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SUMMARY: Fueled by new techniques, computational tools, and broader availability of imaging data, artificial intelligence has the

potential to transform the practice of neuroradiology. The recent exponential increase in publications related to artificial intelli-

gence and the central focus on artificial intelligence at recent professional and scientific radiology meetings underscores the impor-

tance. There is growing momentum behind leveraging artificial intelligence techniques to improve workflow and diagnosis and

treatment and to enhance the value of quantitative imaging techniques. This article explores the reasons why neuroradiologists

should care about the investments in new artificial intelligence applications, highlights current activities and the roles neuroradiolo-

gists are playing, and renders a few predictions regarding the near future of artificial intelligence in neuroradiology.

ABBREVIATION: Al = artificial intelligence

Why Should We Care?

1l radiologists have by now heard, on the one hand, far-

reaching statements from technology pundits and the main-
stream media about how our jobs will be in jeopardy because of
artificial intelligence (AI) and, on the other hand, the advice that
we should embrace Al as a technology that will empower rather
than replace radiologists. On a practical level, how do we move
ahead? In recent years, interest in how Al may be applied to med-
ical imaging has increased exponentially, reflected in the rapid
rise in publications in AI from ~200 peer-reviewed publications
in 2010 to about 1000 in 2019 (Fig 1). Neuroradiology is the most
highly represented subspecialty in these works, accounting for
approximately one-third of all such articles." The influence of neu-
roradiology in AI research may be attributable to a variety of
factors: 1) neuroimaging comprises rich, multidimensional, multi-
contrast, and multimodality data that lend themselves well to
machine learning tasks; 2) there are well-established neuroimaging
public datasets including Alzheimer disease with the Alzheimer
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Disease Neuroimaging Initiative (ADNI adniloni.usc.edu),
Parkinson disease through the Michael J. Fox Foundation (www.
ppmi-info.org/data), stroke with data bases like Anatomical
Tracings of Lesion After Stroke for stroke (ATLAS; https://doi.org/
10.1101/179614), brain tumors with the Tumor Cancer Imaging
Archive (https://www.cancerimagingarchive.net) and the Cancer
Genome Atlas Program (https://www.cancer.gov/tcga); 3) a long
history of quantitative neuroimaging research informs clinical
practice; 4) historically, being at the forefront of imaging innova-
tions may perhaps attract researchers to the subspecialty; and 5)
myriad unsolved problems pertaining to neuroscience and neuro-
logic disease remain.

In sharp contrast with the appealing concept of Al applied to
imaging and the exponential growth of research, mainstream
clinical adoption of Al algorithms remains slow.? Indeed, a num-
ber of obstacles must be overcome to allow successful clinical
implementation of Al tools. These include not only validation of
the accuracy of such tools but ethical challenges such as bias and
practical considerations such as information technology integra-
tion with other systems, including the PACS and Electronic
Health Records.

Neuroradiologists are well-equipped to partner with Al
experts to provide the expertise to help solve these issues. The
American Society of Neuroradiology (ASNR), the American
Society of Functional Neuroradiology (ASFNR), and their mem-
bers have pledged to become the stewards of the clinical imple-
mentation of Al in neuroradiology. In this article, we will outline
a roadmap to achieve this goal. The common hope is that an opti-
mal implementation of AI for neuroradiology will aid us in
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existing challenges in neuroimaging (eg, by providing quantita-
tive results in a digestible manner, automating postprocessing of
volumetric data, facilitating interpretation of studies with many
images, and so forth) and open new horizons in diagnosis and
treatment of neurologic diseases for which imaging has thus far
played a limited role, such as neuropsychiatric disorders.
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FIG 1. Total number of publications from PubMed using search of
“brain” AND [“artificial intelligence” OR “machine learning” OR “deep
learning”] showing exponential growth in Al-related neuroimaging
publications since 1987.

