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ORIGINAL RESEARCH
ADULT BRAIN

Brain Network Disruption in Whiplash
J.P. Higgins, J.M. Elliott, and T.B. Parrish

ABSTRACT

BACKGROUND AND PURPOSE: Whiplash-associated disorders frequently develop following motor vehicle collisions and often
involve a range of cognitive and affective symptoms, though the neural correlates of the disorder are largely unknown. In this
study, a sample of participants with chronic whiplash injuries were scanned by using resting-state fMRI to assess brain network
changes associated with long-term outcome metrics.

MATERIALS ANDMETHODS: Resting-state fMRI was collected for 23 participants and used to calculate network modularity, a quan-
titative measure of the functional segregation of brain region communities. This was analyzed for associations with whiplash-associ-
ated disorder outcome metrics, including scales of neck disability, traumatic distress, depression, and pain. In addition to these
clinical scales, cervical muscle fat infiltration was quantified by using Dixon fat-water imaging, which has shown promise as a bio-
marker for assessing disorder severity and predicting recovery in chronic whiplash.

RESULTS: An association was found between brain network structure and muscle fat infiltration, wherein lower network modularity
was associated with larger amounts of cervical muscle fat infiltration after controlling for age, sex, body mass index, and scan
motion (t¼�4.02, partial R2¼ 0.49, P, .001).

CONCLUSIONS: This work contributes to the existing whiplash literature by examining a sample of participants with whiplash-asso-
ciated disorder by using resting-state fMRI. Less modular brain networks were found to be associated with greater amounts of cer-
vical muscle fat infiltration suggesting a connection between disorder severity and neurologic changes, and a potential role for
neuroimaging in understanding the pathophysiology of chronic whiplash-associated disorders.

ABBREVIATIONS: rs-fMRI ¼ resting-state fMRI; MFI ¼ muscle fat infiltration; WAD ¼ whiplash-associated disorder(s); MVC ¼ motor vehicle collision

The term “whiplash” refers to the transfer of force to the cer-
vical spine via rapid acceleration-deceleration of the

head. It is often associated with a motor vehicle collision

(MVC) whereby some patients (about 20%) develop a com-
plex array of persistent physiologic and psychological seque-
lae, collectively known as whiplash-associated disorders
(WAD).1 In addition to neck pain, headache, limited neck
range of motion, and bodily pain, patients with persistent
WAD may exhibit decreased performance on neuropsycho-
logical tests involving attention and working memory.2,3

There remains little available literature toward identifying a
single salient structural lesion to help explain the disparate signs
and symptoms in WAD.4-6 Recent work, however, has reported
that qualitative and quantitative measures of muscle fat infiltra-
tion (MFI) in the cervical spine can be useful for differentiating
patients with severe WAD, mild WAD symptoms, idiopathic
neck pain, those that have “recovered,” and healthy controls.7-11

In addition, it has shown early promise as a prognostic marker
for recovery trajectories.12 The mechanisms underlying the devel-
opment of MFI remain elusive, but could include disuse, dener-
vation, altered activation of the sympathetic nervous system,
stress system dysregulation, and neuroinflammation.13,14
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Neuroimaging findings in WAD have been mixed, with some
studies reporting changes in cerebral perfusion15,16 and white
matter tract integrity,17 and others failing to find associations by
using functional or morphologic imaging.18,19 Resting-state-fMRI
(rs-fMRI) is a rapidly growing tool and has been widely applied
to the investigation of abnormal brain activity in clinical popula-
tions. While several studies have revealed connections between rs-
fMRI and mild-to-severe traumatic brain injury,20,21 none thus far
have identified similar associations within the WAD population.

Analysis of large-scale networks by using graph theoretical
approaches has recently gained traction as a method for the
characterization of brain networks observed by using rs-
fMRI. Within a graph theoretical framework, brain regions
can be considered nodes that are linked by edges defined by
the strength of pair-wise correlations between pairs of nodes.
This topologic arrangement of nodes and edges can be
described as a graph, which may be divided into intercon-
nected subnetworks referred to as modules. Modularity has
been found to arise in many complex systems,22 and advances
in neuroimaging have led to the characterization of brain net-
works as being hierarchically organized and modular sys-
tems.23,24 Modularity as a quantitative measure can be
considered as the ratio between the number of connections
(edges), which are located within modules, to the number of
connections occurring between modules.

