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ORIGINAL RESEARCH
ADULT BRAIN

Lower Lactate Levels and Lower Intracellular pH in Patients
with IDH-Mutant versus Wild-Type Gliomas

K.J. Wenger, J.P. Steinbach, O. Bähr, U. Pilatus, and E. Hattingen

ABSTRACT

BACKGROUND AND PURPOSE: Preclinical evidence points toward a metabolic reprogramming in isocitrate dehydrogenase (IDH) mutated
tumor cells with down-regulation of the expression of genes that encode for glycolytic metabolism. We noninvasively investigated lactate
and Cr concentrations, as well as intracellular pH using 1H/phosphorus 31 (31P) MR spectroscopy in a cohort of patients with gliomas.

MATERIALS AND METHODS: Thirty prospectively enrolled, mostly untreated patients with gliomas met the spectral quality criteria
(World Health Organization II [n¼ 7], III [n¼ 16], IV [n¼ 7]; IDH-mutant [n¼ 23]; IDH wild-type [n¼ 7]; 1p/19q codeletion [n¼ 9]).
MR imaging protocol included 3D 31P chemical shift imaging and 1H single-voxel spectroscopy (point-resolved spectroscopy sequence at
TE ¼ 30ms and TE ¼ 97ms with optimized echo spacing for detection of 2-hydroxyglutarate) from the tumor area. Values for absolute
metabolite concentrations were calculated (phantom replacement method). Intracellular pH was determined from 31P chemical shift imaging.

RESULTS: At TE ¼ 97ms, lactate peaks can be fitted with little impact of lipid/macromolecule contamination. We found a signifi-
cant difference in lactate concentrations, lactate/Cr ratios, and intracellular pH when comparing tumor voxels of patients with
IDH-mutant with those of patients with IDH wild-type gliomas, with reduced lactate levels and near-normal intracellular pH in
patients with IDH-mutant gliomas. We additionally found evidence for codependent effects of 1p/19q codeletion and IDH muta-
tions with regard to lactate concentrations for World Health Organization tumor grades II and III, with lower lactate levels in
patients exhibiting the codeletion. There was no statistical significance when comparing lactate concentrations between IDH-mu-
tant World Health Organization II and III gliomas.

CONCLUSIONS: We found indirect evidence for metabolic reprogramming in IDH-mutant tumors with significantly lower lactate
concentrations compared with IDH wild-type tumors and a near-normal intracellular pH.

ABBREVIATIONS: ATP ¼ adenosine triphosphate; CRLB ¼ Cramer-Rao Lower Bound; 2-HG ¼ 2-hydroxyglutarate; IDHmut ¼ isocitrate dehydrogenase mu-
tant; IDHwt ¼ isocitrate dehydrogenase wild-type; MM ¼ macromolecules; NHE1 ¼ sodium-hydrogen antiporter 1; pHi ¼ intracellular pH; PRESS ¼ point-
resolved spectroscopy sequence; SVS ¼ single-voxel spectroscopy; WHO ¼ World Health Organization

As first described by Otto Warburg in the 1930s, many tumor
cells show increased glycolysis even in the presence of oxygen,

likely through the activation of the key signaling phosphatidylino-
sitol-3 kinase/protein kinase B-pathway and hypoxia-inducible

