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ORIGINAL RESEARCH
PEDIATRICS

Pediatric Atypical Teratoid/Rhabdoid Tumors of the Brain:
Identification of Metabolic Subgroups Using

In Vivo 1H-MR Spectroscopy
X B. Tamrazi, X S. Venneti, X A. Margol, X D. Hawes, X S.Y. Cen, X M. Nelson, X A. Judkins, X J. Biegel, and X S. Blüml

ABSTRACT

BACKGROUND AND PURPOSE: Atypical teratoid/rhabdoid tumors are rare, aggressive central nervous system tumors that are predom-
inantly encountered in very young children. Our aim was to determine whether in vivo metabolic profiles correlate with molecular features
of central nervous system pediatric atypical teratoid/rhabdoid tumors.

MATERIALS AND METHODS: Twenty confirmed patients with atypical teratoid/rhabdoid tumors who underwent MR spectroscopy were
included in this study. In vivo metabolite levels of atypical teratoid/rhabdoid tumors were compared with molecular subtypes assessed by
achaete-scute homolog 1 expression. Additionally, brain-specific creatine kinase levels were determined in tissue samples.

RESULTS: In vivo creatine concentrations were higher in tumors that demonstrated achaete-scute homolog 1 expression compared with
those without achaete-scute homolog 1 expression (3.42 � 1.1 versus 1.8 � 0.8 IU, P � .01). Additionally, levels of myo-inositol (mI) (9.0 �

1.5 versus 4.7 � 3.6 IU, P � .05) were significantly different, whereas lipids approached significance (44 � 20 versus 80 � 30 IU, P � .07) in
these 2 cohorts. Higher brain-specific creatine kinase levels were observed in the cohort with achaete-scute homolog 1 expression (P �

.05). Pearson correlation analysis showed a significant positive correlation of brain-specific creatine kinase with absolute creatine (P � .05)
and myo-inositol (P � .05) concentrations.

CONCLUSIONS: In vivo MR spectroscopy may predict key molecular features of atypical teratoid/rhabdoid tumors at initial diagnosis,
leading to timely patient risk stratification and accelerating the development of targeted therapies.

ABBREVIATIONS: ASCL1 � achaete-scute homolog 1; AT/RT � atypical teratoid/rhabdoid tumor; CKB � brain-specific creatine kinase; Cr � creatine; mI �
myo-inositol; Cho � choline; SMARCB1 � SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1

Primary brain tumors are the most common pediatric solid

tumors in children and the leading cause of death from child-

hood cancer.1,2 Recently, through the emergence of molecular

diagnostics and the growing field of pediatric molecular neuro-

oncology, biologically distinct and clinically relevant molecular

subtypes of pediatric brain tumors have been identified. These

include atypical teratoid/rhabdoid tumors (AT/RTs), a group of

rare, highly aggressive central nervous system tumors with poor

prognosis. The genetic hallmark of AT/RTs is the loss of protein

expression of SWI/SNF-related matrix-associated actin-dependent

regulator of chromatin subfamily B member 1 (SMARCB1), a tu-

mor-suppressor locus on chromosome 22q11.23.3,4 Although

these tumors are uniformly characterized by deletions and/or mu-

tations in this locus, there is clinical and molecular heterogeneity

among the patients. This suggests further underlying biologic het-

erogeneity,5,6 which has been defined by recent multicenter stud-

ies.7,8 Noninvasive imaging markers obtained at initial presenta-

tion can potentially serve as surrogates for these molecular

subgroups or for specific clinically relevant molecular features

that may lead to patient risk stratification and improved treat-

ment strategies. Recently, an imaging study demonstrated signif-

icant differences in the location and conventional MR imaging

characteristics of AT/RTs, which may potentially correlate with

the different molecular features/subgroups.9

Among the molecular features that can be used to distinguish

AT/RTs is a transcription factor known as achaete-scute homolog

1 (ASCL1). Patients whose tumors had expression of ASCL1 had

improved overall survival.10 In this study, we focused on this spe-
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cific molecular feature and explored whether in vivo 1H-MR spec-