In this preliminary study, we investigated potential links
between network modularity and symptom metrics in a sample
of 23 patients with chronic WAD. Modularity was chosen
because it provides a metric of whole-brain network organization
that has shown promise as a marker of brain plasticity and has
been applied in the study of a range of clinical conditions, some
of which may be superficially similar to WAD, such as mild trau-
matic brain injury and PTSD.25-30 Along with standard clinical
scales for assessment of WAD, such as the Neck Disability
Index31 and the Traumatic Injury Distress Scale,32 measures of
MFI were included as an outcome metric.

MATERIALS AND METHODS
Participants
This is a secondary ancillary study of participants drawn from
a prospective study investigating the neuromuscular mecha-
nisms underlying poor recovery following a whiplash injury
(ClinicalTrials.gov Identifier: NCT02157038). In the main study,
97 participants were recruited (19 lost to attrition), consented, and
enrolled via an urban academic emergency medicine department
and were eligible provided they both reported MVC-related neck
pain and were within the Quebec Task Force Classification cate-
gory of WAD grade II (movement restriction with no radicular
symptoms).1 Participants were eligible provided they consented
and enrolled in the parent study and agreed to undergo imaging of
the brain.

Volunteers were not considered if they had a spinal fracture
(from the current MVC), radiologic evidence of a spinal cord
lesion, or implants contraindicated for MR safety. Participants
were not considered if they were pregnant or if, in the absence of
an effective form of contraception, they could possibly have con-
ceived since the first day of their last menstrual period.

The study was approved by the relevant Institutional Review
Board. The 23 participants (17 female, average age of 35.8 6

12.8 years) participated in the additional data collection during
their regular study visit. Participants were recruited for imaging
at least 3months following their motor vehicle collision (mean
328 6 133.16 days), and were categorized as recovered (5), mod-
erate (10), or severe (8) in symptoms at the time of imaging.
Participant characteristics are summarized in the Table.

MR Imaging Data
MR imaging data were collected by using a 3 T Prisma
(Siemens) scanner with a 64-channel head-neck coil. Structural
images were collected by using a 3D T1-weighted scan
(TR¼ 2.17 seconds, TE¼ 1.69ms, FOV¼ 256 � 224, 1mm iso-
tropic voxel size) of the brain, and a T2-weighted sagittal turbo
spin-echo sequence of the cervical spine. A 3D multi-echo

Demographic and clinical detailsa

Group/Measure

Recovered Moderate Severe
Current Study

(n= 5)
Entire Study
(n= 30)

Current Study
(n= 10)

Entire Study
(n= 33)

Current Study
(n= 8)

Entire Study
(n= 15)

Sex (M/F) 3/2 13/17 8/2 4/29 6/2 3/12
BMI 23.5 (3.8) 24.9 (3.9) 24.5 (5.6) 24.4 (4.4) 25.3 (3.8) 27.6 (5.6)
Age 35.3 (12.8) 33.1 (10.2) 35.7 (13.8) 35.3 (12.1) 36.1 (13.2) 36.8 (11.3)
Days since MVC 349.6 (149.3) 383.3 (35.7) 273 (137.3) 385.9 (20.4) 385 (141.3) 420.3 (79.7)
NDIb 4.8 (4.6) 5.5 (6.4) 17 (9.7) 18.9 (10.2) 38.5 (13.1) 30.9 (13.9)
MFI 18.6 (5.5) 17.1 (4.9) 21.6 (6.6) 20.8 (6.9) 21.9 (7.2) 23.3 (6.8)
TIDS Totalb 3.4 (4.9) 3.0 (4.2) 6.3 (5.3) 8.4 (5.1) 15.1 (8.3) 11.0 (6.3)
PDS Arousal Symptom
Severityb

0.4 (0.9) 0.8 (1.5) 3.1 (2.7) 3.9 (2.8) 8 (3.6) 5.3 (4.2)

Painb 1.2 (2.2) 1.2 (1.6) 3.1 (2.7) 3.8 (2.6) 6 (1.8) 5.1 (2.7)
HADS Depressionb 0.8 (1.3) 1.6 (2.6) 2.6 (2.4) 2.7 (2.2) 8.2 (4.9) 5.8 (4.5)
Modularityb 0.55 (0.04) n/a 0.47 (0.07) n/a 0.46 (0.10) n/a