Promising clinical applications of Al in neuroradiology

Current Clinical Al Portfolio and Emerging Applications in
Neuroradiology Coming Soon to a PACS Near You

The past few years have seen the introduction of a vast portfolio
of Al-enabled clinical applications in neuroradiology by academic
researchers and commercial entities. Given the unprecedented
flexibility and performance of deep learning technology, these
tools span a broad range of categories, including disease detec-
tion, lesion quantification, segmentation, image reconstruction,
outcome prediction, workflow optimization, and scientific dis-
covery. A number of current proof-of-concept, cutting-edge
applications are likely to mature into mainstream, routine use
(Table). In the beginning, workflow optimization tools may pre-
cede deep learning-based computer-aided diagnosis tools to
implementation because of the additional regulatory burden on
algorithms belonging to the latter category. In terms of workflow
optimization, Al algorithms are already being applied to tasks
such as clinical decision support, scheduling, predicting patient
behavior (eg, same-day cancellations or no-show), wait-time
determination,” protocol aid (eg, flagging of incorrect orders,
enforcement of appropriateness criteria), accuracy of coding, and
enhancing reporting and communication (eg, optimization of
case assignments to neuroradiologists, automatic population of
structured reports, longitudinal tracking of lesions).

Detecting abnormalities on imaging is the usual first thought
when considering Al uses in medical imaging. Primary emphasis
has been placed on identifying urgent findings that enable worklist
prioritization for abnormalities such as intracranial hemorrhage

15,16

(Fig 2),41° acute infarction,"'* large-vessel occlusion, aneu-

rysm detection,'” ™ and traumatic brain
S 202
injury” on noncontrast head CT.

This paradigm has been promoted, in

Applications

large part, by the new accelerated FDA

Classification of abnormalities (eg, urgent findings such as hemorrhage, infarct, mass effect)

Detection of lesions (eg, metastases)

Prediction of outcome (eg, predicting final stroke volume, predicting tumor type, and

prognosis)
Postprocessing tools (eg, brain tumor volume quantification)
Image reconstruction (eg, fast MR imaging, low-dose CT)
Image enhancement (eg, noise reduction, super-resolution)

Workflow (eg, automate protocol choice, optimize scanner efficiency)

clearance pathway for computer-aided
triage devices. For disease quantifica-
tion, applications have focused on
estimating the volume of anatomic
structures for Alzheimer disease,”**
ventricular size for hydrocephalus,

lesion load in disorders such as multi-

28-30 tumor volume for in-

31,32

ple sclerosis,

identification
33-35

tracranial neoplasms,
of metastatic brain lesions, and ver-

. 36,37
tebral compression fractures. Al

FIG 2. A Regions with Convolutional Neural Networks deep learning approach to intracranial
hemorrhage detection on a noncontrast head CT examination that uses a bounding box
approach to generate a region proposal to focus the Al algorithm. The green box represents suc-
cessful detection of a small, acute subdural hematoma (true-positive), while the red box denotes

no abnormal hemorrhage (a true-negative).
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technology has the potential to ease the
burden of time-consuming and rote
tasks by facilitating 3D reconstructions
and segmentation, identifying small
new lesions, and quantifying longitudi-
nal changes (ie, computer-aided change

detection).

Finally, deep learning is proving to
be remarkably effective in reconstr-
ucting diagnostic-quality images and
removing artifacts, despite extreme
protocol parameters, for example in the
context of rapidly accelerated MR

) 38-41
>

imaging (Fig 3 ultralow radiation



FIG 3. Deep learning-based image reconstruction algorithms will pave the way to accelerating MR
imaging acquisitions and reduce scan time; here a deep learning model (A) achieves a high-quality
brain MR imaging reconstruction with 6-fold undersampling, compared with the criterion standard,
fully sampled image (B) (unpublished data courtesy of Yvonne Lui, Tullie Murrell, May 24, 2020).
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FIG 4. Deep learning-based model used to generate diagnostic-quality postcontrast MR images

using ultra-low-dose gadolinium.

dose CT or nuclear medicine acquisitons,** ultralow intravenous
contrast protocols (Fig 4)," and achieving super-resolution.**
Such techniques are poised to change the potential indications for
long studies such as MR imaging and radiation-heavy studies such
as CT perfusion and open the door to high-fidelity dynamic imag-
ing, particularly suited to deep learning-based reconstructions
based on the redundancy of spatial information with time.
Multiple companies are now applying for FDA clearance for image