troscopy can distinguish ASCL1-expressing AT/RTs from those

that do not express ASCL1. In an analysis of tissue samples, we

observed different levels of brain-specific creatine kinase (CKB),

with CKB being higher in ASCL1-expressing AT/RTs. Thus, our

primary objective was to determine whether in vivo Cr concen-

trations were significantly higher in AT/RTs with ASCL1 expres-

sion versus tumors without ASCL1 expression. A secondary goal

of this study was to review other metabolic features that are ob-

tained simultaneously with the measurement of creatine to fur-

ther differentiate these 2 cohorts using a metabolic/MR spectros-

copy imaging approach.

MATERIALS AND METHODS
Patients
Our single-center, retrospective study was approved by our insti-

tutional review board (Children’s Hospital Los Angeles) and was

compliant with the Health Insurance Portability and Account-

ability Act. The requirement to obtain informed consent was

waived. We accessed the pediatric oncology data base of our in-

stitution to identify patients with AT/RTs from 2000 to 2017 with

MR spectroscopy and frozen tissue specimens obtained at our

institution. All included patients had confirmed AT/RTs of the

brain with patient characteristics summarized in Table 1.

Imaging Protocol
All brain MR spectroscopy examinations were performed with

1.5T or 3T whole-body MR imaging systems in our institution

(Achieva and Ingenia, Philips Healthcare, Best, the Netherlands;

Signa HD 1.5, GE Healthcare, Milwaukee, Wisconsin). A single-

voxel point-resolved spectroscopic sequence with TE � 35 ms,

TR � 1.5 seconds (for 1.5T) and 2 seconds (for 3T), and 128 signal

averages was used for all acquisitions. T2-weighted fast spin-echo,

FLAIR, and T1-weighted FLAIR images were acquired in all in-

stances before MR spectroscopy and were reviewed to determine

the extent of tumor lesions. We identified the ROIs for MR spec-

troscopy on the basis of MR images from all 3 planes centered in

the solid parts of the tumors, excluding any surrounding normal

brain tissue or edema and in a manner that minimized inclusion

of cystic or necrotic areas. An attending pediatric neuroradiolo-

gist reviewed and approved the ROIs for each patient and con-

firmed that the MR spectroscopy profile was representative of

tumor tissue only. The sizes and shapes of the ROIs were adjusted

to lesion size and typically varied between 5 and 10 cm3. Spectra

were processed using the fully automated LCModel, Version

6.1–1 L software (http://www.lcmodel.com/). Absolute concen-

trations (IU) of Cho, Cr, mI, lactate, and lipid, which all consis-

tently have been reported to be abnormal in tumors, were ana-

lyzed. The unsuppressed water signal, assuming a water content of

75%, was used as an internal concentration reference.

Molecular Diagnostic Analysis

SMARCB1 Protocol. SMARCB1 molecular genetic analysis by

Sanger sequencing and multiplex ligation-dependent probe am-

plification were conducted on all tissue samples to confirm the

diagnosis of AT/RT11 per prior reported methodology.

ASCL1 Protocol/Immunohistochemistry and Automated Scoring
of CKB. Immunohistochemical studies were performed as previ-

ously described.12 The primary antibody (ASCL1) (Mouse Anti-

MASH1, catalog No. 556604; BD Biosciences, San Jose, Califor-

nia) diluted 1:100 with Bond Primary Antibody Diluent (Leica

Biosystems, Buffalo Grove, Illinois) was incubated for 30 minutes.

The primary antibody was detected using the Bond Polymer Re-

fine Detection kit (Leica Biosystems), which uses a peroxidase

block, secondary antibodies, and 3, 3-diaminobenzidine and was

finally counter-stained with hematoxylin.

