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ORIGINAL RESEARCH
ADULT BRAIN

Visualization of Nigrosome 1 from the Viewpoint of
Anatomic Structure

N. Arai, H. Kan, M. Ogawa, Y. Uchida, M. Takizawa, K. Omori, T. Miyati, H. Kasai, H. Kunitomo, and
Y. Shibamoto

ABSTRACT

BACKGROUND AND PURPOSE: Parkinson disease is related to neurodegeneration and iron deposition in the substantia nigra pars
compacta and nigrosome 1. However, visualization of nigrosome 1 via MR imaging is poor owing to the bilateral asymmetry, regard-
less of whether it is healthy. We focused on the magic angle and susceptibility effect and evaluated the anatomic slant structure
of nigrosome 1 by tilting subjects’ heads in the B0 direction.

MATERIALS AND METHODS: To investigate the effectiveness of the magic angle, we tilted the volunteers’ heads to the right and
left in the B0 direction or not at all for evaluating correlations between the degree of head tilting and visualization of the right
nigrosome 1 and left nigrosome 1 using 3D spoiled gradient-echo sequences with multiecho acquisitions. We evaluated the suscepti-
bility of nigrosome 1 and the local field using quantitative susceptibility mapping to assess static magnetic field inhomogeneity.

RESULTS: The heads tilted to the right and left showed significantly higher contrasts of nigrosome 1 and the substantia nigra pars
compacta than the nontilted heads. No significant differences were observed in the visualization and susceptibility between the
right nigrosome 1 and left nigrosome 1 for each head tilt. The effect of the magic angle was remarkable in the nontilted heads.
This finding was supported by quantitative susceptibility mapping because the anatomic slant structure of nigrosome 1 was coher-
ent between the axis of nigrosome 1 and the magic angle.

CONCLUSIONS: The asymmetric visualization of nigrosome 1 is affected by the magic angle and susceptibility. The anatomic slant
structure of nigrosome 1 causes these challenges in visualization.

ABBREVIATIONS: PD 4 Parkinison disease; SNc 4 substantia nigra pars compacta

Parkinson disease (PD) is associated with major pathologic
degeneration of dopaminergic neurons, mainly in the basal

ganglia and especially in the substantia nigra pars compacta
(SNc).1 It has been reported that PD or other neurodegenerative
disorders include iron accumulation in the SNc.2-6 In addition,
normally, the iron load in the basal ganglia increases with age,7,8

and the best indicators of physiologic aging are iron deposition in
the putamen and microstructural damage and atrophy in the
thalamus.1

Increased SNc iron content generally indicates that there is
dopaminergic neuronal loss. However, the degree of dopaminer-
gic neuronal loss in PD is higher in the nigrosomes than in the
other subregions of the substantia nigra with the maximum loss
occurring in nigrosome 1.9,10 Recent studies have suggested that
nigrosome 1 is the largest cluster of neurons within the nigro-
somes and it is highly attenuated.11 It is located in the caudal and
mediolateral part of the SNc and is associated with PD.9,10,12-14

From a neuroradiologic point of view, MR imaging shows
nigral changes, and changes in T2* relaxation times seem to be
associated with increased iron deposition in the SNc that occurs
in some cases of PD. It is essential to determine which conditions
affect iron deposition in nigrosome 1 because PD is closely
related to neurodegeneration of the SNc and especially nigrosome
1. Nigrosome 1 has been evaluated by a combination of images
obtained with a 3D spoiled gradient-echo technique and with a
multiecho technique.11,15,16 As PD progresses, the MR imaging
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signals of nigrosome 1 commonly diminish; this feature reflects
iron accumulation and neurodegeneration. However, the MR
imaging visualization of nigrosome 1 is often poor because of the
asymmetry of this cell cluster, regardless of whether nigrosome 1 is
healthy. In addition, little attention has been paid to poor visualization
due to asymmetry. This is important because poor visualization could
result in misclassification of a healthy or abnormal nigrosome 1.

In this study, we explored the cause of nigrosome 1 being
poorly visualized despite healthy conditions. We focused on the
magic angle and the susceptibility effect, and we evaluated the
anatomic slant structure (head tilt) of nigrosome 1 in the B0
direction using combined multi-gradient-echo images and by tilt-
ing the subjects’ heads in the B0 direction.