L 4546
denoising

and enhanced-resolution tools that use convolu-
tional neural networks.**

Machine learning tools are facile at incorporating diverse data
into a unified algorithm. These algorithms can be used to combine
noninvasive imaging with clinical and laboratory metrics to facili-
tate outcome prediction. This will extend the practice of neuroradi-
ologists and make us even more critically important in the care
team. Current examples include prediction of molecular signatures
of primary brain tumors such as isocitrate dehydrogenase (IDH)
mutation, 1p/19q codeletion, MGMT promoter, and epidermal

47-49

growth factor receptor amplification, and prediction of human

Deep-Learning Enhanced

Dose: 0.01 mmol/kg

papilloma virus for head and neck
squamous cell carcinoma.® Other pre-
dictive end points include estimation of
progression-free or overall survival for
patients with various CNS malignan-
cies,”*? determination of disease pro-
>»3* and the risk

of secondary stroke.'* Deep learning

gression in dementia,

algorithms may facilitate the discovery
of novel disease features. Initial work
focused on supervised and semisuper-
vised techniques to yield machine-cura-
ted atlases of tumor phenotypes®**’
as well as novel perfusion maps for core
infarct estimation.'>'* As techniques
develop, future work may incorporate
ensembles of fully unsupervised deep
learning models to study population-
level imaging archives to identify new
dominant disease patterns and pheno-
typic risk factors. Together, applications
such as the ones described here will not
only advance our understanding of
neurologic disease but emphasize the
critical role that imaging will have in
the future of health care.

Integration of Al into
Neuroradiology Practice: Paths of
Least Resistance
The single most important feature of
any software tool to achieve clinical
success is to provide value. Value may
come in many forms: from assisting
with laborious tasks to providing
improved diagnoses to saving time.
Automation of repetitive manual tasks
by technologists, 3D laboratory post-
processing personnel, and radiologists may be especially useful.
Because of regulatory uncertainty in the Al realm, particularly per-
taining to medical applications, practical implementation may
come earlier for those Al algorithms that assist or augment tasks
rather than mimic the radiologist. Other factors important to suc-
cessful algorithm adoption include ease of integration with existing
information technology infrastructure, processing speed, accep-
tance by end-users (whether they are radiologists, referring physi-
cians, or patients themselves), and, of economic import, potential
payer coverage of services. There are challenges to the successful
implementation of Al algorithms into general clinical practice,
made clear by early experiences with models that do not generalize
well to real clinical cases; accuracy/sensitivity/specificity levels,
which may look good in a research article but may not be accepta-
ble in practice; and a potential penalty rather than a gain in time to
interpret model outputs.

Current workflows already incorporate postprocessing tasks
such as 3D visualization. While such tools are not generally based
on machine learning models, they may serve as a roadmap for
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future Al algorithms. For example, perfusion analysis for acute
stroke has found a place in the clinical workflow at many medical
centers. Down the line, it seems inevitable that deep learning—
based tools will improve current models on the basis of threshold
methods for analysis. Integration of such Al-based techniques is
already occurring, with the latest suites of tools from many differ-
ent vendors. In such cases, one can imagine rather seamless
incorporation into existing workflow.