Note:—BMI indicates body mass index; NDI, Neck Disability Index; MFI, muscle fat infiltration; TIDS, Traumatic Injury Distress Scale; PDS, Posttraumatic Diagnostic Scale;
HADS, Hospital Anxiety and Depression Scale.
a Presented as counts or mean (SD).
b Significant pair-wise comparisons of groups within this study. NDI: Recovered versus moderate (P¼ .005), recovered versus severe (P, .001), moderate versus severe
(P¼ .002); TIDS: Recovered versus severe (P¼ .01), moderate versus severe (P¼ .02); PDS: Moderate versus severe (P¼ .007), recovered versus severe (P, .001), recovered
versus moderate (P¼ .01); pain: Recovered versus severe (P¼ .003), moderate versus severe (P¼ .02); HADS depression: Recovered versus severe (P¼ .003), moderate ver-
sus severe (P¼ .01); modularity: Recovered versus moderate (P¼ .02), recovered versus severe (P¼ .05).
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gradient-echo scan (FOV¼ 190� 320mm, 0.7� 0.7� 3mm
voxel size) was collected for the quantification ofMFI by acquiring
images at echo times where water and fat are in phase and out of
phase (TR/TE1/TE2¼ 6.59/2.45/3.68ms) to produce water-fat ra-
tio images. rs-fMRI was acquired with a whole-brain multiband
T2*-weighted sequence (TR ¼ 613 ms, TE ¼ 22 ms, 2 mm voxel
size, multiband factor¼ 8, and 800 volumes).

Preprocessing
Muscle Fat Infiltration. MFI scores were calculated by using the
Dixon water-fat scan as previously described.12 Briefly, fat and
water compartments of the bilateral multifidi and semispinalis
muscles from C3-C7 were manually segmented by a rater blinded
to the status of the participant. The mean voxel intensity within
each compartment was extracted and MFI was then calculated to
generate a percentage of neck muscle fat present for each subject
by using the following equation:

MFI %ð Þ ¼ Fat
ðFat þWaterÞ �100

Brain Imaging. Quality control metrics were extracted for T1 and
BOLD images by using MRIQC (https://mriqc.readthedocs.io/
en/stable/index.html).33 Preprocessing was accomplished by
using the Nipype (https://nipype.readthedocs.io/en/latest/)34-
based tool fMRIPrep version 1.3.2 (https://fmriprep.readthedocs.
io/en/stable/)35 and AFNI version 19.2.04 (http://afni.nimh.nih.
gov/afni).36

T1 images were bias-corrected by using ANTs (http://stnava.
github.io/ANTs/) N4BiasFieldCorrection,37 and skull stripped by
using ANTs ants-BrainExtraction. Brain tissue compartments
(white matter/gray matter/cerebrospinal fluid) were segmented
by using FMRIB Automated Segmentation Tool (FAST; http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/fast) in native space.38 Finally,
brain-extracted T1 images were transformed to the Montreal
Neurological Institute 152 Nonlinear Asymmetric template ver-
sion 2009c by using ANTs AntsRegistration tool.39

Functional data were section-timing corrected by using AFNI
3dTshift and motion corrected by using FMRIB Intramodal
Motion Correction tool (MCFLIRT; http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/MCFLIRT) before co-registration to the T1 by using
FMRIB Linear Image Registration Tool (FLIRT; https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/FLIRT).40 The resulting transforms were con-
catenated with the T1-to-Montreal Neurological Institute warp
and applied in 1 step by using antsApplyTransforms. Framewise
displacement was used to exclude high-motion (framewise
displacement. 0.5) frames of the time-series, along with 1 subse-
quent volume. This procedure resulted in an exclusion of between
0.5%–25.8% of data, with a minimum residual time-series of 6.5
minutes (mean 9.096 1.5min). To remove physiologic noise, 6
principal components of white matter/CSF signals were extracted
to create aCompCor (https://nipype.readthedocs.io/en/0.13.1/
interfaces/generated/nipype.algorithms.confounds.html) nuisance
regressors.41 Motion estimates along with aCompcor regressors
and low frequency cosine basis regressors were removed via linear
regression; regression, censoring, and smoothing (6mm full width
at half maximum) were performed by using AFNI 3dTproject.