Immunohistochemical studies for CKB were performed on

previously characterized rhabdoid tumor tissue microarrays as

Table 1: Patient demographics and clinical and biologic lesion characterization
Age (yr) Sex Overall Survival (mo) Location LM ASCL1 CKB Germline Mutation
0.15 F 0.5a Posterior fossa 0 Negative 5.05
0.32 F 17.0 Posterior fossa 0 Positive 6.31 Yes
0.39 M 8.2b Posterior fossa 1 Positive
0.64 M 7.0 Parietal lobe 0 Negative 5.10
0.67 M 0.5a Posterior fossa 1 Positive
0.68 M 5.1 Intraventricular 0 ND
0.92 F 0.5a Posterior fossa 1 Positive Yes
0.95 M 71.9b Posterior fossa 0 ND
1.09 M 13.0 Posterior fossa 0 Negative 5.31
1.14 M 7.0 Temporal lobe 0 Positive 6.05 Yes
1.15 M 59.0 Posterior fossa 0 Negative 6.31
1.42 F 9.0 Posterior fossa 1 ND
1.54 M 32.0 Temporal lobe 0 Positive 6.53 Yes
1.55 M 63.2b Posterior fossa 0 Negative
1.73 M 13.0 Pineal 0 Positive
1.84 F 18.0 Frontotemporal 0 Negative 5.21
1.96 F NA Temporal lobe 1 ND
2.86 M 18.0 Frontotemporal 1 Positive 6.61
7.43 F 40.0 Frontotemporal 0 Positive 6.42
13.72 M 40.0 Intraventricular 0 Positive 5.71

Note:—NA indicates patient lost to follow up; LM, leptomeningeal disease present (1) versus absent (0) at presentation; ND, not determined.
a Patients who died from surgical/other complications with no MR imaging or clinical evidence of progressive tumor.
b Patients who were still alive at the time of the completion of this study.
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previously described,13,14 and full paraffin-embedded sections

from all available tumor blocks were obtained from imaged pa-

tients. Quantification of immunohistochemical data was per-

formed as previously described.15 Blocker D, Streptavidin (HRP),

and the DAB detection kit (Ventana Medical Systems, Tucson,

Arizona) were used according to the manufacturer’s instructions.

For automated scoring, each tissue microarray slide was scanned

using a Scanscope Scanner (Aperio, Vista, California) and viewed

through the ImageScope software program (Aperio). An individual

blinded to the experimental design captured JPEG images from each

core (circular area of 315 cm2 corresponding to the entire core) at

10� magnification. For full sections, the same blinded individual

captured 5 random areas (circular area of 315 cm2 at 10� magnifi-

cation). Quantification was conducted using an automated analysis

program with the Matlab Image-Processing Toolbox (MathWorks,

Natick, Massachusetts) based on previously described methodol-

ogy.15 The final score for a given case and marker was calculated by

averaging the score of 2 cores (for each case) or from 5 areas per

section for full slides. These raw CKB numbers were log-transformed

(CKB � log10 [CKBraw]) for statistical analysis.

Data Collection
Frozen tumor tissue from 16 of 20 patients with AT/RTs and MR

spectroscopy studies from all 20 patients diagnosed at Children’s

Hospital Los Angeles between 2000 and 2017 were available for

analysis. Sufficient tissue samples available from 11 patients were

examined for CKB.

Statistical Analysis
Statistical analysis was informed by the previously reported find-

ing of 2 distinct molecular subtypes defined by the expression of

the molecular marker ASCL1.10 For demographic measurements,

the Fisher exact test was used to assess the difference in sex and

lesion location (posterior fossa versus lesions outside the poste-

rior fossa) between the 2 ATRT categories. A 2-sided exact test

with a Wilcoxon score was used to examine the difference in con-

tinuous measurements, including the demographics, month of

follow-up, and metabolic profiles. Because there were multiple

outcomes, the sequential gatekeeper strategy16 was used to con-

trol the family-wise type I error rate. In this strategy, the outcomes

were grouped into primary, secondary, and tertiary families. The

primary and secondary outcomes were CKB and Cr, respectively.

The tertiary outcome family included Cho, lactate, mI, and lipids.

We first gave the full � of .05 to the primary outcome. If the

primary outcome failed to reject the null hypothesis, the statistical

test would stop at the primary level. Otherwise, the � value would

be fully passed to the secondary outcome. If it failed to reject the

null hypothesis at the secondary family, the statistical test would

stop; otherwise, it would proceed to the tertiary outcome family.