factor a activation.1,2 In addition, some tumor cells show mito-

chondrial defects and are dependent on glycolytic adenosine

triphosphate (ATP) production.3-8 Glycolytic cancer cells use over-

expressed and/or overactivated H1-ATPases,9-12 sodium-hydrogen

antiporter 1 (NHE1) of the SLC9A family,13-17 carbonic anhydrases

IX and XII,18,19 and monocarboxylate-H1 efflux cotransporters of

the SLC16A family20-23 to export protons and Lac produced by lac-

tate dehydrogenases as glycolytic end products.24 As a result, the

proton gradient between the intracellular and extracellular space is

reversed, causing an acidification of the extracellular space. The

death of surrounding normal brain cells in an acidic environment

increases the infiltrative potential of cancer cells.11,25

Mutations in the isocitrate dehydrogenase (IDH) 1 or IDH 2
genes define a subgroup of gliomas with prolonged overall sur-
vival and slower growth in comparison with IDH wild-type
(IDHwt) tumors of the same grade.26 A profound alteration in
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the epigenetic profile of these tumors (G-CIMP phenotype) is
considered the basis of their specific behavior. There is increasing
evidence that these tumors are less glycolytic than IDHwt tumor
cells.

Chesnelong et al27 were able to show an IDH mutation–de-
pendent silencing of lactate dehydrogenase A in vitro in conjunc-
tion with down-regulation of hypoxia-inducible factor a through
2-hydroxyglutarate (2-HG) dependent promotion of hypoxia-in-
ducible factor a degradation, examining human glioma tissues
and brain tumor stem cells with pyrosequencing-based DNA
methylation analysis. Using carbon 13 (13C) MR spectroscopy,
the same group found that, unlike in glioblastoma cells, hyperpo-
larized (1-13C) Lac produced from (1-13C) pyruvate was not ele-
vated in IDH1-mutant (IDH1mut) glioma cells. This finding was
associated with lactate dehydrogenase A and monocarboxylate
transporter 1 and 4 silencing.28 Izquierdo-Garcia et al29 investi-
gated Lac levels in vitro in genetically engineered cell models
transducted with a lentiviral vector coding for the wild-type
IDH1 gene and for the R132H IDH1-mutant gene using 1H-MR
spectroscopy. They found that intracellular Lac levels dropped
significantly in the IDHmut cells compared with IDHwt (extrac-
ellular not investigated).

In accordance with these results, Khurshed et al30 observed in
vitro in HCT116 IDH1wt/R132H knock-in cells that IDHmut
cancer cells show a higher basal respiration compared with
IDHwt cancer cells. Consequently, inhibition of the IDH muta-
tion shifted the metabolism by decreasing oxygen consumption
and increasing glycolysis. IDHwt glioma cells seem to have a typi-
cal Warburg phenotype, whereas in IDHmut glioma cells, the tri-
carboxylic acid cycle is the predominant metabolic pathway.

Chromosomal losses of 1p and 19q, which are observed in oli-
godendroglial tumors, seem to be frequently associated with IDH
gene mutations.31 Codependent effects of 1p deletion and
IDHmut-dependent NHE1 gene promotor methylation lead to
silencing of the NHE1 gene. As a result, these tumors are more
sensitive to the acid load resulting from active glycolysis. Genes
of other key enzymes in glycolysis such as the glucose transporter
solute carrier family 2 member 1 (SLC2A1) and the Lac trans-
porter solute carrier family 16 member 1 (SLC16A1) are also
located on 1p and affected by the 1p/19q codeletion.27

All of these results suggest a metabolic reprogramming in
IDHmut tumor cells with a down-regulation of the expression of
genes that encode for glycolytic metabolism.30 The aim of this
study was to investigate resulting metabolic profiles in patients in
vivo, by noninvasively analyzing Lac concentrations and intracel-
lular pH (pHi) in a cohort of patients with gliomas with known
molecular status.

MATERIALS AND METHODS
Study Design
We prospectively enrolled 38 patients with mostly untreated World
Health Organization (WHO) II–IV gliomas. All subjects provided
written informed consent, and the study was approved by our insti-
tutional review board (Ethics Committee, University Hospital
Frankfurt, Germany, project No: SIN-04–2014). IDHmutation sta-
tus was determined by immunostaining (IDH1 Anti-IDH1 R132

antibody), Infinium Human Methylation 450 BeadChip analysis,32

or DNA sequencing.

MR Imaging
MR imaging experiments were performed on a clinical 3T MR
imaging scanner with a double-tuned 1H/31P volume head coil.

