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ORIGINAL RESEARCH
HEAD & NECK

Olfactory Bulb Signal Abnormality in Patients with COVID-19
Who Present with Neurologic Symptoms

S.B. Strauss, J.E. Lantos, L.A. Heier, D.R. Shatzkes, and C.D. Phillips

ABSTRACT

BACKGROUND AND PURPOSE: Unique among the acute neurologic manifestations of Severe Acute Respiratory Syndrome corona-
virus 2, the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, is chemosensory dysfunction (anosmia or dys-
geusia), which can be seen in patients who are otherwise oligosymptomatic or even asymptomatic. The purpose of this study was
to determine if there is imaging evidence of olfactory apparatus pathology in patients with COVID-19 and neurologic symptoms.

MATERIALS AND METHODS: A retrospective case-control study compared the olfactory bulb and olfactory tract signal intensity
on thin-section T2WI and postcontrast 3D T2 FLAIR images in patients with COVID-19 and neurologic symptoms, and age-matched
controls imaged for olfactory dysfunction.

RESULTS: There was a significant difference in normalized olfactory bulb T2 FLAIR signal intensity between the patients with
COVID-19 and the controls with anosmia (P ¼ .003). Four of 12 patients with COVID-19 demonstrated intraneural T2 signal hyperin-
tensity on postcontrast 3D T2 FLAIR compared with none of the 12 patients among the controls with anosmia (P ¼ .028).

CONCLUSIONS: Olfactory bulb 3D T2 FLAIR signal intensity was greater in the patients with COVID-19 and neurologic symptoms
compared with an age-matched control group with olfactory dysfunction, and this was qualitatively apparent in 4 of 12 patients
with COVID-19. Analysis of these preliminary finding suggests that olfactory apparatus vulnerability to COVID-19 might be sup-
ported on conventional neuroimaging and may serve as a noninvasive biomarker of infection.

ABBREVIATIONS: COVID-19 ¼ coronavirus disease 2019; OB ¼ olfactory bulb; SARS-CoV-2 ¼ Severe Acute Respiratory Syndrome coronavirus 2

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-
CoV-2), the virus responsible for the coronavirus disease

2019 (COVID-19) pandemic, may produce a broad range of
acute neurologic symptoms that involve both the CNS and the
peripheral nervous system, including stroke,1 meningitis, enceph-
alitis, Guillain-Barré syndrome, and acute necrotizing hemor-
rhagic encephalopathy.2 Unique among these acute neurologic
manifestations is chemosensory dysfunction (anosmia or dysgeu-
sia), which can be seen in patients who are otherwise oligosymp-
tomatic or even asymptomatic. A single-institution report from
the United States that involved 1480 patients with COVID-19

testing showed that loss of smell and taste was reported in 68% of
patients who tested positive for COVID 19, of whom, 26% did
not recover.3 The reported incidence of anosmia varies interna-
tionally: as low as 30% in South Korea, where there is widespread
testing, and as high as 88% in Europe, where testing practices
might be less uniform.4-11 Chemosensory symptoms may present
as viral prodromes or be concomitant with the development of
other disease symptoms.12 Although olfactory dysfunction can be
seen with rhinoviruses, parainfluenza, Epstein-Barr virus, and
other coronaviruses, this symptom is typically linked with rhinor-
rhea and nasal obstruction, whereas there is accumulating evi-
dence that SARS-CoV-2 associated olfactory dysfunction is seen
independent of nasal congestion.2,6 Anosmia in the absence of
other symptoms is reported in as many as 1 of 6 individuals with
SARS-CoV-2 infection.10

The olfactory bulbs (OBs) are easily identified on conventional
MR imaging and are located immediately beneath the olfactory
sulci within the anterior cranial fossa, above the cribriform plate.
The normal imaging appearance of the adult OB is well
described13-15 and should appear oval- or j-shaped in morphology
and demonstrate uniform T2 signal intensity from the center to
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the periphery.15 The olfactory neural network includes first-order
projections to the piriform cortex and amygdala as well as secondary
projections, including the orbitofrontal cortex, thalamus, and insula.16