Because the tertiary family had 4 outcome measurements, the

Benjamini-Hochberg false discovery rate correction method was

used to control the error introduced by multiple testing. Further-

more, Spearman correlation analysis was used to assess the corre-

lation between CKB and Cr concentrations in AT/RTs. We have

conducted an exploratory analysis of survival using the Kaplan-

Meier curve with a log-rank test. Patients who died from causes

not related to disease progression were excluded because the log-

rank test assumes noninformative right censoring. Patients at fi-

nal follow-up were censored. SAS 9.4 (SAS Institute, Cary, North

Carolina) was used for all statistical tests.

RESULTS
In vivo MR spectra acquired from AT/RTs demonstrated consid-

erable metabolic heterogeneity. For example, whereas in some

patients signals from Cr and mI were readily detectable, these

metabolites were essentially absent in other AT/RT cases (Fig 1).

CKB was analyzed independently for 11 AT/RTs, and signifi-

cantly higher CKB levels were observed in the cohort with ASCL1

expression (P � .05, Table 2) in our patient population. The sub-

sequent analysis of in vivo Cr concentrations demonstrated that

Cr was significantly higher in tumors with ASCL1 expression than

in tumors without ASCL1 expression (P � .05, Table 2). In addi-

tion, significantly different in these 2 subgroups was the metabo-

lite mI (P � .05, Table 2), whereas lipid levels approached signif-

icance (P � .07, Table 2). Pearson correlation analysis showed

statistically significant positive correlations of CKB with absolute

Cr (P � .05) and mI (P � .01) concentrations.

AT/RTs located outside the posterior fossa more often ex-

pressed ASCL1 (6 versus 3 patients), whereas AT/RTs in the pos-

terior fossa more often did not express ASCL1 (3 versus 4). Al-

though this difference was not statistically significant in this small

cohort of patients, the trend is consistent with the findings re-

ported by Torchia et al.10 Overall survival in the 2 AT/RT sub-

groups was not significantly different (P � .93).

DISCUSSION
AT/RTs are rare, aggressive central nervous system tumors that

are predominantly encountered in very young children. These

tumors have been considered incurable, with survival being typi-

cally �1 year after diagnosis for most patients. Although AT/RTs

are uniformly defined by the loss of expression of SMARCB1,

clinically there is considerable heterogeneity. While most children

with these tumors have a very poor prognosis, a subset of patients

experience distinctly prolonged survival, indicating epigenetic

heterogeneity that potentially affects the response to treatment.6

Indeed, current consensus from a large multicenter study is that

there are at least 3 molecular subgroups, referred to as AT/RT-

SHH, AT/RT-TYR, and AT/RT-MYC.8 A second and indepen-

dent consortium of investigators7 also postulated 3 molecular

subgroups of AT/RTs: Group 1 carried “neurogenic” signatures

such as the expression of ASCL1 with clinically more favorable

behavior, and groups 2A and 2B consisted of “mesenchymal” AT/

RTs, which were more aggressive/treatment-resistant and did not

express ASCL1. Richardson et al5 suggested that AT/RT-SHH,

AT/RT-TYR, and AT/RT-MYC subgroups may correspond with

group 1, 2A, and 2B subgroups, respectively. However, this possibil-

ity has not been formally investigated and confirmed. In this study, to

establish a clear separation of patients, we focused on the molecular

feature of ASCL1 expression with our groups comprising AT/RTs

that either expressed ASCL1 or did not express ASCL1.

When comparing in vivo MR spectroscopy measurements in

AT/RTs, we observed significantly higher Cr concentrations in the

ASCL1-expressing group versus the non-ASCL1-expressing

group. Cr is an energy metabolite that is synthesized through a
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2-step process in the kidneys, pancreas, and liver. The brain then

takes up Cr from the bloodstream by specific receptors known as

SLC6A8, which are expressed in neurons and oligodendrocytes of

the brain. Once Cr enters the CNS, it becomes part of the free

creatine/phosphocreatine/creatine kinase system, which serves as

an energy reservoir to maintain stable adenosine triphosphate

levels.17,18 Both free Cr and creatine/phosphocreatine contribute

to the total Cr peak, which is quantified by MR spectroscopy.

