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ORIGINAL RESEARCH
ADULT BRAIN

Cerebral Damage after Carbon Monoxide Poisoning:
A Longitudinal Diffusional Kurtosis Imaging Study

Y. Zhang, T. Wang, J. Lei, S. Guo, S. Wang, Y. Gu, S. Wang, Y. Dou, and X. Zhuang

ABSTRACT

BACKGROUND AND PURPOSE: Previous DTI cross-sectional studies have showed the cerebral damage feature was different in the
three clinical stages after carbon monoxide poisoning. Diffusional kurtosis imaging (DKI) is an advanced diffusion imaging model
and considered to better provide microstructural contrast in comparison with DTI parameters. The primary aim of this study was
to assess microstructural changes in gray and white matter with diffusional kurtosis imaging in the acute, delayed neuropsychiatric,
and chronic phases after acute carbon monoxide (CO) poisoning. The secondary aim was to relate diffusional kurtosis imaging
measures to neuropsychiatric outcomes of acute carbon monoxide poisoning.

MATERIALS AND METHODS: In all, 17 patients with acute carbon monoxide poisoning and 30 sex- and age-matched healthy volun-
teers were enrolled in the study. Patients were scanned within 1 week, 3–8weeks, and 6months after acute carbon monoxide poi-
soning. Diffusional kurtosis imaging metrics including mean kurtosis, mean diffusivity, fractional anisotropy, and kurtosis fractional
anisotropy were measured in 11 ROIs and then further correlated with neuropsychiatric scores.

RESULTS: In WM, mean kurtosis tended to increase from the acute-to-delayed neuropsychiatric phases and then decrease in the
chronic phase, while in GM mean kurtosis showed a constant decline. Contrary to mean kurtosis, mean diffusivity first decreased then
tended to increase in WM, while in GM, from the acute to chronic phases, mean diffusivity showed a constant increase. In both WM
and GM, the fractional anisotropy and kurtosis fractional anisotropy values progressively declined with time. Kurtosis fractional anisot-
ropy showed the best diagnostic efficiency with an area under the curve of 0.812 (P = . 000). Along with neuropsychiatric scores, kurtosis
fractional anisotropy of the centrum semiovale and Digit Span Backward were most relevant (r = 0.476, P = . 000).

CONCLUSIONS: Longitudinally, microstructural changes were inconsistent in WM and GM with time after acute carbon monoxide poi-
soning. Diffusional kurtosis imaging metrics provided important complementary information to quantify the damage to cognitive
impairment.

ABBREVIATIONS: CS ¼ centrum semiovale; DKI ¼ diffusional kurtosis imaging; DNS ¼ delayed neuropsychiatric; FA ¼ fractional anisotropy; GP ¼ globus
pallidus; KFA ¼ kurtosis fractional anisotropy; MD ¼ mean diffusivity; MK ¼ mean kurtosis; CC ¼ corpus callosum

Carbon monoxide (CO) poisoning often results in serious cer-
ebral damage. On the basis of clinical behavior, surviving

patients usually present with 3 clinical phases: the acute, delayed
neuropsychiatric (DNS), and chronic. In the acute phase, a
patient with a definite history of acute CO poisoning presents
with acute and transient clinical symptoms. The DNS phase

represents recurrent neuropsychiatric symptoms after the appa-
rent resolution of acute symptoms (a lucid interval from 2 to
40 days; mean duration, 22 days). Furthermore, patients in the
chronic phase present symptoms from the acute to chronic
phases (even after 1 year).1

Necrosis in the globus pallidus (GP) and demyelination in the
white matter have been described as the principal pathologic
findings of brain damage with CO poisoning in previous
reports.1,2 For the past few years, diffusion-weighted imaging and
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diffusion tensor imaging have been popular methods of assessing
the above changes. The results indicated that the apparent diffu-
sion coefficient and fractional anisotropy (FA) values were highly
correlated with neuropsychiatric scores.3-7