Another point of integration is worklist optimization. A popu-
lar AI neuroradiology application is the use of deep neural net-
works to identify acute hemorrhage on noncontrast brain CT.*°
Several companies have received FDA approval for competing
tools that identify positive hemorrhage cases and re-prioritize
them on the worklist. Ideally, the benefits would be in reducing
turnaround time for studies with critical findings. In reality, every
neuroradiologist knows that the definition of “critical” is unclear.
Not every brain hemorrhage has the same level of urgency: Not
only are some hemorrhages managed conservatively (eg, small
areas of petechial hemorrhage postinfarct) but some are even
expected findings (eg, postoperative cases). Large hemorrhages for
which immediate triage might be appropriate are often already
flagged in current workflows at the time of scanning by technolo-
gists or even before the study is performed by the referring physi-
cian who asks for a prioritized interpretation. Thus, the true utility
of such prioritization schemes is uncertain. In the prioritization of
one study, another inevitably becomes de-prioritized; the ramifica-
tions of this re-ordering are unclear. Furthermore, the prevalence
of abnormalities in the patient population is important to consider
because this affects the performance of the algorithm. Certain prac-
tice scenarios may lend themselves to situations in which such
tools are more or less useful, for example an Al algorithm may be a
useful assist for trainees but of limited value in busy hospital-based
practices with low overall turnaround time.

Al tools may be used instead in identifying normal rather
than abnormal. Unanswered questions here include where speci-
ficity thresholds should be set for true-negatives and how to han-
dle potential cognitive biases that may be introduced by
preliminary Al device interpretations. Legal ramifications with
regard to liability remain undefined, akin to the autonomous
automobile industry.> It may be difficult to persuade the public
to accept Al tool interpretations for important medical determi-
nations unless they are supervised by a medical expert.

Broader applications to consider are AI models applied on
amalgamated data. Compiled statistical data could help docu-
ment the prevalence of risk factors or severity of disease (such as
vascular atheromatous quantification) in populations, potentially
informing insurance reimbursement of health systems in an ac-
countable care environment.

For successful implementation, a host of informatics details
need attention: infrastructure needs, potential cloud-based com-
puting, appropriate handling of protected health information,
backup systems, and monitoring systems. A systematic method for
validation and quality control must be deployed and monitored to
ensure consistent performance and continuous updating of the
algorithm. Entirely new platforms are needed to address these
needs. While there are many works in development, currently there
is little standardization. The Integrating the Healthcare Enterprise
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Radiology Technical Committee has published 2 profiles that
attempt to standardize critical aspects of Al processes: Al Workflow
(https://mailchi. mp/ihe/ihe-rad-tf-supplement-published-pc-2020-
03-30) for Imaging and AI Results (https://mailchimp/ihe/ihe-
rad-tf-supplement-published-ti-2020-07-16). These profiles will
help guide the vendors to create both intraoperable and interoper-
able solutions in the future.

Future Role of Neuroradiologists in an Al World
For some, the emergence of AI medical imaging tools engenders
palpable concern for the future of radiology that typically centers
around the threat of increasing automation to job security.>
However, previous experience with automation in medicine tells
a different story. Automated screening of Pap smears using a
neural network was first available in 1992”7 and has become
more advanced since then. Although the initial promise was that
these tools could identify cases that would no longer require cyto-
pathologist review, final readouts of slides based on software
alone never became widely accepted.”” In fact, a large study
showed increased productivity but not increased sensitivity com-
pared with manual review alone in more than 70,000 cases.”®
Similarly, computer-assisted electrocardiography interpretation is
commonplace and has achieved a savings in analysis time for
experienced readers.”” Human expert over-reading remains the
norm. Incorrect computer-assisted interpretations that were not
properly corrected by over-reading physicians have led to mis-
diagnoses and inappropriate treatment.”>*°

Thus, the threats of Al to the size of the radiology workforce
may be overstated.’**"** Tools to augment performance rather
than replace radiologists are the most likely near-term outlook,
with the benefits of augmentation being many: improved quanti-
fication; reduction in repetitive, rote tasks; and productive alloca-
tion of tasks to radiologists. In the longer term, our field is likely
to be transformed in ways that are difficult to predict. Al is set to
alter many different aspects of practice beyond diagnostic sup-
port. For example, Al is just beginning to be applied to enhance
radiology education by tailoring the presentation of teaching ma-
terial to specifically address the needs and learning styles of indi-
vidual trainees.”” Facilitating our community’s engagement and
comfort level with implementing and using AI models will not
succeed without addressing the evolving needs of Al education.
Al education will need to target learners of all levels from medical
students to senior practitioners, from tech-savvy to tech-
illiterate.*®

How We Will Get There?