For our cohort, the finding of higher levels of CKB in ASCL1-

expressing AT/RTs provides additional evidence for considerable

differences in Cr uptake and regulation in the ASCL1-expressing

subgroup of AT/RTs. Furthermore, we have reviewed publicly

accessible data from the studies of Tor-

chia et al7,10 and have noted that in their

dataset, both CKB and the creatine re-

ceptor (SLC6A8) were significantly

higher in AT/RTs with ASCL1 expres-

sion compared with tumors without ex-

pression of ASCL1. Further studies are

necessary to determine whether there

is a direct relationship between ASCL1

expression and creatine metabolism.

However, the above observations

strongly indicate that the energy me-

tabolism in the ASCL1-expressing

subgroup could be different from that

in the subgroup without ASCL1 ex-

pression. Therefore, we postulate that

the molecular differences of the sub-

groups ultimately lead to differences

in the underlying metabolism, which

can be identified by noninvasive meth-

ods such as MR spectroscopy.

Myo-inositol was also significantly

higher in ASCL1-expressing AT/RTs

than in those without expression of

ASCL1. Myo-inositol, a sugarlike mole-

cule, is involved in signaling as part of

the second messenger systems in the

normal brain.19 Similar to creatine, mI is

not synthesized inside brain cells but is

derived from the diet or is synthesized in

the kidneys. Myo-inositol is believed to

be a putative marker of glial cells, partic-

ularly of astrocytes.20,21 It is thus gener-

ally high in astrocytomas but decreases

when lesions transform to a higher

grade.22,23 Myo-inositol is involved in

the activation of the protein kinase C,

which leads to production of proteolytic

enzymes that are found more often in

malignant, aggressive primary cerebral

tumors.22 For AT/RTs, mI may poten-

tially serve as a surrogate predictor of

more aggressive lesions—that is, lower

mI predicts the more aggressive AT/RTs

without expression of ASCL1. The cause

for low mI in these tumors may be the lack of uptake and trans-

port; however, this was not specifically investigated in this study,

and further validation studies are needed.

In contrast to Cr and mI, which were both lower in AT/RTs

that did not demonstrate ASCL1 expression, lipids were more

prominent, though statistical significance was not reached. There

is some controversy about the origin of the lipid signal in tumors.

Some groups suggested that the lipid signal originates from mo-

bile lipid molecules as a result of tissue degradation and necrosis

of aggressively growing lesions.24-26 On the other hand, promi-

nent lipid signal was also reported in spectra obtained from tu-

mors without detectable necrosis.27 In any case, there appears to

FIG 1. T2-weighted MR imaging and MR spectra of supratentorial AT/RTs with ASCL1 expression
(upper row), a posterior fossa AT/RT with ASCL1 expression (middle row), and posterior fossa
AT/RT without ASCL1 expression (lower row). Cr, Cho, and mI are readily detectable in the spectra
of supratentorial and posterior fossa ASCL1-expressing AT/RTs, whereas only Cho is clearly de-
tectable in the ASCL1-nonexpressing posterior fossa AT/RT. All spectra show prominent signal
from lipids and lactate (Lac). Shown are the unprocessed data (thin black lines) with the super-
imposed fit (thick gray lines) used for quantification. The “box” seen in the images represents the
voxel placement.
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be consensus that the presence of high lipids is generally an indi-

cator of more malignant lesions.24 The observed trend of higher

lipid levels in AT/RTs without expression of ASCL1 would thus be

consistent with a potentially worse prognosis.

Differences in our patient cohort in terms of germline-versus-

sporadic SMARCB1 mutations were also investigated. A total of 4

patients were identified with germline mutations (Table 1), all of

which demonstrated expression of ASCL1. Although this is an

interesting finding, more data are needed to investigate the clini-

cal significance, if any, of this observation.