Diffusional kurtosis imaging (DKI) is a straightforward exten-
sion of the DTI model and is considered to better provide micro-
structural contrast in comparison with DTI parameters.8,9 DKI
has been experimentally demonstrated to be suitable in both WM
and gray matter.10 The kurtosis reveals the degree of diffusion
restriction and tissue microstructural complexity.11 Evidence
from previous research supports elevated kurtosis indicating
increased cellular microstructural density, such as with cytotoxic
edema or the growth of tumor cells. In contrast, decreasing kurto-
sis in normal aging and degenerative diseases often suggests mye-
lin destruction or cell loss.12 Previous research has already
depicted brain damage by DKI, but this was a cross-sectional
study and observed only WM damage.13 Due to the longitudinal
nature of this study, we were able to observe the dynamic charac-
terization of damage. In addition, this study is comprehensive
because we chose both theWM and GM as the ROIs.

Among the parameters we chose, mean kurtosis (MK) was
the average of the diffusion kurtosis along all diffusion direc-
tions, and higher MK indicated increased microstructural com-
plexity. Mean diffusivity (MD) was viewed as a measurement of
isotropic diffusion in the context of free movement of water,
and a lower MD value indicated cytotoxic edema, while a higher
value represented angiogenic edema. FA reflected water diffu-
sion anisotropy along the 3 principal directions; kurtosis frac-
tional anisotropy (KFA) was mathematically analogous to FA
but reflected the anisotropy of the kurtosis tensor.14 Decline in
FA and KFA indicated injured WM fiber integrity.

Our hypothesis was that the evolution of MD, MK, FA, and
KFA in the ROIs might be dynamic in the 3 clinical periods;
thus, the main purpose of this study was to determine whether
DKI metrics could be sensitive enough to dynamically detect
microstructural injuries of WM and GM after acute CO poison-
ing and whether this was useful in evaluating cognitive and ex-
ecutive outcomes.

MATERIALS AND METHODS
Patient Enrollment
The Department of Neurology of the First Hospital of Lanzhou
University recruited patients with CO exposure from October
2015 to September 2018. Patients were selected using the following
criteria: a clear history of recent CO exposure and DNS occurrence
at follow-up. The exclusion criteria were as follows: age younger
than 20 years or older than 70 years and a history of brain disor-
ders, including traumatic brain injury, neuropsychiatric disorder,
an operation, irradiation, stroke, infection, neoplasm, and demyeli-
nating disease. After initial screening, 17 patients were enrolled in
this study. The Ethics Committee of The First Hospital of Lanzhou
University approved the study program (LDYYLL2018-114).

Baseline scans and cognitive evaluations were performed
within 7 days after acute CO poisoning; follow-up scans were per-
formed within 7 days after DNS occurrence and after 6months
of acute CO poisoning.

Thirty sex- and age-matched healthy subjects were enrolled as
controls. All of them had normal MR imaging findings and basic
blood test results.

Cognitive Testing
Neuropsychological tests were administered by Tianhong Wang
(associate chief physician in neurology) before MR imaging on the
same day. The Mini-Mental State Examination was used to assess
general intellectual function.15 Executive function assessments
included Digit Forward Span and Digit Backward Span. To evaluate
verbal fluency, we asked subjects to name as many items as possible
from semantic categories (animals and vegetables). The Barthel
Index was used to measure biologic and psychosocial functions.16

MR Imaging Protocols
All subjects were scanned on a 3T MR imaging system
(Magneton Skyra; Siemens, Erlangen, Germany). The sequences
and parameters were as follows:

T1-weighted imaging: TR = 1670 ms, TE = 11 ms, FOV =
240� 240mm, 320� 224matrix, and slice thickness = 2.5 mm.
DWI: single-shot echo-planar sequence—TR = 4500 ms,
TE = 102 ms, FOV = 240� 240 mm, matrix = 192� 192, and
slice thickness = 2.5 mm. A b-value of 1000 s/mm2 was
chosen.
DKI: spin-echo EPI diffusion sequence with a total of 30 dif-
ferent diffusion-encoding directions. On the basis of previous
studies, the b-value inWM should be higher than that in GM,
where 2500�3000 s/mm2 was found to be ideal in WM.17,18

Therefore, the b-values of 0, 1000, and 3000 s/mm2 were used
in this scan.

