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ORIGINAL RESEARCH
ADULT BRAIN

Estimating Local Cellular Density in Glioma Using MR
Imaging Data

E.D.H. Gates, J.S. Weinberg, S.S. Prabhu, J.S. Lin, J. Hamilton, J.D. Hazle, G.N. Fuller, V. Baladandayuthapani,
D.T. Fuentes, and D. Schellingerhout

ABSTRACT

BACKGROUND AND PURPOSE: Increased cellular density is a hallmark of gliomas, both in the bulk of the tumor and in areas of tu-
mor infiltration into surrounding brain. Altered cellular density causes altered imaging findings, but the degree to which cellular
density can be quantitatively estimated from imaging is unknown. The purpose of this study was to discover the best MR imaging
and processing techniques to make quantitative and spatially specific estimates of cellular density.

MATERIALS AND METHODS: We collected stereotactic biopsies in a prospective imaging clinical trial targeting untreated patients
with gliomas at our institution undergoing their first resection. The data included preoperative MR imaging with conventional ana-
tomic, diffusion, perfusion, and permeability sequences and quantitative histopathology on biopsy samples. We then used multiple
machine learning methodologies to estimate cellular density using local intensity information from the MR images and quantitative
cellular density measurements at the biopsy coordinates as the criterion standard.

RESULTS: The random forest methodology estimated cellular density with R2 ¼ 0.59 between predicted and observed values using
4 input imaging sequences chosen from our full set of imaging data (T2, fractional anisotropy, CBF, and area under the curve from
permeability imaging). Limiting input to conventional MR images (T1 pre- and postcontrast, T2, and FLAIR) yielded slightly degraded
performance (R2 ¼ 0.52). Outputs were also reported as graphic maps.

CONCLUSIONS: Cellular density can be estimated with moderate-to-strong correlations using MR imaging inputs. The random for-
est machine learning model provided the best estimates. These spatially specific estimates of cellular density will likely be useful in
guiding both diagnosis and treatment.

ABBREVIATIONS: AUC ¼ area under the curve; CD ¼ cellular density; DCE ¼ dynamic contrast-enhanced; RF ¼ random forest; T1C ¼ T1 postcontrast

Increased cellular density (CD) is a hallmark of cancer and a key
feature in histologic glioma analysis.1 Mapping cellular density

throughout a tumor would be a valuable tool to probe how tumors
infiltrate and analyze the transition between diseased and healthy
brain. However, measuring CD requires tissue, which entails

additional risks and is expensive to obtain. There is no currently
accepted clinical algorithm to translate imaging data into quantita-
tive assessments of CD.

There is great need for a method to estimate CD noninva-
sively in human patients with gliomas. In this article, we describe
the development of such a method using MR imaging data inputs
by correlating with multiple biopsy specimens acquired during a
prospective human clinical trial. We obtained comprehensive MR
imaging, including conventional, diffusion, perfusion, and perme-
ability imaging sequences. We used machine learning approaches to
correlate imaging findings with CD measurements from pathology,
devised an algorithm to estimate CD from MR imaging inputs, and
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generated CD maps for the visual display of the predictions. We
identified the most informative imaging data subset. This work has
multiple applications in the diagnosis and treatment of patients with
gliomas: For example, the method can be used to guide biopsy,
resection, and surgery and delineate tumor borderzones both pre-
and postoperatively.2

MATERIALS AND METHODS
Data were collected as part of a Health Insurance Portability and
Accountability Act–compliant institutional review board–approved
imaging clinical trial protocol (NCT03458676) for adult, treatment-
naïve patients with gliomas at MD Anderson Cancer Center. See
Table 1 for demographics. We have previously reported results in
the estimation of Ki-67 and tumor grade.3,4 Up to 5 separate biop-
sies were collected per patient, which were targeted by 2 alternative
methods:

• The conventional biopsy site was defined as enhancing tumor if
present or T2 bright signal closest to an accessible brain surface

• The advanced biopsy site was defined, in order, by high relative
CBV, high volume transfer constant, and/or restricted diffusion.