MATERIALS AND METHODS
Subjects
Fourteen young healthy volunteers (3 women and 11 men; mean
age, 25 years; ranging from 22 to 31 years) participated in the
study. This study was approved by the institutional review board
at Nagoya City University. The volunteers participated in the
study of their own free will, and informed consent was obtained
from all the participants.

Data Analysis
The volunteers’ heads were tilted to the right (20.9°6 5.8°) or left
(18.9° 6 6.6°) in the B0 direction or not at all, to investigate the
effectiveness of the magic angle (Fig 1). The 3D spoiled gradient-
echo sequences with multiecho acquisitions targeted the mid-
brain and were oriented orthogonally across from the anterior
midbrain (Fig 2A, -B). We evaluated the correlations between the
degree of head tilting and visualization of the right nigrosome 1
and left nigrosome 1. To calculate the contrast of nigrosome 1
and the remaining SNc that was positioned around nigrosome
1 to assess its visualization, we used the following equation:

Contrast ¼ SIn1 � SISNc
SIn1 þ SISNc

;

where SIn1 and SISNc are the signal intensities of nigrosome 1 and
SNc, respectively (Fig 2C). We calculated the SDs of the contrasts
of the right nigrosome 1 and left nigrosome 1 and the SNc for
each head tilt, to evaluate the reproducibility of contrast measure-
ment. The contrast was measured 6 times in 1 volunteer using

right head tilting and left head tilt-
ing. We used ImageJ 1.48 image-
processing software (National
Institutes of Health, Bethesda,
Maryland) to analyze the images.

In addition, we evaluated the sus-
ceptibility of nigrosome 1 and the
local field using quantitative suscep-
tibility mapping16,17 to assess the vis-
ualization of nigrosome 1 changed
by the phase modulation due to the
dipole effect.18-20 To estimate the tis-
sue-generated local field map and
the susceptibility map, we used the
multi-spoiled gradient-echo sequence
in healthy volunteers. First, the local
field map was estimated from the
acquired multiphase images by means
of sophisticated harmonic arti-
fact reduction using the phase
data method with variable kernel
sizes from 0.75 at the boundary
of the brain to 30mm toward the

FIG 1. Volunteers’ heads were held in 1 of 3 ways: tilted to the right
(A), not tilted (B), and tilted to the left (C) in the B0 direction.

FIG 2. The 3D spoiled gradient-echo sequences with multiecho acquisitions are oriented orthogonally
to the anterior midbrain (A), and nigrosome 1 is visualized in the caudal and mediolateral part of the
substantia nigra pars compacta (B). When the subjects’ heads were tilted to the right or left, the MR
imaging signal intensities measured on the basis of the depicted ROI (C) differentiated nigrosome 1 and
SNc.

Table 1: Number of visualizations of discriminable nigrosome 1 when the subjects’ heads were tilted in the B0 direction (n = 14)

Tilting Head in B0 Direction Right None Left
Nigrosome 1 Right Left Right Left Right Left

Discriminable nigrosome 1 (No.) 9 9 6 5 10 11
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center of the brain.21,22 Then, the susceptibility map was
reconstructed with an improved sparse linear equation and
the least-squares algorithm.23 All data were processed with the
in-house Matlab R2018a (MathWorks, Natick, Massachusetts)
program.

MR Imaging Acquisition
All examinations were performed on a 3T MR imaging system
(Trillium Oval; Hitachi, Tokyo, Japan) with a 15- or 32-channel head
matrix coil. The evaluation was based on a combination of 3D spoiled
gradient-echo images with 9 echoes. To combine the 3D spoiled gra-
dient-echo with each TE magnitude, we used the following parame-
ters: TR, 83ms; minimum and maximum TE, 18.5 and 55.3ms,
respectively (number of combined echoes, 9; echo spacing, 4.6ms);

flip angle, 10°; section thickness,
1.5mm; matrix, 300� 300; FOV,
190mm (in-plane resolution, 0.63 -
� 0.63mm); parallel imaging factor,
1.1; number of signal averages, 1; re-
ceiver bandwidth, 210kHz; and ac-
quisition time, 4 minutes 53 seconds.
The receiver bandwidth was fixed
for each TE in the multiecho imag-
ing technique. Quantitative suscep-
tibility mapping was performed
using the following parameters: TR,
34 ms; TE, 6-30 ms at 6-ms inter-
vals; flip angle, 15°; section thick-
ness, 1.0mm; matrix, 192� 192;
FOV, 192mm (in-plane resolution,
1.0� 1.0mm); parallel imaging fac-
tor, 1.9; number of signal averages,
1; receiver bandwidth, 77 kHz; and

acquisition time, 10 minutes 5 seconds.