Axial images were acquired using the following parameters:
TR = 6000 ms, TE = 96 ms, FOV = 240� 240 mm, matrix =
192 � 192, and section thickness = 2.5 mm.

The baseline and followed-up scans were performed by the
same technician (Xin Zhuang), and the same positioning baseline
and parameters. Images were corrected for motion and eddy cur-
rents using the eddy-correct tool of the FMRIB Software Library
(FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). DKI postprocessing
was performed using the free software Diffusion Kurtosis
Estimator (http://www.nitrc.org/projects/dke), which generated
parametric maps including FA, MD, MK, and KFA. ROI delinea-
tion and measurement were performed on the software MRIcron
(https://www.nitrc.org/projects/mricron/).

MD, MK, FA, and KFA Data Analysis
As the vulnerable damage regions and important functional
areas,2,19,20 the GP, caudate nucleus, thalamus, centrum semi-
ovale (CS), corpus callosum (CC), frontal lobe, occipital lobe,
temporal lobe, and parietal lobe were chosen as our ROIs. Every
ROI was represented by a sphere with a diameter of 3mm to
lessen partial volume effects, and they were manually placed on
T1WI (Fig 1)13-21 and transferred onto the corresponding para-
metric map. After ensuring the same scan section, we applied the
initially defined ROIs to the follow-up maps. Except for the CC
genu, body, and splenium, other ROIs were placed bilaterally,
and the mean value was extracted.
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Statistical Analyses
The statistical analysis was performed using the Statistical
Package for Social Sciences software package (Version 22 for
Windows; IBM, Armonk, New York). The Friedman test and
post hoc pair-wise comparisons were used to assess neuropsychi-
atric scores and DKI parameters of the 3 clinical periods. In post
hoc pair-wise comparisons, P values adjusted by the Bonferroni
correction (the original P values multiplied by 3) were compared,
with the usual nominal threshold of .05. Two independent-sam-
ples t tests or Mann-Whitney U tests were used to compare the
differences between patients and controls. The area under the
curve of each DKI parameter in different regions was calculated
by receiver operating characteristics. Spearman correlation analy-
sis was used to explore the relationship between the cognitive
score and the DKI-derived parameter. P values < .05 were con-
sidered significant for the tests.

RESULTS
Demographic and Neuropsychiatric Data
Table 1 summarizes the clinical data of the 2 groups. The CO-ex-
posure group had significantly lower neuropsychiatric scores
than the control group (P < .05). These scores decreased from
the acute-to-DNS phases and then increased at the chronic phase
(P < .05).

Comparisons of DKI-Derived Parameters
The change in DKI metrics is shown in the On-line Table and Fig
2. Compared with the control value, the FA and KFA values of all
ROIs showed a decreasing trend in the CO-exposure group. In
the CS, corpus callosum body, and corpus callosum splenium, a
significant increase in MK and a decrease in MD emerged in the
DNS phase. In the GP, however, the highest MK and lowest MD
values appeared in the acute phase (P < .05).

Among the CO-exposure group, MK in WM showed a trend
of increasing from the acute to DNS phases and then decreased at
the chronic phase. Contrary to MK, MD first decreased from
baseline to the DNS phase and then increased in the chronic
phase.

In the GM, from the acute to chronic phase, MK progressively
decreased, while MD continually increased. However, in both the
WM and GM, the values of FA and KFA showed a trend toward
progressive reduction with time.

Comparison of Positive Imaging Characteristics in the 3
Clinical Phases
Figures 3 and 4 represent evolving lesions in the GP and CS,
respectively, depicted in the 5 imaging maps in patients 1 and 2
with acute CO poisoning, arranged in the acute, DNS, and
chronic phases.