MR imaging protocols included the following sequences:

• T2-weighted TSE in 3 orthogonal planes.
• 3D T1-weighted gradient echo.
• 1H decoupled 31P MR spectroscopic imaging with 3D chemi-
cal shift imaging.

• 2D 1H-MR spectroscopic imaging.
• Two 1H single-voxel spectroscopy (SVS) point-resolved spec-
troscopy sequence (PRESS) measurements at TE = 30 ms and
TE = 97 ms with optimized echo spacing for detection of 2-
HG from the tumor area as defined on T2WI TSE.

The 2 SVS sequences were acquired from identical target posi-
tions, typically with volumes of 8mL (20 � 20 � 20mm), with
minimal inclusion of healthy-appearing tissue and avoiding ne-
crosis. Voxels were positioned on T2-weighted images with prior
knowledge of previously acquired standard MR imaging, which
included T1-weighted images after use of gadolinium-based con-
trast agent. Voxel placement was adjusted in 3 orthogonal planes.
Details on the acquisition protocol of the sequences evaluated in
this report are listed in Table 1.

Data Analysis
Spectra were reviewed independently by 2 experienced MR imag-
ing specialists (E.H., U.P., both with .10 years of experience in
MR spectroscopy) for quality, and spectra of insufficient quality
(large line width, insufficient signal-to-noise, large artifacts at vis-
ual inspection) were not included in the analysis. For all remain-
ing cases, the full width at half maximum of the Cr or Cho signal
was below 0.1 ppm. Mean signal-to-noise ratio, defined here as
the ratio of the maximum in the spectrum-minus-baseline over
the analysis window to twice the root-mean square deviation
(residuals), was 11 6 3.8 for TE ¼ 30 spectra and 9.8 6 3.4 for
TE ¼ 97 spectra. Cramer-Rao Lower Bounds (CRLBs) of Cr and
Cho as given by LCModel (Version 6.3-1C; http://www.lcmodel.
com/) were below 15% (Cr: 97% of cases,10%; Cho: 93% of
cases,10%).

1H data were analyzed in the frequency domain with
LCModel.33 For single-voxel sequences at TE ¼ 30ms and TE ¼
97ms, a 3D volume-localized basis set was simulated using
NMRScopeB which is implemented in jMRUI (Version 5.2;
www.mrui.uab.es/mrui/mrui_download/).34 The basis data set
included 2-HG, NAA, glutamate, Cr, glutamine, Cho, mIns, and
Lac in addition to the dataset for simulation of the macromole-
cules (MM) and lipids as provided by LCModel. We deliberately
chose only 8 main metabolites in addition to MM and lipids to be
included in the basis set. According to the principle of parsimony,
a model with more parameters is less likely to reproducibly pre-
dict in vivo datasets with highly varying metabolites.35

Simulation was based on the assumption of a 20 � 20 �
20mm volume, homogeneously filled with the respective metab-
olites. The basis set was validated with phantom data. Individual
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metabolite concentrations (Lac, total Cr) were calculated using
the phantom replacement technique described by Tofts36 based
on signal amplitudes at TE ¼ 97 (Lac) and TE ¼ 30 (total Cr).
The correction factors cT1 and cT2 at 3T were determined from
previously published data.37,38 Because the Tofts formula only pro-
vides a global correction for coil loading for transmit/receive coils
and does not take local B1 variations into account, which are usu-
ally observed at 3T, the presented method can only be regarded as
an estimate of the absolute concentrations. Consequently, the val-
ues must be considered as laboratory units resembling absolute
concentrations in micromoles. PRESS at TE¼ 97ms was primarily
aimed at 2-HG detection39 but showed little-to-no lipids and MM
in the Lac spectral region and the Lac peak as an inverted pseudo-
singlet. It was, therefore, used for Lac quantitation. For Cr quanti-
tation, the short TE was chosen as an optimal detection time to
avoid signal loss by increased T2-weighting.