Morphologic changes in the OB and associated areas have been
shown in various other disease states, including chronic rhinosinusi-
tis, post–viral anosmia, and neurodegenerative disease.17-19 Moreover,
both central and peripheral components of the olfactory system seem
to have distinct functional roles in olfactory perception.20

Although much remains unknown with regard to the patho-
physiology of anosmia in the setting of COVID-19, given that che-
mosensory dysfunction is reported as the first symptom of disease
in up to 27% of patients,21 imaging-detected OB pathology might
serve as a noninvasive biomarker for infection. To our knowledge,
there are no studies that systematically evaluated patients with
COVID-19 for radiologic evidence of OB, tract, and olfactory asso-
ciation area abnormalities. The purpose of this study was to deter-
mine if there is imaging evidence of olfactory apparatus pathology
in patients with COVID-19 and neurologic symptoms. We
hypothesize that individuals with COVID-19 will show evidence of
OB pathology manifesting as OB signal abnormality.

MATERIALS AND METHODS
Subject Enrollment
This was a Health Insurance Portability and Accountability Act
retrospective, case-control study performed with approval of the
institutional review board at Weill Cornell Medical Center. A ra-
diology report data base query was performed to identify all
patients with suspected or confirmed COVID-19 and MR imag-
ing of the brain performed as part of standard of care between
April 4, 2020, and May 4, 2020. Inclusion criteria for subjects
included positive SARS-CoV-2 reverse transcription–polymerase
chain reaction result from nasopharyngeal specimen, MR imag-
ing examination, including thin-section coronal T2WI of the OB
(2mm) and high-resolution 3D T2 FLAIR images of the whole
brain. An age-matched control group was scanned for olfactory
dysfunction with previous MR imaging of the brain that included
thin-section coronal T2WI and high-resolution 3D T2 FLAIR.

Imaging Acquisition
MR images were acquired by using a 3T MR imaging system on
several in- and outpatient scanners at our institution: Signa
Architect (GE Healthcare; 6 cases, 3 controls), Discovery 750W
(GE Healthcare; 6 cases), Skyra (Siemens; 9 controls) by using a
48-channel head coil. Coronal T2WIs of the OB were acquired
with the following parameters: repetition time/echo time, 2744.0/
108.3ms; field of view, 180.0 � 180.0mm; and section thickness,
2.0mm. Sagittal 3D T2 FLAIR images were acquired after the
administration of Gadavist (gadobutrol) 0.1mmol/kg (Bayer
Schering Pharma) intravenous contrast with the following parame-
ters: repetition time/echo time 6002.0/126.9 ms; inversion time,
1681.0ms; field of view, 215.3 � 108.7mm; and section thickness,
1.0mm (with 3-mm coronal and axial reconstructed images).

Imaging Data Analysis
Evaluation of the patients and the controls was done via consen-
sus review by 2 neuroradiologists (L.A.H. [with 34 years of imag-
ing experience], J.L. [with 10 years of imaging experience]); a

third neuroradiologist (C.D.P. [with 30 years of imaging experi-
ence]) adjudicated the differences when consensus was not
reached. All the reviewers were blinded to patient category.
Consensus review was performed for the following measures:
Kennedy staging for paranasal sinus disease (0–IV), mucosal dis-
ease that involves the olfactory recess, loss of OB volume (coronal
T2 of the OB), OB and olfactory tract signal abnormality (coronal
T2 of the OB), OB and olfactory tract signal abnormality (3D T2
FLAIR), the presence of abnormality in the piriform cortex and
amygdala, the presence of signal abnormality in the orbitofrontal
cortex, and evaluation for other relevant imaging findings (the
presence of acute stroke; chronic microvascular disease graded as
mild, moderate, severe). Paranasal sinus disease was assessed by
using the Kennedy staging,22 as outlined in Table 1. The OB vol-
ume loss was a qualitative determination based on loss of the nor-
mal oval- or J-shaped morphology, or loss of volume compared
with the contralateral OB.15 The OB and olfactory tract signal in-
tensity was assessed relative to the trigeminal nerve; OB and ol-
factory tract hyperintense to the trigeminal nerve was classified as
abnormal. Quantitative assessment of the OB signal intensity was
also performed. For each patient, an ROI was drawn at the mid
segment of the OB as well as in the left superior frontal WM to
calculate normalized values (Fig 1).