Network Modularity Calculation
Regions of interest were defined as 5mm-spheres by using the
Power 264 coordinates.42 Temporal signal-to-noise ratios were cal-
culated for each node/participant, and the average and standard
deviation were calculated across all regions (34.06 10.1). ROIs
were excluded if they were more than 2 SD below the mean in any
participant (30 regions). Mean time course signals within the
remaining ROIs were used to create a 234� 234 Pearson correla-
tion matrix for each participant, which were converted to z scores.
Thresholds were used to minimize the number of node pairs con-
sidered to constitute edges to a percentage of the strongest connec-
tions. To reduce the dependence of results on specific threshold
selection, the connection densities used ranged from the top 2%–
10% in increments of 1%, and an average across this range was
taken for use in subsequent analysis, though results across specific
thresholds showed similar effects (On-line Figures). This range
was chosen because it was used in the construction of the Power
264 region atlas and has been utilized in previous work.42,43

The resulting undirected weighted correlation matrices were
input to the Brain Connectivity Toolbox (version 2019–03-03)44

in Matlab 2016b (MathWorks) to estimate the optimal commu-
nity structure and calculate modularity. The network was divided
into communities by using the Newman spectral algorithm, with
the goal of maximizing within-community connections while
minimizing connections between communities.45-47 Modularity
(Q) is then calculated to quantify the extent to which the network
is amenable to such subdivision, with higher values of Q repre-
senting networks with a relatively high proportion of within-
community connections to connections between communities.
This form of weighted modularity was calculated as:

Qw ¼ 1
lw

X
i;j 2 N

wi;j �
kwi k

w
j

lw

� �
d mi ;mj

where i and j are connections between nodes, lw is the sum of all
weights in the graph, ki is the weighted degree of a node, mi is the
module containing node i, and dmi,mj¼ 1 if mi ¼ mj, and 0
otherwise.

Statistical Analysis
Potential associations were investigated with multiple linear
regression by using R version 3.4.4 (http://www.r-project.org/)
function lm in package stats v3.6.1.48 Covariates in all models
included age, body mass index, sex (coded as 0/1 for male/female),
and mean framewise-displacement (fMRI time-series motion).
Clinical metrics included Neck Disability Index,31,49 MFI, CES-D
Depression Scale,50 Traumatic Injuries Distress Scale total,
Posttraumatic Diagnostic Scale hyperarousal symptom severity,51

numeric pain rating scale (0–10), and the Hospital Anxiety and
Depression Scale Depression.52 Associations were considered sig-
nificant if they passed Bonferroni correction (P .05/7; P # .007).

RESULTS
Initial tests for assumptions of linear modeling did not find evi-
dence of collinearity among predictors or extreme non-normality
in clinical variables. Among models including only the covariates,
the only significant effect observed was of age on MFI, with
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greater age being associated with larger amounts of fat infiltration
(t¼ 3.17, P¼ .005). In the full models, network modularity was
found to be negatively associated with MFI (t¼�4.02, partial
R2¼ 0.49, P, .001; Fig 1) and was not found to be associated
with any other clinical metrics. Figure 2 shows the network

structure for the participants with the highest and lowest MFI
scores. No correlation was found between mean scan motion
(framewise displacement) and modularity across participants
(Pearson r¼�0.21, P¼ .34).

DISCUSSION
This study is an investigation of whether rs-fMRI network meas-
ures can characterize the clinical status of a heterogeneous group
of patients with persistent WAD. While previous research in
WAD has yet to accurately and consistently identify markers of
structural cervical spine pathology with conventional imaging,
this study has found promising results of altered network struc-
ture in the brain by using more advanced imaging techniques.
Such techniques have potential to influence our mechanistic
understanding of WAD and other common yet enigmatic neuro-
musculoskeletal conditions, such as low back pain, fibromyalgia,
osteoarthritis, and rotator cuff pathology.

The rationale for modularity as a chosen measure is 2-fold.
First, modularity is a global metric capable of assessing whole-
brain network organization without the need for defining a priori
regions. This makes it an appropriate target for initial investiga-
tion given the lack of existing research into the neural correlates
of WAD, as well as the modest sample size of the current ancil-
lary study. In addition, modularity has been implicated in several

FIG 1. Plot of average modularity (Q) versus MFI (%) in the cervical
spine. Range represents 95% confidence interval via R function im
(ggplot2).