pHi in predefined tumor voxels was determined from the
chemical shift difference between inorganic phosphate and phos-
phocreatine, following the approach by Petroff et al40 as described
in our previous publications.24,41

Statistics
Statistical analysis was performed with Statistica (Version 7.1;
StatSoft). Lac/Cr signal ratio, absolute Lac and Cr concentrations,
as well as pHi were compared using a 2-tailed unpaired t test
(IDHmut versus IDHwt; IDHmut WHO II versus IDHmut
WHO III [Lac only]; IDH mut and chromosomal losses 1p/19q
versus IDHmut without chromosomal losses 1p/19q [Lac only]).
Results were considered significant at P, .05.

RESULTS
Patient Characteristics
Overall, 30 patients completed the full MR imaging examination,
and MR spectroscopy data met the quality criteria (WHO II
[n¼ 7], III [n¼ 16], IV [n¼ 7]). Twenty-three tumors were
IDHmut, and 7 tumors were IDHwt as determined by immuno-
staining (IDH1 R132H antibody) and/or Infinium Human

Methylation 450/850K BeadChip analysis and/or gene sequenc-
ing. While there was 1 anaplastic astrocytoma, IDH wild-type
(WHO III), all other IDH wild-type tumors corresponded to
WHO IV. Tumors from 9 patients showed chromosomal losses
of 1p and 19q as determined by fluorescence in situ hybridiza-
tion and/or Infinium Human Methylation 450/850K BeadChip
analysis. One patient with an IDHmut diffuse astrocytoma was
excluded from SVS data analysis due to artifacts from extracra-
nial lipid signals, while 1 patient with an IDHwt glioblastoma
was excluded from Lac analysis due to considerable interference
between Lac and lipids leading to CRLBs above 30% for Lac.
Three patients had undergone partial resection before study
inclusion, one had been treated with chemotherapy (temozolo-
mide), and one, with radiation therapy (one of the patients with
partial resection). All of the pretreated patients were those with
IDHmut gliomas. Partial resection was performed 4, 14, and
44months before study inclusion. Details on patient character-
istics are listed in Table 2.

Representative Data
Voxel positioning on T2WI, representative in vivo single voxel
MR spectroscopy spectra at TE 97ms and TE 30ms for tumor tis-
sue with and without IDH mutations and with or without chro-
mosomal losses of 1p and 19q is shown in Fig 1. MR
spectroscopy data include the original spectrum, LCModel spec-
tral fit, estimated baseline, and the individual components Lac,
Cr, Lip13b, and MM12. Representative 31P MR spectroscopy
spectra for tumor tissue with and without IDH mutation are
shown in Fig 2. Details on voxel size for 1H SVS, tumor size, and
tumor location are listed in the On-line Table.

Lactate Levels in Glioma
There was a significant difference in Lac concentration compar-
ing tumor voxels of patients with IDHmut gliomas with those
with IDHwt (mean IDHmut¼ 5.46 4.1mmol/L; mean
IDHwt ¼ 11.76 4.3mmol/L; P, .003, t test; Fig 3). Because
there was no significant difference in comparing the total Cr

Table 1: Acquisition protocol of sequences evaluated in this report

Sequence
Section Thickness/

Voxel Size TR, Flip Angle TE
Matrix;

Resolution Pulse Details
T2WI TSE in 3
orthogonal planes

5mm 3300ms 102ms

3D T1WI gradient
echo

1.5mm 8.2ms 3.62ms

3D FID 31P CSI 30 � 30 � 25mm 2000ms; 60° 2.3ms 8 � 8 � 8 at 240
� 240 � 200
mm3, FOV
extrapolated to
16 � 16 � 16