Patients were excluded if coronal T2WI of the OB was not
performed (n ¼ 19), high-resolution 3D T2 FLAIR was not

Table 1: Kennedy staging
Stage Description
0 Normal
I Anatomic abnormalities, unilateral sinus disease, bilateral

disease limited to ethmoid sinuses
II Bilateral ethmoid disease with involvement of 1

dependent sinus
III Bilateral ethmoidal disease with involvement of 2 or

more dependent sinuses on each side
IV Diffuse sinonasal polyposis

FIG 1. Quantitative assessment of OB signal intensity. For each
patient, the ROI is drawn at the mid segment of the OB and within
the left superior frontal WM to calculate normalized values.
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performed (n ¼ 10), if motion degradation precluded satisfactory
evaluation (n ¼ 1), or if the final SARS-CoV-2 reverse transcrip-
tion–polymerase chain reaction result was negative (n ¼ 3) . One
patient underwent 2 examinations; therefore, only the first study
was included. The remaining 12 patients with a history of
COVID-19 infection and sequences of interest were included in
the study. Demographic data (age, sex at birth), date of positive
SARS-CoV-2 reverse transcription–polymerase chain reaction
result, and date of examination were recorded. A total of 12 age-
matched controls who underwent MR imaging of the brain with
an olfactory protocol were also included.

Statistical Analyses
Statistical analyses were performed by using SPSS (version 26;
IBM). The x 2 test of independence was used to assess significant
differences between patients with COVID-19 and the anosmia
control group in OB T2 FLAIR hyperintensity. The independent
2-sample t test was performed to test for significance of difference
in age and the Kennedy staging score between patients with
COVID-19 and the controls with anosmia, and normalized OB
T2 FLAIR signal intensity between patients with COVID-19 and
the controls with anosmia. The Spearman rank correlation analy-
sis was used to test for significance of association between age
and normalized OB T2 FLAIR signal intensity.

RESULTS
Demographic and clinical characteristics of the patients and the
controls are shown in Table 2. There was no significant difference
in age between the 2 groups (P = .966). There were significantly
more women in the anosmia control group (9 women, 3 men)
compared with patients with COVID-19 (6 women, 6 men)
(P, .001). All the subjects included within the COVID-19 group
had laboratory confirmation of SARS-Cov-2 infection. The aver-
age latency between the COVID-19 diagnosis and the MR imag-
ing examination was 14.17 days (range, 0–32days). There was no
significant difference between the patients with COVID-19 and
the controls with anosmia, and the grading of paranasal sinus
mucosal disease (P ¼ .346). There was a range of disease severity
among the patients with COVID-19: five patients required intu-
bation and 5 patients presented with purely neurologic and/or

psychiatric symptoms in the absence
of pulmonary manifestations of the
infection. Among the 11 patients with
COVID-19 who presented and re-
quired hospitalization, the length of
stay ranged from 4 to 71 days (mean,
27 days). Seven of 12 patients with
COVID-19 received hydroxychloro-
quine over the course of their
treatment.

