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ORIGINAL RESEARCH
PEDIATRICS

Age-Dependent Signal Intensity Changes in the Structurally
Normal Pediatric Brain on Unenhanced T1-Weighted MR

Imaging
T.F. Flood, P.R. Bhatt, A. Jensen, J.A. Maloney, N.V. Stence, and D.M. Mirsky

ABSTRACT

BACKGROUND AND PURPOSE: Various pathologic and nonpathologic states result in brain parenchymal signal intensity changes on
unenhanced T1-weighted MR imaging. However, the absence of quantitative data to characterize typical age-related signal intensity
values limits evaluation. We sought to establish a range of age-dependent brain parenchymal signal intensity values on unenhanced
T1WI in a sample of individuals (18 years of age or younger) with structurally normal brains.

MATERIALS AND METHODS: A single-center retrospective study was performed. Gadolinium-naïve pediatric patients with structur-
ally normal MR brain imaging examination findings were analyzed (n = 114; 50% female; age range, 68days to 18 years). ROI signal inten-
sity measurements were obtained from the globus pallidus, thalamus, dentate nucleus, pons, and frontal lobe cortex and subcortical
white matter. Multivariable linear regression was used to analyze the relationship between signal intensity values and age.

RESULTS: Results demonstrated a statistically significant association between signal intensity values and linear age in all neuroanatomic
areas tested, except the frontal gray matter, (P, .01). There were no statistically significant differences attributable to patient sex.

CONCLUSIONS: Age-dependent signal intensity values were determined on unenhanced T1WI in structurally normal pediatric
brains. Increased age correlated with increased signal intensity in all brain locations, except the frontal gray matter, irrespective of
sex. The biologic mechanisms underlying our results remain unclear and may be related to chronologic changes in myelin density,
synaptic density, and water content. Establishing age-dependent signal intensity parameters in the structurally normal pediatric
brain will help clarify developmental aberrations and enhance gadolinium-deposition research by providing an improved under-
standing of the confounding effect of age.

The development of the human brain is a dynamic process,
which continuously changes on both a macro- and micro-

structural level.1 MR imaging has proved useful not only in
characterizing normal morphologic brain maturation but in
describing chronologic changes in cortical structure and myelina-
tion patterns.2–20 Furthermore, various pathologic and nonpatho-
logic states are now known to result in brain parenchymal signal
intensity changes on unenhanced T1WI, including gadolinium
deposition.21–30 Chronologic signal intensity changes on T1WI

and myelination patterns within the cortex and subcortical white
matter, corpus collosum, and various white matter tracts within
the supratentorial and infratentorial brain have been well-charac-
terized in pediatric and adult populations.2–17,19,20 However, age-
dependent T1WI signal intensity alterations within the deep gray
nuclei, cerebellar nuclei, and brain stem in pediatric subjects are
less well-understood. Establishing signal intensity parameters on
unenhanced T1WI in structurally normal pediatric brains,
including within subcortical and deep cerebellar nuclei, will
help clarify developmental aberrations, elucidate pathology,
and enhance gadolinium-deposition research by providing an
improved understanding of the confounding effect of age.
Therefore, we sought to establish an expected range of age-depend-
ent signal intensity values in specific anatomic regions in a sample
of structurally normal pediatric brains on unenhanced T1WI.

MATERIALS AND METHODS
Participants
This single-center, retrospective study was approved by the
local institutional review board of the University of Colorado
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and was compliant with the Health Insurance Portability and
Accountability Act. Informed consent was waived. Pediatric
patients older than 31 days and younger than 18 years who
underwent an unenhanced brain MR imaging examination
between January 1, 2012, and December 31, 2012, were con-
secutively identified from our institution’s electronic medical
record data base. The first 3 male and the first 3 female
patients per year of life encountered in the data base who met
the following criteria were included for analysis: the presence
of an interpretable 3D-MPRAGE sequence; structurally nor-
mal brain per the imaging report; no history of prior expo-
sure to gadolinium-based contrast agents; and no brain
radiation, neurofibromatosis type 1, impaired renal or he-
patic function, and systemic or metabolic illness, as per
review of the patient’s electronic medical record (see On-line
Table 1 for a complete list of MR imaging examination indi-
cations). The MPRAGE MR imaging sequence was chosen for
analysis to limit variation secondary to analysis of differing
imaging sequences.28 One hundred fourteen pediatric brain
MR imaging examinations were analyzed, which comprised
57 male and 57 female age-matched patients (age range,
68 days to 18 years). Patient data were used from no more
than 1 examination.