2D 1H-MRSI 12.5mm 1500ms; 90° 30ms 16 � 16
1H single-voxel
PRESS

20 � 20 � 20mm
PRESS localized
volume

3000ms; 90° 30ms

1H single-voxel
PRESS

20 � 20 � 20mm
PRESS-localized
volume

3000ms; 90° 97ms Sinc-shaped excitation pulse (duration
2.6ms, Slice selection gradient
amplitude 33.95mT/m, BWTP 8.75),
Mao refocusing pulse (duration,
2.6ms, section-refocusing gradient
amplitude, 2.7171 mT/m; BWTP 6)

Note:—MRSI indicates MR spectroscopic imaging; BWTP, bandwidth-time product; FID, free induction decay; CSI, chemical shift imaging.
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concentration in tumor voxels of patients with IDHmut with
those with IDHwt (mean IDHmut ¼ 11.06 3.3mmol/L; mean
IDHwt ¼ 10.76 4.3mmol/L; P ¼ .85, t test), we calculated ratios
of Lac/Cr. As expected these ratios showed a significant differ-
ence between patients with IDHmut and IDHwt gliomas (mean
IDHmut ¼ 0.6 6 0.6; mean IDH wt ¼ 1.4 6 0.9; P, .014, t
test). Statistical significance for Lac concentration and Lac/Cr

ratios bet-ween patients with IDHmut
and IDHwt gliomas was maintained,
excluding the 2 patients pretreated with
radiation therapy or chemotherapy
from the cohort (P¼ .003 and P, .03).

To investigate codependent effects
of 1p deletion and IDHmut-depend-
ent NHE1 promotor methylation on
tumor cell metabolism, we looked
at all patients with IDH gene muta-
tions and compared those with chro-
mosomal losses of 1p and 19q with
those with no chromosomal losses.
We found a significant difference
between patients with IDHmut glioma
with chromosomal losses of 1p/19q and
those with IDHmut without chromo-
somal losses with regard to Lac concen-
tration (mean IDHmut codeleted 1p/19q
¼ 3.06 2.9mmol/L; mean IDHmut no
codeleted 1p/19q ¼ 6.76 4.2mmol/L;
P, .038, t test; Fig 4).

Exploring the effects of tumor
grade on metabolism, we looked at
all patients with IDH gene mutations
and compared patients with WHO II
with those with WHO III tumor grade.
There was no significant difference
between IDHmut WHO II and WHO
III tumor grades with respect to Lac
concentrations (mean IDHmut WHO
II ¼ 5.96 5.4 mmol/L; mean IDHmut
WHO III ¼ 5.26 3.7 m mol/L; P, .74,
t test; Fig 3). Because there was only 1
secondary glioblastoma (IDHmut) in
our cohort, we were not able to statisti-

cally compare the effects between IDHmut WHO III und WHO
IV gliomas.

Changes in Tumor pHi

We found a significant difference in pHi comparing tumor
voxels of patients with IDHmut glioma with respective voxels
in patients with IDHwt (mean IDHmut ¼ 7.04 6 0.02; mean

FIG 1. Voxel positioning on T2WI and representative in vivo single-voxel MR spectroscopy spec-
tra at TE ¼ 97ms and TE ¼ 30ms for tumor tissue. MR spectroscopic data include original spec-
trum, LCModel spectral fit, estimated baseline, residual and individual components, Lac, Cr, 2-HG,
Lip13b, and MM12 when applicable. Patient A shows evidence of possible codependent effects of
1p deletion and IDH mutations on cell metabolism, with a particularly small lactate signal. With
only 1 secondary (IDHmut) glioblastoma in our cohort (patient B), we were unable to statistically
compare the effects between IDHmut and IDHwt glioblastoma as well as IDHmut WHO III and
WHO IV gliomas. The relatively high Lac signal of patient B suggests additional effects of highly
malignant features such as a selective advantage of tumors cells with higher rates of glycolysis in
neovascularized, hypoxic regions and tumor cell necrosis.