There was a significant difference
in a normalized OB T2 FLAIR signal
intensity between the patients with
COVID-19 (mean normalized signal
intensity, 1.85 [range, 0.74–1.85]) and
the controls with anosmia (mean nor-
malized signal intensity, 1.27 [range,

0.99–3.13]) (P ¼ .003) (Fig 2). There was no correlation between
age and a normalized OB signal intensity (R = �0.128, P = .552).
The patients with COVID-19 and the controls with anosmia did
not demonstrate OB volume loss or signal abnormality based on
thin-section T2WI of the OB. However, 4 of 12 patients with
COVID-19 demonstrated intraneural T2 signal hyperintensity on
3D T2 FLAIR (Figs 3 and 4) compared with none of the 12
patients (Fig 5) among the controls with anosmia (P ¼ .028). Of
the patients in the COVID-19 group, there was no significant
difference between those with and those without OB and olfac-
tory tract neuritis, and the number of days between the COVID-
19 diagnosis and the MR imaging examination (P ¼ .882) or
severity of paranasal sinus disease (P = .080). Olfactory recess dis-
ease was seen in a single control with anosmia but not in any of
the patients with COVID-19. A single patient with COVID-19
demonstrated an increased T2 signal in the entorhinal cortex and
the orbitofrontal cortex; this individual was admitted for delirium
and lethargy in the setting of Escherichia coli urinary tract infec-
tion, with persistent altered mental status despite resolution of
the infection.

In terms of additional imaging findings on the performed
examinations, there was a significant difference in distribution
among categories of chronic microvascular ischemic disease
(none, mild, moderate, severe) between the patients and the con-
trols, as shown in Table 3 (P# .001). Additional notable findings
included posterior reversible encephalopathy syndrome (2
patients with COVID-19, neither of whom demonstrated qualita-
tively increased OB and olfactory tract signal intensity on 3D T2
FLAIR) and acute infarction (2 patients with COVID-19, 1 of
whom demonstrated qualitatively increased OB and olfactory
tract signal intensity on 3D T2 FLAIR). Anosmia data were avail-
able for only 1 of the 12 patients with COVID-19. This individual
presented with right arm numbness, paresthesia, and loss of sense
of smell, and was found to have increased T2 signal in the OB
and olfactory tract on 3D T2 FLAIR.

DISCUSSION
In this retrospective case-control study that examined imaging
correlates to COVID-19, we found that the patients with acute-
to-subacute COVID-19 were more likely to demonstrate

Table 2: Demographic and clinical characteristics of patients and controls
Characteristic Patients (n = 12) Controls (n = 12)

Age, mean 6 standard
deviation, y

58.25 6 14.852 58.00 6 13.824

Sex at birth 6 women, 6 men 9 women, 3 men
Indication for study

(n/N)
Altered mental status (9/12);
ataxia, dysarthria (1/12); status
epilepticus (1/12); paresthesia,
anosmia (1/12)

Anosmia (7); phantosmia (2);
hyposmia (3)

Kennedy staging
score, n/N

0 3 7
I 4 2
II 0 0
III 2 0
IV 3 3

Olfactory recess
involvement, n/N

0 1

AJNR Am J Neuroradiol �:� � 2020 www.ajnr.org 3



increased intraneural T2 signal abnormality on 3D T2 FLAIR in
the OB compared with the controls with anosmia and not
infected, which may represent enhancement or intrinsic T2 pro-
longation. There was a group-wise difference in normalized T2
FLAIR signal intensity between the patients with COVID-19 and
the controls with anosmia. This difference was evident in 4 of 12
patients with COVID-19 on consensus review. These findings
were independent of the presence of olfactory recess or paranasal
sinus disease. We did not find signal abnormality in other struc-
tures related to the olfactory apparatus, including the orbitofron-
tal and entorhinal (piriform and amygdala) regions. These

preliminary findings have important
implications in terms of establishing
biomarkers for acute infection,
understanding the potential neurot-
ropism of SARS-Cov-2, and identify-
ing a subset of patients who might
require longitudinal clinical and
imaging follow-up to assess for neu-
rologic changes.