Imaging Protocol
All brain MR imaging examinations were performed with a 1.5T
whole-body MR imaging system within our institution (Avanto;
Siemens, Erlangen, Germany) on 1 of 2 identical scanners. All
ROI measurements were made on an unenhanced axial T1WI
3D-MPRAGE sequence created with uniform acquisition pa-
rameters (TR range = 1700–1800 ms, TE = 2.92 ms, section
thickness = 1.0mm, FOV= 250mm, matrix = 250 � 250).

Data Collection
Measurements of signal intensity in a 5-mm circular ROI within
the globus pallidus, thalamus, dentate nucleus, pons, frontal lobe
cortical gray matter, and frontal lobe subcortical white matter
were performed on unenhanced axial T1WI for all patients (see
On-line Figs 1–9 for representative ROI measurements). Bilateral
measurements were averaged from the globus pallidus, thalamus,
dentate nucleus, and frontal lobes; single measurements were
obtained from the pons. All parenchymal measurements
were normalized to CSF signal intensity. The measurements were
acquired by 2 radiology residents; investigators were not blinded
to the patient’s age. Measurement screenshots were saved and
reviewed by 3 attending pediatric neuroradiologists to ensure
appropriate measurement location by consensus agreement. No
measurement disagreements were noted. The signal intensity

measurements were transcribed into software (Excel, Version
2011; Microsoft, Redmond, Washington).

Statistical Analysis
To account for the effect of CSF, we normalized all ROI signal
intensities to the CSF intensity scale. Signal intensity as a function
of age (in months) was investigated for all ROIs using 2 general
linear models to compare linear with quadratic fits. The linear fit
used the covariates of subject sex and age, while the quadratic fit
included the additional covariate of squared age. The Akaike in-
formation criteria were used to determine which model provided
a higher quality fit. Additionally, to determine whether there was
an acute period of signal intensity change, we conducted a piece-
wise linear spline analysis, and if significant, a knot correspond-
ing to the significant change in linear slope was included in the
model. Ninety-five percent confidence intervals were calculated
in all figures to show the variability of the average normalized sig-
nal intensity across all ages. All analyses were performed using R
statistical and computing software (Version 3.60; http://www.
r-project.org/). A Bonferroni-corrected significance value of
P, .01 was considered indicative of a statistically significant pa-
rameter estimate.

RESULTS
The general linear model, which included a variable for quadratic
age, was found to have a better fit to the data than the model that
only included subject sex and linear age across all ROIs. This
model fit satisfied all modeling assumptions (linearity, homosce-
dasticity, normality, and independence) via examination of diag-
nostic plots and tests. Subject sex was not found to be
significantly associated with normalized signal intensity for any
of the ROIs (P. .01). For all ROIs, except the frontal gray matter
using both models and the dentate nucleus using the quadratic
model, both the linear and quadratic age parameters were statisti-
cally significant (Table). To assess whether there existed an acute
period of signal intensity change in each ROI, we conducted in-
dependent piecewise linear spline analyses, with a grid search to
determine the optimal placement of the knots. This analysis was
conducted on the model with only subject sex and linear age. For
all ROIs, the age parameter estimate was found to be significantly
different at the 36-month mark; therefore, a knot, used to allow
the parameter estimate to be different before and after 36months,
was included in each ROI model. A comparison of these esti-
mates showed that for all ROIs except frontal gray matter and the
dentate nucleus, the parameter estimate for age was significantly
larger during the first 3 years of life (On-line Table 2), indicating
an acute period of signal intensity change throughout the brain in
these regions. Figures 1 and 2 illustrate the quadratic and linear

Table: Linear and quadratic age parameter estimates from the general linear model

ROI
Linear Age Quadratic Age

Estimate 95% CI P Value Estimate 95% CI P Value
Globus pallidus 0.00900 0.006–0.012 ,.001 –0.00003 �0.000041 to �0.000015 ,.001
Thalamus 0.006 0.003–0.008 ,.001 –0.000017 �0.000029 to �0.000005 .005
Dentate 0.00500 0.002–0.008 .001 –0.000017 �0.00003 to �0.000003 .02
Frontal GM 0.003 0.001–0.005 .01 –0.000009 �0.000019� 0.000001 .07
Frontal WM 0.011 0.008–0.014 ,.001 –0.000038 �0.000053� 0.000024 ,.001
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spline model fits of age (in months) to normalized signal intensity
for each ROI, respectively.