FIG 1. Location of the ROIs. A, Centrum semiovale. B, Genu, body, and splenium of the corpus callosum. C, Frontal and parietal lobes. D, Globus
pallidus, caudate nucleus, thalamus, and occipital lobe. E, Temporal lobe.

Table 1: Clinical variables of patients in different stages of CO exposurea

CO-Exposure Group (n = 17)
Controls (n = 30)Acute Stage DNS Stage Chronic Stage

Average days to evaluation 5.53 6 1.07 30.76 6 5.90 196.41 6 9.21
Sex (male/female) (No.) 8:9 8:9 8:9 15:15
Age (yr) 47.41 6 11.50 47.41 6 11.50 47.41 6 11.50 48.40 6 9.84
Education (yr) 14.00 (9.50 6 14.00) 14.00 (9.50 6 14.00) 14.00 (9.50 6 14.00) 14.00 (11.00 6 14.00)
MMSE 26.00 6 2.50b,c 18.59 6 4.21c,d 24.59 6 2.81c 29.00 (28.00–29.00)
Barthel Index 90.00 (80.00–100.00)b,c 25.00 (16.00–45.00)c,d 98.00 (92.50–100.00)c 100.00 (100.00-100.00)
Digit span test

Forward 6.00 6 1.46b,c 2.00 (1.50–3.00)c,d 5.06 6 1.98c 7.00 (7.00–8.00)
Backward 3.76 6 1.25b,c 1.00 (1.00–1.00)c,d 2.41 6 0.94c 5.00 (4.00–5.00)

Verbal fluency test
Animals 11.18 6 3.36b,c 5.47 6 2.90c,d 9.53 6 3.15c 15.00 (14.75.00–16.00)
Vegetables 11.59 6 2.29b,c 5.00 (3.50–6.00)c,d 11.00 (9.50–12.00)c 13.87 6 1.50

Note:—MMSE indicates Mini-Mental State Examination.
a Data are expressed as mean 6 SD and median (25th to 75th quartiles).
b P < .05 (acute versus DNS).
c P < .05 (versus controls).
d P < .05 (DNS versus chronic).
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In patient 1, symmetric hyperintense lesions in the GP on
DWI and MK maps in the acute phase were hypointense lesions
on other maps. In the DNS phase, the lesions decreased to isoin-
tense lesions on DWI, while they were hypointense lesions on
MK and hyperintense lesions on MD maps; in the chronic phase,
the intensity of lesions was lower than in the DNS phase on MK

maps but higher on MD maps. In both
the DNS and chronic phases, the lesions
on the FA and KFA maps had lower in-
tensity than those in the acute phase.
Notably, in the DNS phase, new hyper-
intensity lesions emerged in the WM.

In patient 2, slightly hyperintense
lesions appeared in the CS in the acute
phase on the DWI and MK maps but
were isointense lesions on other maps.
In the DNS phase, they were higher on
the DWI and MK maps and were hypo-
intense lesions on the MD, FA, and KFA
maps. In the chronic phase, the intensity
significantly decreased on the MK map
but increased on the MD map, yet the
lesions were still hypointense on the FA
and KFAmaps.

Diagnostic Performance of DKI-
Derived Parameters
In the WM region, KFA had a higher

area under the curve than the other measures, among which
KFA in the CS had the best performance to differentiate
patients in the DNS phase from controls with an area under
the curve of 0.812 (P = . 000) (Table 2). Unlike WM, in the
GM region, MK had better differentiation performance than
other measures.

FIG 2. Boxplots of diffusional kurtosis imaging in ROIs in the acute phase (red bar), DNS phase (green bar), and chronic phase (blue bar)
with CO intoxication. The hashtag indicates P < .05 (acute versus DNS); ampersand, P < .05 (acute versus chronic); and asterisk, P <
.05 (DNS versus chronic).