Additional biopsies could be obtained en route to the sites
defined above, with preference given to sampling normal brain and
the brain-tumor interface when possible. Biopsy locations were
sampled under stereotactic guidance using iPlan cranial neuronavi-
gation software (Brainlab), and the final sampling coordinate loca-
tions were recorded. Tissue samples were sectioned at 4-mm
thickness and stained with H&E. Some slides were also immunohis-
tochemically stained with proliferation and vascularity markers, but
these data were not used in the cell density measurement. The
H&E-stained tissue was analyzed by a board-certified neuropathol-
ogist, and the cell density was measured semiautomatically in
nuclei/square millimeter using Aperio ImageScope software (Leica
Biosystems).

Image Acquisition
Four clinical categories of imaging were obtained for every
patient on a Signa HDxt 3T or Discovery MR750 3T clinical
MR imaging scanner (GE Healthcare): anatomic/conventional,

diffusion, perfusion, and permeability. Detailed acquisition pa-
rameters are given in the Online Appendix and Online Tables 1
and 2. A total of 23 imaging parameters were acquired or
generated.

Anatomic images were T1-weighted, T1 postgadolinium,
T2-weighted, T2*/susceptibility, FLAIR, and T2*-weighted an-
giography (SWAN).

DWI and DTI were both acquired for each patient. They were
then processed to generate maps of ADC, exponential ADC
(eADC), and fractional anisotropy.5,6

Finally, we acquired 2 image series using a dynamic acquisi-
tion after the injection of contrast. The dynamic contrast-
enhanced (DCE) image series was acquired using a 0.1-mmol/kg
contrast bolus, and this same bolus was used for the conventional
T1 contrast-enhanced image. The raw data were processed using
nordicICE (NordicNeuroLab) using the full extended Tofts
model, including leakage correction7-9 and arterial input decon-
volution. This process yielded maps of forward and backwards
transfer constants (Ktrans and kep respectively), plasma and
extravascular extracellular contrast fractions (vp and ve), time to
peak enhancement (TTP), area under enhancement curve
(AUC), and peak enhancement.7-9 Later in the same study, a sec-
ond bolus of contrast (again 0.1mmol/kg) was injected to acquire
dynamic susceptibility contrast image data. This time-series was
similarly processed to yield maps of relative CBV, CBF, MTT,
delay time, and leakage correction K2.10-12

Image Normalization and Measurement
Anatomic images were normalized on the basis of patient-spe-
cific average tissue intensities. The T1-weighted, FLAIR, and
T2*-weighted angiography images were linearly scaled so that
white matter (WM) and CSF had average intensities of 1 and 0,
respectively. Similarly, T2-weighted and T2*-weighted images
were scaled with WM and CSF having average intensities of 0
and 1. T1 postcontrast was scaled using CSF and gray matter.
Parametric maps from DWI, DSC, and DCE are quantitative
and were used as provided. Although all images were acquired
in the same study, we mutually coregistered them using a 6-df
and 12-df affine registration in ANTs13 to correct for patient
motion and geometric distortion.14,15 For each biopsy, a 5-mm
spheric VOI was placed at the sampling coordinates, and the
average intensity in this VOI was recorded for each image
parameter.

Cell Density in Control Regions
To record imaging characteristic in normal brain, a neuroradiolo-
gist placed an ROI in normal-appearing white matter contralat-
eral to the location of each tissue biopsy, and the average image
intensity was recorded. These “virtual biopsies” were assumed to

have cell density equal to that of nor-
mal white matter. We used values pro-
vided by Roetzer et al16 and corrected
the CD estimates for histologic section
thickness using the Abercrombie
method (see On-line Appendix).17,18

We obtained a best estimate for nor-
mal white matter cell density of 2912

Table 1: Patient demographics
Demographics

No. (Sex) 23 Patients (14 women, 9 men)
Age (mean) (range) (yr) 43.9 [SD, 16.9] range, 21–80
WHO grade (I/II/III/IV) 0/7/9/7
Biopsy samples/patient (mean) 2.26 [SD, 0.54]
No. of biopsy samples in final
analysis

52 real1 52 virtual

Note:—WHO indicates World Health Organization.