Leading radiology and imaging informatics organizations have
established parallel Al initiatives in a flurry of enthusiasm for AL
Initiatives are far-ranging and include developing educational
programs for radiologists, providing areas of synergy between
clinical radiologists and the engineering community, fostering
industry relationships, and providing input into regulatory proc-
esses. Federal effort by the National Institutes of Health includes
sponsoring forums on Al in medical imaging. AI challenges and
dataset curation are being organized by the American College of
Radiology (ACR) and the Radiological Society of North America
(RSNA). As with early adoption of any new technology, parallel
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FIG 5. Increasing numbers of oral abstracts and posters in artificial intelligence presented at the
ASNR  Annual Meetings in 2018 (Vancouver, British Columbia, Canada), 2019 (Boston,

Massachusetts), and 2020 (Virtual).

exploration is necessary on the path toward maturation of the
field. Neuroradiologists in the ASNR and ASEFNR are providing
synergistic leadership as evidenced by the successful creation of
an AI workshop that is now part of the annual meetings of both
societies. The ASNR has established an AI Task Force, which is
charged with advising and providing guidance to the society on
this topic. The AI working group provides a forum for interested
members, which includes a dedicated AI study group supported
by the ASNR.

ASNR, the major subspecialty society for neuroradiologists,
seeks to identify key collaborative opportunities for Al in neuro-
radiology, which include influential national and international
organizations and its own subspecialty societies (eg, the ASFNR).
The combined strengths of the ASNR with its focus on state-of-
the-art education and the ASFNR with its emphasis on evolving,
innovative techniques and research form a natural synergy. The
trajectory is clear: 18 oral abstracts and 1 poster on Al at the 2018
ASNR annual meeting; 35 oral abstracts and 9 posters and exhib-
its in 2019; and now 59 oral abstracts and 21 posters and exhibits
in 2020 (Fig 5). Similarly, AI abstracts at the ASFNR annual
meeting have gone from 6.25% to 23.4% of total abstracts in 2
years. Last year saw the inaugural launch of an innovative, hands-
on Al workshop, a major collaborative effort between the ASNR
and ASFNR. This 2-part workshop (the first part at the spring
ASNR annual meeting, the second part at the fall ASFNR annual
meeting) incorporates an ambitious curriculum, including basic
coding to ethical considerations capped by individual year-long
projects by each attendee with formal mentorship. The workshop
was a success in its first year and is currently oversubscribed for
2020.

In addition, neuroradiologists are providing important contri-
butions in several major collaborations toward enriching neuroi-
maging Al resources in the public domain. Here, we summarize a
few of the related activities of major radiologic parent organiza-
tions, the ACR and the RSNA, and discuss how we can support
and partner with their efforts.

1) The ACR Data Science Institute
includes several resources including
an innovative AI-LAB and the Define-
Al (https://www.acrdsi.
org). The AI-LAB provides simple

Directory.

browser-based tools empowering radi-
ologists with basic hands-on access to
tools for creating, testing, and validat-
ing machine learning algorithms with-
out requiring extensive programming
background. The Define-AI Directory
contains a list of potential use cases
with the aim of cataloging important

2020

clinical problems that may be good
candidates for potential AI solutions.
The goal is to organize and template
key findings with narrative descriptions
and flow charts to aid developers and
industry in finding Al-based solutions.
Representatives from our societies have
been called on to help develop neurora-
diology use cases for this initiative (https://www.acrdsi.org/DSI-
Services/Define-AI). The ACR offers tools to evaluate algorithm
performance using qualified datasets as an aid in the FDA premar-
ket review process. In the role of the ACR as a liaison to the federal
government, the ACR interacts with the FDA with the goal of help-
ing to define the evaluation/approval processes for industry to
uphold the standards of patient safety and algorithm performance
while streamlining the review process.