Statistical Analysis
A Wilcoxon signed rank test with a Bonferroni correction for
non-normally distributed data was performed to examine the
relationship between the visualization of nigrosome 1 and the
degree of head tilting to the right and left. Statistical analysis
was performed using SPSS (IBM, Armonk, New York). P, .05
and P , .017 (.05/3 after Bonferroni correction based on 3
comparisons per task) were considered statistically significant.

RESULTS
The visualization of nigrosome 1 depends on the difference in the
field strength; however, it should be visualized bilaterally,

FIG 3. Visualization of the right (A) and left (B) nigrosome 1, in which the volunteers’ heads were tilted to the right or left in the B0 direction or not at all.

FIG 4. Examples of visualization of nigrosome 1 with a right head tilt (A), without a head tilt (B), and
with a left head tilt (C) in the B0 direction.
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especially when visualizing a healthy nigrosome 1. Poor visualiza-
tion due to asymmetry of the bilateral nigrosome 1 was discov-
ered, though all the subjects in this study were young and healthy
and had no nucleus degeneration. Additionally, in some subjects,
we were unable to find a discriminable nigrosome 1 (Table 1).

The heads tilted to the right and left showed a significantly
higher contrast of nigrosome 1 and SNc than the nontilted heads
(Fig 3). Figure 4 shows examples of the visualization of nigro-
some 1 with a right head tilt (A), without a head tilt (B), and with
a left head tilt (C). No significant differences were observed in the
visualization and susceptibility between the right nigrosome 1 and
left nigrosome 1 for each head tilt. The contrast of nigrosome 1
and SNc showed sufficient reproducibility among the 6 measure-
ments (Table 2). However, the effect of the magic angle was re-
markable in the nontilted heads and was also supported by
quantitative susceptibility mapping. The boundary of nigrosome 1
and SNc is likely visible (Fig 5A, -B), because according to the ana-
tomic slant structure of nigrosome 1 along the magic angle, the
dipolar interaction has angular dependence (Fig 5C).

DISCUSSION
Conventional MR imaging characteristics of the substantia nigra
in PD involve increased iron-related contrast enhancement,
which reflects the sensitivity of the gradient-echo sequences to

the resulting changes in R2* relax-
ivity—that is, the signal intensity
on a 3D spoiled gradient-echo is
diminished specifically in the lat-
eral portion of the SNc. Iron is the
main source of susceptibility in the
regions of the nucleus in the mid-
brain. In addition, a boundary is
visible between nigrosome 1 and
SNc on gradient-echo images because
they naturally have different degrees
of iron deposition. The important
point here is that the degree of iron
deposition is lower than that of neu-
rodegeneration in themidbrain.

In principle, one would expect to
visualize a healthy nigrosome 1 bilat-
erally on MR imaging, but the visual-
ization is often poor because of its
asymmetry. Furthermore, SNc is also
asymmetric. Hence, a healthy nigro-

some 1 and an abnormal nigrosome 1 might be misclassified. The
problem that we have assessed here (ie, misclassification of a healthy
nigrosome 1 and an abnormal nigrosome 1) has seldom been studied.

The differences in visualization were due to the way in
which the subjects’ heads were tilted (ie, to the right or left),
which caused asymmetric visualization of nigrosome 1. In
our study, we found that when the heads were tilted to the
right or left, the contrast between nigrosome 1 and SNc on
the images was significantly higher than that with the non-
tilted heads. Furthermore, the results in Fig 4 strongly suggest
the reproducibility of contrast measurements by manually
drawing the ROIs and measuring the signal intensities of
nigrosome 1 and SNc. We focused on the magic angle in the
B0 direction. The magic angle that occurs at approximately
54.7° in the B0 direction and so forth along the axis of the
magic angle24,25 accounts for interference with this boundary
in the nontilted heads. The relationship between the poor vis-
ualization of nigrosome 1 and the magic angle causes asym-
metric visualization of nigrosome 1 (Table 1 and Fig 3).