Overall survival in the 2 AT/RT subgroups in this study was

not significantly different. This appears to be inconsistent with the

study of Torchia et al,10 which predicted a clinically more favor-

able outcome for AT/RTs with expression of ASCL1. However,

treatment approaches for most patients included in this study

were not consistent, likely playing a role in outcome/prognosis.

Thus, the inability of this study to detect a difference in clinical

outcomes of a small group of AT/RTs should not be overempha-

sized. Our study did, however, demonstrate a trend concordant

with the findings of Torchia et al,7 specifically that AT/RTs ex-

pressing ASCL1 are more often located outside the posterior

fossa.

The question arises as to whether metabolic features of AT/

RTs, obtained by noninvasive MR spectroscopy, form clusters

and whether these clusters correlate with molecular subtypes or

specific molecular features. Our analysis of the MR spectroscopy

data available for this study is suggestive of the presence of 2

dominant metabolic clusters consisting of AT/RTs with signifi-

cant differences in Cr and mI (relative to Cho) (Fig 2). However,

given the broad heterogeneity of the larger metabolic group data

points (dashed line circle in Fig 2), it is unclear whether these cases

form a separate third group as predicted by the molecular pheno-

types. Further, multicenter prospective trials with larger number

of subjects using MR spectroscopy data are needed for analysis.

Our study had several limitations, including the single-center

retrospective design. Our total number of patients is small. How-

ever, to our knowledge, this is the largest cohort of patients with

AT/RTs with both molecular and metabolic (MR spectroscopy)

data. No corrections of metabolite concentrations for T1 and T2

effects were applied because they are unknown in AT/RTs and it

was not feasible to measure them in a clinical setting in patients. It

is known that T1 times are longer at 3T than at 1.5T. The longer

TR of our 3T studies (2.0 versus 1.5 seconds) partially corrects for

this effect. Additionally, due to acquisition of the data at both 1.5

and 3T, differentiation of the mI and glycine peak proved to be

challenging, particularly at 1.5T because both mI and glycine con-

tribute to the peak at 3.5 ppm. Clinically, glycine and mI may have

similar implications because prior studies have reported that gly-

cine consumption and synthesis are correlated with rapid cancer

cell proliferation28; therefore, glycine may serve as a marker for

more aggressive tumors. Changes in glycine therefore can poten-

tially coincide with and/or parallel those of mI in aggressive brain

tumors. Further studies at 3T are warranted to investigate the role

of glycine in aggressive pediatric brain tumors.

CONCLUSIONS
Our study demonstrates that metabolic profiles as determined by

MR spectroscopy can help predict molecular features of AT/RTs,

potentially serving as in vivo biomarkers for the molecular sub-

groups. AT/RTs with and without expression of ASCL1 are cur-

rently treated using similar aggressive chemotherapy regimens,

sometimes with added radiation therapy. However, it is expected

that in the future, therapeutic options will be developed that will

try to exploit unique biologic/molecular features in individual

patients. A noninvasive method for early stratification would then

be helpful clinically and is the ultimate goal for the current preci-

sion-based oncologic management of patients with brain tumors.
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very low Cr and mI levels (relative to Cho) and are well-separated
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separate groups as suggested by the molecular data.
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UNRELATED: Ians Friends Foundations, Rudi Schulte Research Institute, Comments:
Salary support. *Money paid to the institution.

REFERENCES
1. Ostrom QT, Gittleman H, Fulop J, et al. CBTRUS Statistical Report:

Primary Brain and Central Nervous System Tumors Diagnosed in
the United States in 2008 –2012. Neuro Oncol 2015;17(Suppl 4):
iv1– 62 CrossRef Medline

2. Gurney J, Smith M, Bunin G. CNS and miscellaneous intracranial
and intraspinal neoplasms. In: Ries L, Smith M, Gurney J, et al., eds.
Cancer Incidence and Survival among Children and Adolescents: United
States SEER Program 1975–1995. Bethesda: National Cancer Institute,
SEER Program. NIH Pub. No. 99 – 4649; 1999

3. Biegel JA, Zhou JY, Rorke LB, et al. Germ-line and acquired muta-
tions of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res
1999;59:74 –79 Medline
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