DISCUSSION
This study establishes a range of age-dependent signal intensity
values in the structurally normal pediatric brain on unenhanced
T1WI in multiple neuroanatomic areas. Increased age was associ-
ated with increased signal intensity values in all brain locations
tested, except the frontal gray matter, irrespective of sex.

Furthermore, in all brain regions tested, except the frontal gray
matter and the dentate nucleus, there was a statistically significant
period of increased positive signal intensity change in the first
36months of life relative to later time points. Although the fron-
tal gray matter and dentate nucleus failed to achieve statistical sig-
nificance, as above, both anatomic regions demonstrated a
similar trend relative to the other regions tested. Overall,
these results are in line with multiple published studies that dem-
onstrated temporal changes in brain development on MR
imaging.2–20 Specifically, our results parallel those of multiple

FIG 1. Multivariable linear regression with the quadratic age effect of signal intensity in the globus pallidus (A), thalamus (B), dentate (C), frontal
white matter (D), and frontal gray matter (E). The dashed line represents the average predicted signal intensity at each age with the gray shading
representing the 95% confidence band. Points on the scatterplots are differentiated by sex.

FIG 2. Multivariable linear regression of signal intensity in the globus pallidus (A), thalamus (B), dentate (C), frontal white matter (D), and frontal
gray matter (E), The solid line represents the average predicted signal intensity at each age with the gray shading representing the 95% confi-
dence band. The vertical dashed line shows the location of the spline, where the effect of age on signal intensity changes. Points on the scatter-
plots are differentiated by sex.
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published studies showing a nonlinear positive correlation
between T1WI signal intensity and age in numerous cortical
areas and white matter tracts within the brain, including a similar
steeper slope at earlier time points.10,12,16,20 Furthermore, our
results correlate with known developmental changes in brain
myelin content; however, additional less dominant factors, as
listed below, likely also contributed.8,20

In the current study, by establishing age-dependent signal in-
tensity values in the structurally normal pediatric brain on unen-
hanced T1WI throughout infancy to older adolescence, especially
in deep gray and cerebellar nuclei, our results fill an existing gap
in the literature. It is known that various pathologic and nonpa-
thologic processes result in pediatric brain parenchymal signal in-
tensity changes on MR imaging, such as hypoxic-ischemic injury,
infection, mitochondrial or metabolic disorders, and, most
recently, gadolinium deposition.8–14 Establishing brain signal in-
tensity parameters in the structurally normal pediatric brain on
unenhanced T1WI will help clarify developmental aberrations,
elucidate pathology, and enhance gadolinium-deposition research
by providing an improved understanding of the confounding
effect of age. Specifically, these results will aid in the recognition
of deviations from the expected brain parenchymal signal inten-
sity changes, which occur throughout development. The biologic
mechanisms underlying our results remain unclear and may be
related to chronologic changes in myelin density, synaptic density,
physiologic mineral and metal deposition, water content, and/or
the glymphatic system.

Study limitations include a small single-center retrospective
design and reliance on signal intensity measurements, which limit
generalization of the results. T1 mapping would be more accurate
to characterize T1-weighted signal intensity values, but it is not
currently performed on a routine clinical basis at our institution.
An additional limitation is reliance on our institution’s electronic
medical record to exclude prior gadolinium-based contrast mate-
rial exposure; it is possible that a prior exposure was not docu-
mented in our electronic medical record.

CONCLUSIONS
Age-dependent signal intensity values in the structurally normal
pediatric brain were determined on unenhanced T1-weighted
MR imaging. Increased age was associated with increased signal
intensity values in all brain locations tested, except the frontal
gray matter, irrespective of sex. Establishing signal intensity pa-
rameters in the structurally normal pediatric brain will help clar-
ify developmental aberrations, elucidate pathology, and enhance
gadolinium-deposition research by providing an improved
understanding of the confounding effect of age.

Disclosures: Thomas F. Flood—UNRELATED: Support for Travel to Meetings for
the Study or Other Purposes: University of Colorado Radiology Department,
Comments: Turbo Talk at the American Society of Neuroradiology 2017 annual
meeting with travel expenses funded by the University of Colorado Department
of Radiology.
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