Table 2: Details on patient characteristics meeting MR spectroscopy quality criteria
Characteristics All Patients (n= 30)

General
Age (median) (range) (yr) 41.1 (27.3–78)
Female sex (No.) 63% (19)

Histology according to 2016 WHO Classification of Tumors of the Central Nervous System
Glioblastoma, IDH wild-type, WHO IV (No.) 17% (5)
Gliosarcoma, IDH wild-type, WHO IV (No.) 3% (1)
Glioblastoma IDH-mutant, WHO IV (No.) 3% (1)
Anaplastic astrocytoma, IDH wild-type, WHO III (No.) 3% (1)
Anaplastic astrocytoma, IDH-mutant, WHO III (No.) 33% (10)
Diffuse astrocytoma, IDH wild-type, WHO II (No.) 0% (0)
Diffuse astrocytoma, IDH-mutant, WHO II (No.) 10% (3)
Anaplastic oligodendroglioma, IDH-mutant and 1p/19q co-deleted, WHO III (No.) 17% (5)
Oligodendroglioma, IDH-mutant and 1p/19q codeleted, WHO II (No.) 13% (4)
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IDHwt ¼ 7.07 6 0.03; P ¼ .001, t test; Fig 5). Statistical
significance in pHi between patients with IDHmut and IDHwt
gliomas was maintained, excluding the 2 patients pretreated

with radiation therapy or chemotherapy from the cohort
(P, .001). Further results regarding metabolite ratios
obtained from 3D 31P chemical shift imaging have been pub-

lished previously.39,41

DISCUSSION
Preclinical evidence points toward a
metabolic reprogramming in IDHmut
tumor cells with down-regulation of the
expression of genes that encode for gly-
colytic metabolism. Results of these met-
abolic changes could be observed in our
noninvasive in vivo study. Most of the
investigated IDHwt tumor cells, on the
other hand, seemed to behave like typi-
cal Warburg tumor cells with a highly
glycolytic metabolism. This translated
into a significant difference in intratu-
moral Lac concentrations when com-
paring patients with IDHmut with those
with IDHwt gliomas. The lower Lac pro-
duction (and possibly excretion) led to a
near-normal pHi in IDHmut tumors.
Therefore, the reversal of the proton
gradient between intracellular and
extracellular space with acidification of
the extracellular space seems to be a
characteristic feature of IDHwt tumors.
Our findings are well in line with previ-
ous in vitro findings.27-30 Only Elkhaled
et al42 quantified Lac from 1H-High
Resolution Magic-Angle Spinning ex
vivo spectra of biopsy samples of 104 tis-
sue samples from 52 patients with
WHO II–IV gliomas and found that Lac
concentrations increased with 2-HG
concentrations. However, in a later

FIG 3. Bar chart showing median, minimum, and maximum of Lac and Cr concentrations for all tumor grades separately, independent of IDHmuta-
tion status (A) and all tumor grades pooled comparing patients with IDHmut with those with IDHwt gliomas (B). There was a significant difference
in Lac concentration when comparing tumor voxels of patients with IDHmut gliomas with those with IDHwt (P, .003, t test).

FIG 2. Representative 31P MR spectra (MR spectroscopy) for tumor tissue with and without IDH
mutation at 3T. In the upper row (A and B), green (control) and red (tumor) boxes indicate voxel
positioning on T2WI, while H&E staining and immunostaining of a patient specimen with an anti-
body for mutant IDH1 (R132H) are shown to the right of the MR images. C, MR spectroscopy data
depict the original spectrum as a black line and the spectral fit as red dotted line.40 PCr indicates
phosphocreatinine; GPE, glycerophosphoethanolamine; GPC, glycerophosphocholine; PC, phos-
phocholine; PE, phosphoethanolamine; Pi, inorganic phosphate. Reproduced with permission.
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report examining ex vivo spectra of biopsy samples of new or
recurrent WHO II–IV gliomas with the same method, they stated
that the relatively high peaks corresponding to Lac cannot reli-
ably reflect in vivo levels. Death-to-freezing intervals with ische-
mia of biopsy samples seem to allow anaerobic metabolization of