Table 2: Normal brain tissue cell density estimates (1/mm2)

Mean SD
Mean, Corrected to 4-lm

Thickness
SD, Corrected to 4-lm

Thickness
Cortex 2473a 716a 2011 582
White matter 3581a 828a 2912 673
Tumor 5714a 1786a 4646 1452

a Data reproduced from Table 1 with permission from Roetzer et al.16 Virtual biopsies used mean and SD for white
matter.
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[SD, 673] nuclei/mm2. Table 2 lists values reproduced from
Roetzer et al,16 and the corrected values were used in our study.

Model-Building Procedure
To avoid overfitting, we performed 5-fold cross-validation using
disjoint training and testing subsets of the biopsy data within
each round (Fig 1A). We partitioned our data into 5 groups, each
containing about 20% of our data. To further preserve independ-
ence, we placed each sample in the same fold as its paired virtual
biopsy.

Variable selection was performed to reduce the number of
model inputs from the 23 available parameters to something more
parsimonious and to reduce information redundancy among related
imaging variables. Within each round of cross-validation, we fit a
random forest model to the training subset (4 of 5 groups) using all

input variables and computed a variable
importance ranking on the basis of the
permuted out-of-bag data.19 After the
rankings were computed, the most im-
portant predictor from each imaging
family was used to select 4 final predic-
tors, 1 each from anatomic, diffusion,
perfusion, and permeability.3,20 Because
this was repeated for each round of
cross-validation, 5 variable selections
resulted. When the 5 rankings gave dif-
ferent results regarding the most impor-
tant imaging variable, simple voting was
used to determine a consensus. This
process is illustrated in Fig 1B and
yielded a final set of imaging variables
to include in the final model. To pro-
vide a fair comparison, we used the final
4-variable set in all model classes tested.

The cross-validation procedure was
performed using both the selected vari-
ables within each round and the final 4
variables based on consensus among all
rounds. The predicted estimates of CD
were compared with the actual values
known in the 20% validation set and
assessed using the Pearson correlation
(R2) between predicted and observed
CD. This process is explained in Fig
1C. Figure 1 illustrates the full process
with the random forest model (our
eventual winner), but several models
were tested (single decision tree, single-
layer neural network, and linear regres-
sion). Model descriptions are given in
Online Table 3. The model building
process was implemented in R, Version
3.4.2 (http://www.r-project.org/).

RESULTS
Patient Data
Thirty-one patients were enrolled in

the trial between 2013 and 2016 (mean age, 46 6 [SD, 16]
years). Patient demographics are summarized in Table 1.
Tissue could not be harvested from 5 patients due to surgical
complexity or technical difficulties. For another 3 patients,
missing DCE imaging data (1 patient) or unanalyzable tissue
samples (2 patients) excluded them from analysis. After exclu-
sions, 23 evaluable patients with 52 image-guided biopsies
remained in the final analysis. Of these patients, 7 had clinical
grade II gliomas, 9 had grade III, and 7 had grade IV. Among
the tissue samples themselves, 9 were collected from contrast-
enhancing regions, 2 were collected from just outside the visible
T2 hyperintensity, none were collected from necrotic regions,
and the remainder were collected from the visible T2-hyperin-
tense tumor. The cell density among all tissue samples
increased with increasing sample grades as listed in Table 3.