FIG 3. Patient 1: A 54-year-old man. The lesion evolution in the globus pallidus in the acute
(5 days), delayed neuropsychiatric (39 days), and chronic (192days) phases.
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KFA Value Predicted Cognitive Performance
The correlations between KFA in the selected ROIs and neuro-
psychiatric scores are shown in Table 3. The results show that
reduction in KFA in the CS, corpus callosum genu, corpus cal-
losum splenium, frontal lobe, parietal lobe, and GP was signifi-
cantly associated with a decline in the Mini-Mental State
Examination scores (P < .05). A decline in the Digit Span
Backward score was associated with a KFA decrease in the CS,
corpus callosum genu, corpus callosum body, corpus callosum
splenium, frontal lobe, parietal lobe, and GP (P < .05). However,
the Barthel Index, Digit Span Forward, and verbal fluency scores
had a slight correlation with all regions.

DISCUSSION
Dynamic Changes in the MK and MD
Physiopathologic changes induced by hypoxic-ischemic damage
with CO poisoning included mainly intracellular tortuosity and
viscosity changes, which were subsequent to the breakdown of

cytoskeletal structures and swelling of the mitochondria, and aug-
mented the complexity or heterogeneity of the microenviron-
ment, eventually leading to an increase in MK. Meanwhile, the
cytotoxic edema reduced the extracellular volume and restriction
in water motion, which gave rise to a decrease in MD. Our results
showed that the change in MK was always contrary to that in
MD, both in WM and GM. Accompanied by cell necrosis, lique-
faction, apoptosis, and atrophy, the complexity of the tissue
appeared to significantly decrease and the vasogenic edema
increased. The former resulted in a decrease in MK,22 and the lat-
ter resulted in the increase in MD.

Notably, our results show that increasing MK and decreasing
MD appeared earlier in GM than in WM. This finding might be
attributed to the increased vulnerability to hypoxia of GM
because neurons in GM have high blood demand. In addition, it
also indicates that obvious damage in WM occurred in the DNS
phase. As we observed, all patients had typical bilateral hyperin-
tensity of WM on DWI in the DNS phase, while in the acute

phase, only 5 patients had multiple
focal lesions in the WM. These find-
ings were consistent with previous
research showing that hyperintense
areas in WM on T2-weighted imaging
were more widespread after the
appearance of the DNS phase than
before it.23,24

In a previous report, the kurtosis
values in the WM region were lower
in patients than in controls.13

However, our results showed that
MK was higher in the acute and DNS
stages in the CO-exposure group
than in the control group; this finding
indicates the increased microstruc-
tural complexity in the early stages
of poisoning. In fact, an increase of
MK also occurred in acute stroke
research. Jensen et al25 found

Table 2: Diagnostic performance of DKI parameters in differentiating patients with CO exposure from controls

Brain Regions/ROIs

Area under the ROC Curve

Acute Stage DNS Stage Chronic Stage
MK MD FA KFA MK MD FA KFA MK MD FA KFA

White matter
Centrum semiovale 0.588a 0.549 0.555 0.667 0.774a 0.770a 0.667 0.812a 0.516 0.521 0.732a 0.802a

Corpus callosum
Genu 0.126 0.522 0.499 0.701a 0.599 0.642 0.700a 0.753a 0.574 0.663a 0.681a 0.766a

Body 0.618 0.601 0.570 0.602 0.759a 0.714a 0.699a 0.780a 0.649 0.586 0.789a 0.810
Splenium 0.578 0.719a 0.600 0.749a 0.674 0.768 0.707a 0.770a 0.720a 0.416 0.729a 0.811a

Frontal 0.651 0.564 0.602 0.671 0.726a 0.640 0.736a 0.741a 0.503 0.612 0.757a 0.771a

Parietal 0.532 0.583 0.557 0.646 0.637 0.639 0.656 0.697a 0.605 0.429 0.697a 0.762a

Temporal 0.567 0.622 0.575 0.731a 0.671 0.745a 0.749a 0.806a 0.604 0.509 0.699 0.775a