brain glycogen to Lac, contributing to
falsely elevated Lac concentrations.43

While evidence clearly points toward
an IDH genotype dependence of intratu-
moral lactate levels, it remains uncertain
how highly malignant features such as a
selective advantage of tumor cells with
higher rates of glycolysis in neovascular-
ized, hypoxic regions and tumor cell ne-
crosis enter the equation.44,45 It would,
therefore, be of interest to compare lac-
tate levels of secondary (IDHmut) glio-
blastomas with those of primary
(IDHwt) glioblastomas and IDHmut
WHO III with those of higher malignant
IDHmut WHO IV gliomas. Secondary
glioblastoma accounted for only approx-
imately 10% of glioblastomas,46 while
primary glioblastoma constituted most
WHO IV tumors. This was reflected by
our cohort with only 1 secondary glio-
blastoma, impeding statistical compari-
son between IDHmut and IDHwt
glioblastoma as well as IDHmut WHO
III and WHO IV gliomas. The relatively
high Lac signal of the 1 secondary glio-
blastoma and the long-known pH de-
pendence of the invasive capacity of
brain tumors11,24 suggest additional
effects of highly malignant features on
Lac levels and pHi (Fig 1).

There was no statistical significance
when comparing Lac concentrations
between IDHmut WHO II and III glio-
mas. This is in line with the notion that
the biologic behavior and the prognosis
of WHO II versus III tumors show
much fewer differences in IDHmut than
in IDHwt tumors.47 We additionally
found evidence for codependent effects
of 1p/19q codeletion and IDH muta-
tions with regard to Lac concentrations
for WHO tumor grades II and III. This
finding points toward IDH gene muta-
tions and 1p/19q codeletion as 2 con-
tributing factors to changes in cell
metabolism independent of WHO
grade.

Prior preclinical and clinical studies
have discussed possible changes in the
phospholipid mechanism related to
mutations in IDH genes but were not

entirely consistent.29,41,42,48,49 Phospholipids are synthesized
from phosphatidic acid and 1,2-diacylglycerol intermediates in
the synthesis of triacylglycerols. The link to lactate production
is pyruvate. Because enzyme activities of both pathways are
affected by many factors such as expression, posttranslational

FIG 4. Bar chart showing median, minimum, and maximum Lac concentrations in all patients
with IDH gene mutations and WHO II and III gliomas (no WHO IV), comparing those with chro-
mosomal losses of 1p and 19q with those with no chromosomal losses. We found a significant
difference in Lac concentrations (P, .038, t test). However, if one compared WHO II with WHO
III tumors with IDH gene mutations, there was no significant difference. This finding points to-
ward IDH gene mutations and chromosomal losses as 2 contributing factors to changes in cell
metabolism independent of WHO grade. LOH indicates loss of heterozygosity.

FIG 5. Bar chart showing median, minimum, and maximum pHi. We found a significant difference
in pHi when comparing tumor voxels of patients with IDHmut gliomas with respective voxels of
patients with IDHwt gliomas (P¼ .001, t test).
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modifications, and cofactor levels and may differ between in vivo
studies and genetically engineered cell models, current results are
not contradicted by previous findings.