A report by Galougahi et al23

demonstrated no signal abnormality
or morphologic changes in a patient
with sudden-onset anosmia and posi-
tive SARS-CoV-2 polymerase chain
reaction result during the acute phase
of the illness. Similarly, we did not
detect signal abnormality on coronal
T2WI; rather, signal abnormality
was detected on 3D-T2 FLAIR
sequences, defined as hyperintense
relative to the trigeminal nerve. An
additional case report on acute
onset anosmia in a patient with
COVID-19 demonstrated complete
olfactory cleft obstruction24; in con-
trast, we did not find olfactory recess
disease in any of our patients with
COVID-19. However, given the char-
acteristic imaging appearance, it is
possible that the previously reported
case represents respiratory epithelial
adenomatoid hamartoma rather than
pathology related to COVID-19.24

Olfactory neuritis observed in
our study might be a secondary
effect of olfactory dysfunction and
might reflect a phenomenon similar
to post–infectious olfactory loss seen
in the setting of other upper respira-
tory infections. Although the neuro-
invasive potential of SARS-COV-2
remains to be established, direct
CNS inoculation due to viral neurot-
ropism is also plausible. The anat-
omy of the olfactory recess and the
relationship among the nasal epithe-

lium, OB, and CNS allows for a natural pathway for virus spread
via neuronal transport.25 Trans-synaptic transfer of virus is
described in SARS-CoV26 and Middle East respiratory syn-
drome coronavirus,27 betacoronaviruses homologous to SARS-
CoV-2 and responsible for previous epidemics. Preclinical
experiments in transgenic mice demonstrated that the intra-
nasal introduction of these viruses resulted in CNS inoculation,
with neuronal loss in areas of viral expression. Therefore, it has
been postulated that the neuroinvasive potential of SARS-
COV-2 might similarly occur via a trans-synaptic route.
Angiotensin-converting enzyme 2 protein expression is present

FIG 2. Normalized OB T2 FLAIR signal intensity in patients and controls. Box-and-whisker plots
show median and interquartile ranges for each group. There was a significant difference in mean
signal intensity between the patients and the controls (P = .003). Findings remain significant even
with the exclusion of the COVID-19 high outlier depicted at a mean normalized OB T2 FLAIR signal
intensity of 3.1.

FIG 3. A 48-year-old woman positive for COVID-19 who presented with weakness and unsteady
gait of 1 week’s duration. Neurologic examination was significant for truncal ataxia, dysarthria, and
left-sided dysmetria. A, Coronal high-resolution T2WI demonstrates normal OB morphology and
signal intensity. B, Coronal and (C) sagittal postcontrast T2 FLAIR images demonstrate an
increased T2 signal within the OB (red arrows). Note relative increased signal compared with (D)
coronal T2WI at the level of the intracisternal segment of the trigeminal nerve (red arrow).
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in sustentacular and olfactory stem cells and may serve as a pu-
tative target for SARS-CoV-2 infection of olfactory epithe-
lium.25 Alternatively, viral binding to angiotensin-converting
enzyme 2 receptors expressed in CNS capillary endothelium
might result in endothelial damage, which enables spike protein
binding to neuronal angiotensin-converting enzyme 2 receptors
and subsequent CNS infection.28 Another possibility is that he-
matogenous spread may occur via the blood supply shared by
olfactory sensory neurons and the OB.

Imaging correlates to anosmia on conventional MR imaging
have been shown in the setting of other disease status causing
olfactory dysfunction. For instance, OB volume loss has been
demonstrated in patients with migraine headache,29 chronic rhino-
sinusitis,30 trauma,30,31 and subsequent to upper respiratory tract
infection.30,32 Morphologic changes in the OB have also been

demonstrated in neurodegenerative
diseases, including Parkinson disease18

and Alzheimer disease.19 Chung et al33

evaluated OB volume and signal inten-
sity in patients with a reported history
of olfactory deficit due to chronic rhi-
nosinusitis, trauma, prior viral infec-
tion, and idiopathic etiologies, and
found that OB volume loss was more
common in patients with olfactory dys-
function than in those with normos-
mia. However, there was no significant
difference between the 2 groups in
terms of T2 signal abnormality (P ¼
.395).33 The investigators attributed
their findings to the chronicity of olfac-
tory deficits because patients in the
cohort experienced olfactory deficits
for.2months.33