FIG 2. Network structure in the patients with lowest and highest MFI scores. Node colors show communities, green lines show edges within
communities, red lines show edges between. The top row exhibits a high level of modularity (high within community connectivity), while the
bottom row demonstrates a low level of modularity (fewer communities and more between community connections).
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neurologic conditions that share similarities with the clinical
course of WAD, primarily posttraumatic stress disorder29 and
traumatic brain injury.53,54

The prospect of anticipating the directionality of associations
with modularity is not straightforward. While work in aging has
suggested lower modularity may be detrimental,55 research in
psychiatric illnesses has reported deleterious effects of modularity
bidirectionally, and researchers in traumatic brain injury have
reported increases in the acute phase,53 yet, the opposite in
patients with persistent postconcussive syndrome.54 While some
work has suggested a possible role of mild traumatic brain injury
following whiplash both from kinematic modeling56 and observa-
tions of symptom similarities,3 the prevalence of brain injury in
WAD remains largely unknown.

Given the complexities of psychosocial, traumatic, and physi-
cal components of WAD, further research is needed to determine
how this finding causally relates to the condition. While there is
reason to believe network changes may be related to concussive
forces, it is also possible that such changes are concurrent with
alterations in mood associated with trauma,29,57 connected to
symptoms of chronic pain,58 or related to changes in a neuroim-
mune network,13 in which case, the finding of disrupted modu-
larity may not be specific to WAD but present in posttraumatic
stress disorder and traumatic brain injury, for example.

The possibility of altered brain network structure in WAD
raises interesting considerations for future research and clin-
ical practice. While most patients who experience an initial
whiplash injury go on to make a full recovery, many con-
tinue to exhibit symptoms for years following the event, and
few quantitative tools are available for differentiating these
groups in the acute stage.59,60 However, previous work has
suggested cervical spine measures of MFI. 20.5% (range for
those with slow recovery was 6.2–40.6% and rapid recovery
was 7.2–22.9%) within the first 2 weeks following the MVC
resulted in a sensitivity of 87.5% (true-positive rate) and a
specificity of 92.9% (true-negative rate) for predicting out-
comes at 3 months post MVC.12 The use of brain network
modularity in WAD has the potential to capture a wide range
of diverse network connectivity variations in a global metric
that may increase prediction when used in conjunction with
estimates of MFI and other clinical risk factors.

In addition to the potential diagnostic value, modularity
has been shown to be predictive of treatment outcomes in
contexts with potential relevance to WAD. High modularity
scores have been shown to be associated with greater treat-
ment success by using cognitive training for traumatic brain
injury.61 In a similar fashion, high baseline modularity has been
used to predict larger cognitive gains in response to an exercise
intervention in healthy older adults.62 In light of these findings and
with an ongoing trial investigating the effects of exercise on WAD
(which includes fMRI),63 network modularity presents a promising
marker for treatment prediction.

This study has several limitations. As a global network mea-
sure, modularity does not carry explicit information about which
sub-networks are disrupted and in what ways. This finding repre-
sents a first attempt at applying graph theoretical analysis to a
sample of participants with WAD and suggests the need for

additional investigation into the types of network reorganization
underlying the observed change in modularity. Because no neu-
ropsychological testing was performed, we were unable to investi-
gate these differences in relation to cognitive outcomes such as
working memory, executive function, attention, etc.

Furthermore, the intention of this work is not to suggest “we
need more imaging” in clinical practice. In purest terms, judi-
cious and informed use of advanced neuroimaging in tandem
with other known risk factors may increase confidence of the pri-
mary driver of a patient’s recovery trajectory, which should ulti-
mately inform a plan of care.64,65 The work offers new directions
for research in the field to consider multivariate and multisystem
pre- and post-collision factors in establishing prognostic pheno-
types, leading to new and more informed clinical trials.

Finally, the lack of an association between modularity and the
other clinical measures is surprising and could reflect the ancillary
nature of this study in that we were not powered to detect differen-
ces related to low resolution self-report measures. However, the
full sample reflects the known heterogeneity of theWAD condition
and provides a foundation for further mechanistic work investigat-
ing the bi-directionality of pathways linking peripheral inflamma-
tion with neural circuitries sub-serving pain, emotions, muscle
structure and function, and outcomes following whiplash injury.

CONCLUSIONS
Despite evidence for the presence of cognitive symptoms, little is
known about the neurobiological correlates of WAD. The discov-
ered association between global brain network organization and a
metric of WAD severity highlights the need for further advanced
imaging investigations.
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