The PRESS at TE = 97ms was based on the vendor’s standard
SVS, using a sinc-shaped excitation pulse and a Mao refocusing
pulse with T2 time spacing aimed at 2-HG detection.50 In general,
the Lac peak at 1.33 ppm is split into a doublet because of J-cou-
pling interaction with the solitary methine proton (�CH). The
coupling constant (J) for lactate in vivo is approximately 6.9Hz.
Recording the Lac peak inverted facilitates its detection and dis-
crimination from other resonances such as lipids.51 In our study
at TE = 97ms (odd multiple of 1/J), we were able to record the
Lac peak as an inverted pseudosinglet (Fig 6). According to
the CRLBs obtained from the LCModel analysis in our cohort,
the negative Lac signal can be well-discriminated from the posi-
tive signals of MM. While most spectra at TE = 97ms could be
fitted without lipids and MM in the Lac spectral region, we found
3 patients with spectra exhibiting Lip13b and 8 patients with
MM20 at CRLBof ,20%. In all except one of these spectra,
CRLBs for Lac were also below 20%. Only 1 patient’s spectrum
showed CRLBs for Lac and Lip13 of .30%, indicating that dis-
crimination between Lac and Lip13 was not possible. This patient
was excluded from the analysis. At a 3T clinical scanner, the
inverted Lac signal might be distorted and significantly reduced
in intensity due to an incomplete 180° pulse at the rim of the
PRESS-selected box.51,52 While reduced Lac signal intensities in
PRESS do not affect our findings comparing patient groups
examined with the same MR spectroscopy protocol, absolute Lac
concentrations can be affected. The considerable difference in
Lac resonance intensity between IDHmut and IDHwt gliomas
and between high-grade and low-grade gliomas and a lack of dif-
ference in Cr intensity leave the ratio Lac/Cr relatively insensitive
to partial volume effects due to necrotic areas or CSF. It can,
therefore, be used as a robust ratio in clinical routine without the
need for metabolite quantitation.

Limitations
With a defined timeframe of the clinical study and a fixed proto-
col at 1 research scanner in combination with statistical odds of
.70% of WHO II–III tumors bearing IDH mutations,53 we were
unable to obtain a more balanced population. We acknowledge
that our study is limited by this imbalance.

Pretreated patients may pose limitations on metabolic analy-
sis. In our study cohort, 3 patients had undergone partial resec-
tion before the study inclusion, one had been treated with
chemotherapy (temozolomide), and one, with radiation therapy.
All of the pretreated subjects were patients with IDHmut gliomas.
Partial resection was performed 4, 14, and 44months prior,
which we assumed to be a sufficient period to rule out postopera-
tive effects of perioperative ischemia on lactate levels and pHi.
Zheng and Wang54 found that lactate levels in a neonatal piglet
model were normalized 48–72 hours after hypoxic-ischemic
brain injury in the basal ganglia. Statistical significance for
Lac concentration, Lac/Cr ratios, and pHi between patients
with IDHmut and IDHwt gliomas was maintained, exclud-
ing the 2 patients pretreated with radiation therapy or
chemotherapy from the cohort.

With regard to pHi values, the general limitations of 31P MR
spectroscopy have to be taken into account. With coarse
8� 8� 8 k-space sampling, which is typical for many 31P MR
spectroscopic imaging studies,55 results suffer from spreading of
signal into adjacent voxels caused by the point spread function.
The inherent partial volume effect tends to level focal changes in
the position of the signal of inorganic phosphate, which is used to
calculate pHi values. Because we used only 1 signal to fit inor-
ganic phosphate, the estimated pHi rather indicates a deviation to
higher values compared with the regular value than providing a
number for the real pHi in the target region.24 pHi ranges deter-
mined by 31P MR spectroscopy are in line with previous publica-
tions by other groups.56,57

CONCLUSIONS
By means of PRESS at TE = 97ms, with optimized echo spacing
for detection of 2-HG, Lac peaks can be fitted with little impact
of lipid/MM contamination. We found indirect evidence for met-
abolic reprogramming in IDHmut tumor cells with a significant
difference in Lac concentrations and Lac/Cr ratios compared
with IDHwt cells and a near-normal pHi. Our findings suggest
that the prediction of IDH mutation status can be supported by
the use of Lac/Cr ratios as well as pHi as additional MR spectro-
scopic markers.
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