FIG 1. Schematic of each of the 3 main stages of the model-building procedure. A, The data are par-
titioned into 5 homogeneous folds, each comprising 80% of the data for training and 20% for valida-
tion, repeated 5 times. Within each round of cross-validation (CV) 1 fold is held out for validation
while the other 4 (80%) are pooled to form a training set. B, A random forest (RF) model was fit to
the training data, and the best predictor variable from each imaging family was selected. Because
there are 5 rounds of CV, this procedure was repeated 5 times and the selections (listed in Online
Tables 4 and 5) were combined by voting. C, Using the consensus subset of predictor variables after
feature selection, we trained another random forest on each training set and made predictions on
the corresponding holdout set. The average correlations between predicted and observed values
across all rounds of CV are given in Table 4. Kep indicates reverse transfer constant from DCE imaging.
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Three samples were histologically graded as normal cortex and
provide some comparison with the normal cell densities used for
virtual biopsies. The recorded CD values were 2169, 1729, and

1432 nuclei/mm2, comparing well with the CD values of Roetzer
et al16 for normal cortex at 2011 [SD, 582] nuclei/mm2. See Table 2
for the original estimates and corrected values comparable with
our measurements.

Variable Selection and Predictive Modeling
The best predictor from each imaging sequence family for the
random forest model was determined by the most votes from each
fold of cross-validation and is summarized in Online Table 4.
Combining the selections produced a 4-variable set: T2, fractional
anisotropy, CBF, and AUC. Of these 4 predictors in the final model,
the T2-weighted image intensity had the greatest importance as
measured by the random forest with a 27% increase in mean-square
error when variables are permuted. Fractional anisotropy and AUC
have a smaller importance at 18.0% and 16.1%, respectively. Finally,

CBF, despite being the best predictor
from the DSC family in 3 of 5 folds of
cross-validation, had only an impor-
tance of 11.3% increased mean-square
error in the final model.

Similar magnitude variable impor-
tance was measured for the conven-
tional-only model, ranging from 26.7%
for the T2-weighted image down to
9.4% for the FLAIR image, shown in
Online Table 5. While the importance
measures provide some information
about how each predictor relates to
CD, they do not measure the combined
nonlinear relationships modeled by the
random forest.

We compared the reduced variable
set selected with modeling done with no
selection to show the effects of variable
selection. We found comparable model-
ing performance using the random for-
est trained on all 23 variables and using
the much smaller 4-variable set chosen
by random forest importance (R2 ¼
0.572 versus 0.586). The predicted-
versus-observed R2 values are given in
Table 4 and Fig 2. Additionally, root-
mean-square error values are listed in
Online Table 6. Overall, the high aver-
age R2 ¼ 0.586 with 4 imaging variables
and the random forest model suggest a
strong ability to predict cell density with
imaging data.

Using only conventional imaging
variables yielded marginally lesser
predictive performance. For con-
ventional imaging only, the highest
performance was also with all 6
conventional images as variables in

a random forest model, and there

was a small improvement made by

reducing the number of input

Table 4: Average R2 for predicted-versus-observed cell density for cross-validationa

All
Variables
(23 Inputs)

Variables
Selected by

RF Importance
(4 Inputs)

All
Conventional
Variables
(6 Inputs)

Variables Selected by
RF Importance:

Conventional Only
(4 Inputs)

Random forest 0.572 0.586 0.513 0.523
Linear 0.542 0.572 0.444 0.475
Neural network 0.265 0.460 0.382 0.379
Decision tree 0.301 0.325 0.376 0.376

a The columns list variables used to train the predictive model. “All Variables” is simply using all 23 imaging param-
eters of all 6 conventional sequences, whereas “RF Importance” and “RF Importance, Conventional” use the final 4
variable sets shown in Online Tables 4 and 5. A larger average R2 indicated better performance.

Table 3: Number of samples of each WHO gradea

Sample Grade No. of Samples Cell Density (Mean) (SD)
Normalb 3 1777 [SD, 371]
II 39 5790 [SD, 2667]
II/III 3 6085 [SD, 2022]
IIIc 2 2584, 14,634
IV 5 11,547 [SD, 4252]

a The grade of a sample is not necessarily the same as the patient’s clinical grade. As
expected, the cell density of the samples increases with increasing sample grade.
b These samples appeared histologically tumor-free but showed Ki-67-positive en-
dothelial cells.
c Because only 2 samples were grade III, the values are listed.