2) The RSNA has succeeded in developing imaging infor-
matics standards by leveraging its relationship to industry part-
ners, for example with the creation of international standards
organizations such as Integrating the Healthcare Enterprise.
Just last year, the RSNA recognized the potential of AI in
neuroradiology and spearheaded an AI challenge for head
CT hemorrhage detection (https://www.kaggle.com/c/rsna-
intracranial-hemorrhage-detection).®* The dataset of more
than 28,000 noncontrast head CT studies from 4 different
organizations was labeled by neuroradiologist volunteers.
More than 1300 teams from around the world competed in
the challenge, and the dataset remains available through the
RSNA as an open-access resource.

3) The Society of Imaging Informatics in Medicine (SIIM) is
less well-known to practicing radiologists, but critically important
to our field. SIIM is devoted to developing and providing educa-
tion for radiology informatics and has primarily nonphysician
members (eg, physicists, engineers, information technology profes-
sionals). It is the certifying body for the imaging informatics pro-
fessionals (Certification for Imaging Informatics Professionals).
SIIM maintains close alliances with broader medical informatics
bodies including the Healthcare Information and Management
Society and the American Medical Informatics Association, creat-
ing an important tie between radiology informatics and medical
informatics more generally. SIIM provides year-long informatics
education through SIIM University and has sponsored AI and
innovation challenges. SIIM currently hosts a separate meeting
devoted to Al, the Conference on Machine Intelligence in Medical
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Imaging. This conference brings engineers and imaging experts to-
gether to focus on the problems faced with developing datasets,
creating infrastructure to support machine learning, and clinical
applications. Many of the scientific presentations, workshops, and
hands-on presentations are neuroradiology-related and may be of
interest to ASNR and ASFNR members.

As neuroimaging experts, we should be engaged in AI appli-
cations as they relate to neurointerventional radiology, as there
has been considerable effort in stroke imaging. Working with our
partners in vascular neurology and vascular neurosurgery toward
Al applications in neurovascular disease including diagnosis,
patient selection, and treatment is a priority.

One major obstacle to quality medical imaging Al research and
development is the paucity of well-curated imaging datasets.
Quality and diversity of datasets will be important to address train-
ing data biases to develop tools in an ethical and responsible man-
ner.®>%® There is a need to be mindful of health disparities that can
inadvertently be introduced or exacerbated in AI algorithms or
data curation.”” Neuroradiologists can provide tremendous value
by promoting standards of development for multicenter datasets to
address high-profile clinical-use cases derived from our institu-
tional membership and promoting new and additional neuroradi-
ology-focused data science challenges following the lead of
previous challenges led by ASFNR, RSNA, and the Medical Image
Assisted
Furthermore, the importance of data sharing and algorithm shar-

Computing and Computer Intervention Society.
ing cannot be stressed enough. If we, as a community, look to AI
as a great opportunity to improve practice, it will be critical to

share resources to derive the greatest benefit.

CONCLUSIONS

The ASNR and ASFNR are poised and ready to contribute to
ongoing effort in meeting the new needs of neuroradiologists in
AL We will ensure the ethical application of AI and protect
patients’ rights. The combined strengths of our societies in
knowledge, experience, education, research, clinical expertise,
and advocacy place us in the best possible position to influence
and inform the future of the field. While continuing our own
effort, we will actively seek ways to build complementary pro-
grams with others to contribute positively to key neuroradiology-
related Al initiatives nationally and internationally. Conversely,
parent radiology organizations such as the RSNA, ACR, and
SIIM will seek synergies with neuroradiology leaders to tap into
our knowledge, neuroimaging expertise, and commitment to the
future of AI in imaging.

Since the inception of neuroradiology as a subspecialty within
radiology, neuroradiologists have been the champions of emerging
and innovative technologies that have transformed neuroimaging
and patient care. The arrival of artificial intelligence represents
another unique, historic opportunity for neuroradiologists to be
the leaders and drivers of change with the implementation of Al
algorithms into routine clinical practice. There is a wealth of possi-
bilities, from enhanced operational efficiencies to reduce health
care costs and improve access to the prediction of genomics from
brain MR images. Thus, AI will provide neuroradiologists not with
artificial but with augmented intelligence, making us increasingly
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indispensable to our patients and the clinical teams with whom we
work.
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