Occipital 0.645 0.515 0.671 0.693 0.701a 0.609 0.733a 0.775a 0.287a 0.503 0.761a 0.791a

Gray matter
Globus pallidus 0.800a 0.76a 0.541 0.633 0.649 0.448 0.553 0.541 0.724a 0.640 0.660 0.602
Caudate nucleus 0.562 0.516 0.520 0.501 0.539 0.514 0.551 0.514 0.659a 0.535 0.603 0.613
Thalamus 0.590 0.585 0.556 0.477 0.550 0.379 0.509 0.520 0.700a 0.400 0.534 0.537

Note:—ROC indicates receiver operating characteristic.
a<.05 indicates significance.

FIG 4. Patient 2: A 42-year-old woman. The lesion evolution in the centrum semiovale in the
acute (4 days), delayed neuropsychiatric (25 days), and chronic (223 days) phases.
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substantially increased diffusional kurtosis within the cerebral
ischemic lesions of 3 subjects with stroke 13-26 hours following
the onset of symptoms by application of the DKI MR imaging
method. In CO poisoning, these similar results might be
explained by secondary ischemic injury caused by hypoxia in
the early stage.

By comparing the diagnostic efficiency, we found that MK
had a higher sensitivity than MD for monitoring GM damage.
This was consistent with previous findings with regard to
stroke, Alzheimer disease, Parkinson disease, and neoplastic
lesions.26-31 Compared with other deep GM structures such
as the caudate nucleus and thalamus, the GP showed the
greatest sensitivity, therefore revealing selective damage to
the GP.

Progressive Decrease in FA and KFA
Our results show that FA and KFA of WM progressively
decreased with time, which was a finding reported in a previous
study: Lo et al6 reported that a significantly lower mean FA value
was found in patients in the DNS phase compared with the con-
trol group both before and 3months after hyperbaric oxygen
therapy. Chang et al32 reported on 17 patients with CO poisoning
who underwent DTI assessment 4–6months after hyperbaric ox-
ygen therapy, and they found that the extensive WM areas with
FA decreased. The breakdown of myelin and nerve fiber rarefac-
tion may be an important component of the pathologic process.14

In addition, we found that the decreases in FA and KFA were
more obvious in the DNS and chronic phases than in the acute
phase. The underlying mechanisms might be related to neuronal
injury that was originally caused by global brain anoxia or

ischemia in the acute phase and then resulted in secondary
Wallerian degeneration of WM.33

In terms of diagnostic efficiency, KFA showed a better effi-
ciency than FA in detecting WM damage. Indeed, previous
reports have demonstrated that KFA supplements the contrast in
other diffusion MR imaging metrics, particularly FA, which van-
ishes in near-orthogonal fiber arrangements such as in the supe-
rior corona radiata and centrum semiovale, whereas KFA does
not.13,34

KFA Value Predicted Clinical Performance
Cognitive and executive capacity dysfunction was the common
clinical issue for survivors of CO poisoning. Recently, a study
based on a total of 9041 adults showed that the dementia inci-
dence was 1.6-fold higher in the CO-exposed cohort than in the
nonexposed cohort.35 Neuropsychiatric deficits related to CO
poisoning were also found in our patients. In our study, the posi-
tive correlation between the neuropsychiatric score and KFA in
multiple WM regions supported the hypothesis that WM micro-
structural changes may contribute to the decline in cognitive and
executive functions. In fact, there were 5 patients in our study
who still had poor neuropsychiatric performance regarding
incapacity of life, disturbance of intelligence, or hemiplegic paral-
ysis at the chronic stage and had much lower KFA values
(0.102�0.303) in the CS than others.