We evaluated the anatomic slant structure of nigrosome 1
using quantitative susceptibility mapping, which enables quanti-
tative investigations of the iron content in tissues.17,21,26-29 R2*
increases exponentially with increasing age,7,8 but all the subjects
included in this study were young and healthy without any nu-
cleus degeneration. Hence, nigrosome 1 and the local field were

Table 2: Results of contrast measurement repeated 6 times in 1 volunteer with right head tilting and left head tilting

Tilting Head in B0 Direction Right Left
Nigrosome 1 and SNc Right Left Right Left

Times
1 12.0 11.8 10.6 12.6
2 12.1 11.4 11.0 12.3
3 12.3 11.4 10.6 13.0
4 11.9 11.9 10.4 12.4
5 12.5 11.0 10.5 12.6
6 12.3 11.4 10.9 12.4

SD 0.20 0.32 0.21 0.26

FIG 5. Coronal sections of the 3D susceptibility map (A) and the local field map (B). The anatomic slant
structure of nigrosome 1 is coherent between the axis of nigrosome 1 (arrows) and the magic angle that
occurs at approximately 54.7° in the B0 direction by dipolar interaction (C).
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not assessed with susceptibility-weighted imaging and the T2*
image technique; instead, quantitative susceptibility mapping,
which is more sensitive, was used. The results indicated that the
anatomic slant structure of nigrosome 1 was coherent between
the axis of nigrosome 1 and the magic angle (Fig 5).

Quantitative susceptibility mapping can also be used for the
detection and quantification of iron deposition, whereas the sta-
tus of the nuclear regions of the midbrain is assessed through dif-
fusion tensor imaging. The bulk tissue microstructure can be
measured with this technique on the basis of the tissue microen-
vironment with mean diffusivity and fractional anisotropy. The
mean diffusivity increases with microscopic barrier disruption
and extracellular fluid accumulation, and fractional anisotropy
provides information on the microstructural integrity of highly
oriented microstructures (eg, myelin).30,31 MR diffusional kurto-
sis imaging has recently been proposed as a means of quantifying
non-Gaussian water diffusion; in general, the regions of high
fractional anisotropy are also characterized by increased mean
kurtosis.

With regard to PD, previous diffusion tensor imaging studies
on affected patients have demonstrated a decrease in fractional
anisotropy in SNc compared with the fractional anisotropy in
SNc obtained in studies conducted on healthy control sub-
jects.32,33 Patients with PD exhibit significantly higher R2* values
in the SNc, lower fractional anisotropy values in the SNc and
thalamus, and higher mean diffusivity values in the thalamus
than control subjects.1 However, the appearance of artifacts,
which are more common in diffusion MR imaging sequences,
depends on the local magnetic field.34 Inhomogeneities in the
local magnetic field, such as those induced by iron deposition,
lead to some artifacts in diffusion MR imaging sequences and
have an effect on ADC. The sensitivity of the magnetic suscepti-
bility changes because motion-probing gradients into echo-pla-
nar imaging are used in diffusion MR imaging sequences. Hence,
it is possible that ADC is underestimated in the presence of iron
depositions. Conversely, a 3D spoiled gradient-echo with a multi-
echo technique is more robust for evaluating nigrosome 1 than a
diffusion MR imaging sequence in local magnetic field inhomo-
geneities. However, as mentioned earlier, the problem with the
magic angle in the B0 direction affecting nigrosome 1 visualiza-
tion became clear in this study.

There were some limitations to this study. The local field
gradients by blood containing deoxyhemoglobin were para-
magnetic.35 In the future, we will be able to evaluate the mag-
netic susceptibility of each tissue with more focus. Moreover,
the effect of aging needs to be examined in detail. It has been
reported that the mean diffusivity and fractional anisotropy
are highly influenced by physiologic aging.36 Therefore, we
will evaluate older subjects who are added to the study. The
current MR imaging technique has made it possible to use
appropriate parameters in this study (eg, the number or tim-
ing of combined echoes).

CONCLUSIONS
The visualization of nigrosome 1 is affected by the magic angle,
thus causing asymmetric visualization. We observed that visual-
ization was improved when the head was tilted to the right and

left in the B0 direction. Furthermore, nigrosome 1 is affected by
susceptibility. The cause of these problems in visualization is the
anatomic slant structure of nigrosome 1; each anatomic slant
structure individually has an effect on visualization.
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