while high WSS induces platelet activation.4,29 Despite similar

TAWSS values in the recirculation zones of carotid bifurcations

with webs and their contralateral carotid bifurcations, higher

TransWSS and OSI values in carotid bifurcations with a carotid

web were observed. These observations represent a multidirec-

tional disturbed blood flow, which might be prone to vascular

wall dysfunction.30 Along with larger recirculation zones promot-

ing platelet aggregation to the endothelium, shear-induced acti-

vated platelets might be more likely to adhere and cohere with

each other, eventually leading to thrombus formation distal to the

carotid web.

A limitation of our study is the small number of evaluated

patients. This is partly due to the low prevalence of carotid webs.

However, we also excluded 3 patients from CFD analysis due to

poor 3D segmentation caused by insufficient imaging quality of

the CTA scan. Thus, the statistical power of our analysis is limited,

and results must be interpreted with care. Second, due to the

retrospective study design, only data from CTA scans were avail-

able, resulting in missing patient-specific boundary conditions.

Thus, in- and outlet properties were estimated and generalized for

all our patients.22 None of our patients had a significant (�50%)

stenosis in both carotid arteries, suggesting that the assumed flow

ratio between ICA/common carotid artery and external carotid

artery/common carotid artery would be more reliable compared

with estimations based on the Murray law.31 Further studies on

flow patterns of carotid webs could overcome this problem by

measuring blood flow with phase-contrast MR imaging

scans.32 In addition, patient-specific waveforms can be deter-

mined instead of generic waveforms as in the current study.

Furthermore, turbulence models were not considered in our

study despite the presence of a stenosis caused by the carotid

web. However, previous research has shown that flow instabil-

ities might occur under these conditions, but turbulence is not

expected to occur.33

Recent studies have shown that carotid webs might be associ-

ated with acute ischemic stroke in younger patients without car-

diovascular risk factors.34-36 The results of the simulated flow

patterns in the current study might be helpful in defining a ther-

apeutic strategy for evaluation. Despite the use of antithrombotic

agents, patients with a carotid web have a high risk of recurrent

stroke.2,3 However, thrombus formation in a carotid web might

be comparable with thrombus formation in the atrial appendage,

which is currently treated with oral anticoagulants.37 Other

potential treatment strategies of carotid webs are endovascular

Table 2: Results of hemodynamic parameters between the carotid web and the contralateral carotid bifurcation
Carotid Web Contralateral Carotid Bifurcation P Valuea

Recirculation zone
Area (median) (IQR) (mm2) 63.61 (50.60–99.38) 43.0 (36.46–50.34) .02
Length (median) (IQR) (mm) 6.90 (5.60–8.60) 1.80 (1.40–2.10) .01
Mean TAWSS (median) (IQR) (Pa) 0.27 (0.23–0.34) 0.27 (0.22–0.28) .30
Maximum TransWSS (median) (IQR) (Pa) 0.25 (0.20–0.31) 0.21 (0.10–0.23) .02
Maximum OSI (median) (IQR) 0.39 (0.36–0.43) 0.30 (0.19–0.33) .04

At level of minimum lumen area
Maximum TAWSS (median) (IQR) (Pa) 0.58 (0.51–0.61) 0.45 (0.34–0.47) .01

a P values were obtained from a paired Wilcoxon signed rank test.
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treatment (eg, carotid angioplasty or stent placement) or ca-

rotid endarterectomy.1,38,39

CONCLUSIONS
Carotid webs are associated with considerable recirculation zones

and regional increased WSS. These findings suggest that a carotid

web might stimulate thrombus formation, which increases the

risk of acute ischemic stroke.
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