Relative to other scores, Digit Span Backward was found to
have better correlation with most regions in WM, such as the CS,
corpus callosum genu, corpus callosum body, frontal lobe, and
parietal lobe. This finding might be because the performance on
Digit Span Backward is thought to reflect higher-order executive

Table 3: Correlation study between KFA and cognitive tests in patients with CO intoxication

Brain Regions/ROIs MMSE Barthel Index
Digit Span Verbal Fluency

Forward Backward Animals Vegetables
White matter

Centrum semiovale r = 0.399a r = 0.125 r = 0.212 r = 0.476a r = 0.164 r = 0.221a

P = . 000 P = . 268 P = . 057 P = . 000 P = . 145 P = . 048
Corpus callosum

Genu r = 0.283a r = 0.141 r = 0.218 r = 0.374a r = 0.167 r = 0.188
P = . 010 P = . 209 P = . 051 P = . 001 P = . 136 P = . 092

Body r = 0.206 r = 0.211 r = 0.232a r = 0.364a r = 0.219a r = 0.176
P = . 065 P = . 059 P = . 037 P = . 001 P = . 049 P = . 117

Splenium r = 0.346a r = 0.252a r = 0.201 r = 0.270a r = 0.200 r = 0.282a

P = . 002 P = . 023 P = . 073 P = . 015 P = . 073 P = . 011
Frontal r = 0.324a r = 0.155 r = 0.173 r = 0.391a r = 0.203 r = 0.170

P = . 003 P = . 167 P = . 123 P = . 000 P = . 069 P = . 129
Parietal r = 0.222a r = 0.122 r = 0.158 r = 0.413a r = 0.141 r = 0.152

P = . 047 P = . 279 P = . 159 P = . 000 P = . 211 P = . 174
Temporal r = 0.174 r = 0.171 r = 0.246a r = 0.172 r = 0.091 r = �0.007

P = . 119 P = . 127 P = . 027 P = . 124 P = . 417 P = . 948
Occipital r = 0.151 r = 0.115 r = 0.187 r = 0.141 r = 0.142 r = 0.087

P = . 178 P = . 305 P = . 095 P = . 210 P = . 208 P = . 442
Gray matter

Globus pallidus r = 0.282a r = 0.206 r = 0.280a r = 0.264a r = 0.217 r = 0.175
P = . 011 P = . 065 P = . 011 P = . 017 P = . 051 P = . 119

Caudate nucleus r = �0.052 r = �0.148 r = �0.185 r = 0.108 r = �0.115 r = �0.118
P = . 645 P = . 188 P = . 099 P = . 338 P = . 308 P = . 294

Thalamus r = 0.068 r = 0.039 r = �0.018 r = 0.054 r = 0.111 r = 0.040
P = . 544 P = . 726 P = . 871 P = . 630 P = . 323 P = . 720

Note:—MMSE indicates Mini-Mental State Examination.
a Significant indicated by<.05.
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abilities.36 Anatomically, the CS is adjacent to the CC, which con-
sists of large projection fibers such as the corticospinal, cortico-
bulbar, and corticopontine tracts. These large projection fibers
widely connect the cerebral cortex of the frontal lobe and parietal
lobe regions, mediating mainly executive functions.37

In addition, due to the GP being related to the extrapyramidal
tract, damage usually caused abnormalities in motor function,
eventually leading to a decrease in executive capacity.38 In our
study, 6 patients emerged with Parkinson's symptoms which all
occurred in the DNS stage.

Last, with respect to the correlation among levels of CO expo-
sure, neuropsychiatric scores, and DKI metrics, previous studies
have shown that there is no definite relationship among carboxy-
hemoglobin levels, the severity of MR imaging findings, and the
length of exposure time.39

Limitations
First, DKI metrics were measured on the basis of ROIs manually
placed in various regions, which might yield imperfect reference
values and were thus biased. Second, only limited neuropsycho-
logical tests were performed, possibly underestimating the cogni-
tive sequelae.

CONCLUSIONS
We confirmed our initial hypothesis that the evolution of brain
damage with CO intoxication was dynamic across time. WM and
GM responses to CO exposure might not be identical. KFA could
be a surrogate biomarker for tissue damage and reflected the per-
formance of cognitive and executive functions correlated with
prognosis.
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