FIG 2. Predicted and observed cell density (nuclei/square millimeter) for the random forest
model using 4 fixed inputs from conventional-plus-advanced imaging. A, The solid line is the best
fit for all predictions (R2¼ 0.56), and the dashed black line is the best fit for real-sample predic-
tions only (R2¼ 0.39), that is, excluding virtual samples (red points). B, The predictions using con-
ventional imaging only. The model performance decreased slightly with R2 ¼ 0.50 for all
observations and R2¼ 0.30 for real observations only. Blue points are real tissue biopsies that
were graded as histologically normal-appearing. The cell density for these points is generally
lower than the CD for tumor samples and falls within the range of the virtual biopsies.
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variables from 6 to 4 (R2 ¼ 0.513 versus 0.523). The 4-variable

set consisted of T2, T1 postcontrast (T1C), FLAIR, and T1

(Online Table 5). These predictions also are strong enough to

still be clinically meaningful. No other model tested using

only conventional imaging performed better than the random

forest.
Maps of cell density generated using the random forest

model and the selected conventional and advanced imaging
variables are shown in Figs 3 and 4. As expected, the estimated
cell density is heightened in regions of increased blood flow,

permeability, and contrast enhancement. The estimated CD is
also increased in regions of T2 hyperintensity relative to the
normal white matter, which may represent infiltrative tumor
growth. By looking at a line profile in Fig 3, we observe how

the estimates based on the final predictive model change with
the input images across the tumor. The importance of AUC
and CBF in predicting CD within the visible tumor can be
visually appreciated by studying these plotted transects.

Additionally, these maps demonstrate the increased CD and
heterogeneity of high-grade gliomas (Fig 4), showing the
potential value of making local predictions of cell density
because such a map may be useful for guiding therapeutic
interventions for a range of glioma grades.

FIG 3. Estimated map of cell density using machine learning models. A, The T2-weighted image of a glioblastoma. B, The estimated cell density
map using the 4 inputs to the final model (T2, fractional anisotropy, CBF, and AUC) selected from all the available imaging data (conventional
and advanced) and smoothed by a 1-mm radius filter. The profiles shown in C correspond to the dashed blue line in A, B, and E. We can see in C
that the predicted CD is strongly related to the AUC and CBF within the tumor volume. E, The estimated cell density map using conventional
imaging only with the analogous profiles shown in F. The model predicts less extreme values than seen with the model using advanced imaging.
D, The whole axial section of the T2-weighted image for reference with the cropped area for A, B, and E is outlined in red. PA indicates poster-
oanterior distance.

FIG 4. Sample cell density maps for a low-grade glioma (World Health
Organization II, left images) and a high-grade glioblastoma (World
Health Organization IV, images). The T2-weighted or T1-weighted post-
contrast images are shown for reference. As expected, the low-grade
tumor shows lower and more homogeneous cell density estimates.
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DISCUSSION
We have derived an algorithm for the point-wise local estimation
of CD in gliomas using MR imaging data. Using only conven-
tional anatomic imaging sequences, T1, FLAIR, T1C, and T2, CD
can be estimated to a R2 of 0.523. When advanced imaging from
diffusion tensor imaging, perfusion, and permeability sequences
is also used, CD can be estimated to an R2 of 0.586. The final
inputs to these predictions are areas under the curve from DCE,
cerebral blood flow, fractional anisotropy, and T2. This algorithm
allows the construction of CD maps of the brain, translating
imaging information into quantitative pathologic estimates that
may be useful to guide biopsy and treatment.

Our work has avoided global-level image analysis, including
“radiomics,”20-22 due to biologic limitations imposed by histo-
logic heterogeneity exhibited by gliomas.23 Instead, we performed
point-wise spatially specific analysis using tissue samples as the
criterion standard, which allows local correlation with MR image
characteristics and, in turn, point-wise estimates of CD. CD is 1
characteristic that varies considerably between tumor and healthy
brain tissue16,24 and also correlates with tumor aggressiveness,
making it a useful target for predictive modeling.