The presence of an increased T2
signal observed in our study might
reflect the acuity of the time course; it
is possible that, if these individuals
were imaged at longer-term follow-up,
we would observe volume loss in the
absence of signal abnormality. For
instance, studies have demonstrated a
negative correlation between the dura-
tion of anosmia and OB volume loss.
Yao et al17 demonstrated OB volume
loss in individuals with anosmia of 0.5–
8.7 years’ duration and that the volume
negatively correlated with the dura-
tion of olfactory loss. In addition,
Yao et al17 reported orbitofrontal cor-
tex volume loss. In our study, a single

patient with COVID-19 demonstrated increased entorhinal and
orbitofrontal signal abnormality; however, the clinical signifi-
cance of this isolated finding is uncertain.

There are several limitations to this study. Patients included
were those who underwent MR imaging of the brain as part of
standard of care during the COVID-19 pandemic. As such, our
findings do not necessarily reflect patients on the milder end of the
spectrum who might not have undergone imaging due to regula-
tory constraints or those on the more severe end of the spectrum
who may have been too clinically unstable to undergo MR imag-
ing. Although quantitative measures for the OB T2 FLAIR signal
intensity were normalized to superior frontal WM, a large propor-
tion of patients with COVID-19 underwent examinations on inpa-
tient scanning systems versus outpatient scanning systems, and,
therefore, it is possible that technical factors contributed to the dif-
ferences observed between the 2 groups. Although all the patients
included in the study demonstrated neurologic manifestations of
disease, the presence of anosmia was not documented for all the
subjects in this small-sample, retrospective study. Three of the 24
patients included in this study underwent noncontrast 3D T2
FLAIR, which might have decreased sensitivity for detection of

FIG 4. A 52-year-old woman positive for COVID-19 and with a history of major depressive disor-
der, was found to be catatonic. A, Coronal and (B) sagittal postcontrast 3D T2 FLAIR demonstrates
increased intraneural signal within the OBs (red arrows) relative to (C) coronal postcontrast 3D T2
FLAIR images of the trigeminal nerve (red arrow).

FIG 5. A 74-year-old woman (in the control group) with decreased sense of smell of several
months’ duration. Coronal postcontrast 3D T2 FLAIR of (A) the OB (red arrow) and (B) the trigemi-
nal nerve (red arrow) demonstrate isointense signal.

Table 3: Severity of chronic microvascular ischemic disease in
patients and controls

Subjects None Mild Moderate Severe
Patients with COVID-19 0.50 0.25 0.167 0.83
Controls with anosmia 0.333 0.417 0.25 0.00
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signal abnormality. On consensus review, we found increased T2
signal within the OBs in 33% of patients with COVID-19, similar
to some estimates of acute-onset anosmia in patients with
COVID-19.11 A larger, prospective study with both self-reported
and objective data34,35 on olfaction with imaging performed at uni-
form chronology could potentially validate these preliminary
results that suggest the possibility of OB signal intensity as a nonin-
vasive biomarker of disease in COVID-19.

CONCLUSIONS
OB 3D T2 FLAIR signal intensity was greater in patients with
COVID-19 and neurologic symptoms compared with an age-
matched control group with olfactory dysfunction, and was quali-
tatively apparent in 4 of 12 patients with COVID-19. Analysis of
these preliminary findings suggests that olfactory apparatus vul-
nerability to COVID-19 might be supported on conventional
neuroimaging. Future prospective studies that examine the rela-
tionship between imaging findings and objective chemosensory
assessment are warranted.
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