In previous work, similar methods have shown effective correla-
tion of imaging with proliferation, grade, and genetic heterogene-
ity.3,4,25 We used a similar and effective methodology here to
develop predictive models for CD as reported in our previous
work.3,4 However, estimating cell density represents a very different
biologic target with different applications and stands separately from
estimating proliferation or tumor grade. Our final model also takes
advantage of different derivates of advanced imaging sequences.

Other previous studies have also estimated glioma cell density
with spatially specific tissue samples. These studies are character-
ized by similar imaging protocols, including DTI or DSC, and
generally find correlations with CD.24,26 However, the exact
image features like CBV versus CBF, ADC versus fractional ani-
sotropy, or mean intensity versus 90th percentile intensity vary.
Possible explanations for these discrepancies are differences in
sample grades, such as only including samples from glioblas-
toma,27 or subtle differences in measurement methods for imag-
ing or cell density, cellularity, or related quantities. Overall, our
work finds similar results and includes the addition of imaging
features from DCE, a greater number of samples, advanced
machine learning modeling via random forest, and a smaller
number of variables included in the final model.

Our study confirmed the relationship between nuclear density
and fractional anisotropy,24 which is a natural expectation, con-
sidering that increased nuclei mean increased cell packing. This
reduces water movement and affects diffusion parameters. While
not used in the final predictive model, we also observed the well-
established correlation between ADC and cell density.27 The
selection of fractional anisotropy over ADC within the 5 folds of
cross-validation does not exclude ADC as a strong predictor of
CD; it means simply that FA was a stronger predictor and we
chose a priori to include only 1 diffusion parameter in the final
model to reduce redundancy. There are many strongly correlated
quantities derived from similar source data that are equally useful
for predictive modeling and could be substituted with similar
performance.

These correlations among sequences may also explain our
success in predicting CD (R2 = 0.523) using only conventional
imaging sequences: T1, T1 postcontrast, T2, and FLAIR. The
DCE parameter AUC is a rough measure of total blood-brain-
barrier disruption;28 thus, we would expect similar information
to be contained in the T1 postcontrast image data. Correlating
imaging with pathology (like cell density) is a rich way to help
understand the degree to which these advanced sequences and
their similar conventional sequences may probe the same under-
lying biologic processes. Such sequences have evolved in clinical
practice because they are informative of biology and highlight pa-
thology (ie, heightened CD).

The technical demands of collecting spatially specific tissue
samples and comprehensive preoperative imaging with diffusion-
weighted, DSC, and DCE imaging mean that our study is some-
what limited by the small sample size. However, the 52 samples
used in the final analysis and the additional 52 corresponding vir-
tual controls were sufficient to make useful estimates of cell den-
sity. Increased sample size would help improve model confidence
and would likely help stabilize some of the variable selections that
changed between cross-validation folds. An additional limitation is
the assumption of cell density for normal white matter. Ethical
constraints prohibit sampling healthy brain, so we must impute
values for normal tissue on the basis of literature values.16,17 The
values we used from Roetzer et al16 do appear to agree with our
values in both normal samples and tumor.

CONCLUSIONS
Our methodology allows noninvasive estimation of CD at points
in the gliomatous brain with clinically useful accuracy using a
combination of MR imaging sequences that are already in wide
clinical use. CD estimates can be used to generate a map of esti-
mated cell density for the whole brain. Our work is consistent
with previous studies3,24 and with clinical intuition. Maps of CD
could be a useful clinical tool to guide biopsies and resections,
measure the extent of resection, or plan radiation treatments.
Additional trials to prospectively validate our estimating algo-
rithms are justified.

Disclosures: Veera Baladandayuthapani—UNRELATED: Employment: University of
Michigan.
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