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ORIGINAL RESEARCH
SPINE

Diagnostic Accuracy and Failure Mode Analysis of a Deep
Learning Algorithm for the Detection of Cervical Spine

Fractures
A.F. Voter, M.E. Larson, J.W. Garrett, and J.-P.J. Yu

ABSTRACT

BACKGROUND AND PURPOSE: Artificial intelligence decision support systems are a rapidly growing class of tools to help manage
ever-increasing imaging volumes. The aim of this study was to evaluate the performance of an artificial intelligence decision sup-
port system, Aidoc, for the detection of cervical spinal fractures on noncontrast cervical spine CT scans and to conduct a failure
mode analysis to identify areas of poor performance.

MATERIALS AND METHODS: This retrospective study included 1904 emergent noncontrast cervical spine CT scans of adult patients
(60 [SD, 22] years, 50.3% men). The presence of cervical spinal fracture was determined by Aidoc and an attending neuroradiologist;
discrepancies were independently adjudicated. Algorithm performance was assessed by calculation of the diagnostic accuracy, and
a failure mode analysis was performed.

RESULTS: Aidoc and the neuroradiologist’s interpretation were concordant in 91.5% of cases. Aidoc correctly identified 67 of 122
fractures (54.9%) with 106 false-positive flagged studies. Diagnostic performance was calculated as the following: sensitivity, 54.9%
(95% CI, 45.7%–63.9%); specificity, 94.1% (95% CI, 92.9%–95.1%); positive predictive value, 38.7% (95% CI, 33.1%–44.7%); and negative
predictive value, 96.8% (95% CI, 96.2%–97.4%). Worsened performance was observed in the detection of chronic fractures; differen-
ces in diagnostic performance were not altered by study indication or patient characteristics.

CONCLUSIONS: We observed poor diagnostic accuracy of an artificial intelligence decision support system for the detection of
cervical spine fractures. Many similar algorithms have also received little or no external validation, and this study raises concerns
about their generalizability, utility, and rapid pace of deployment. Further rigorous evaluations are needed to understand the weak-
nesses of these tools before widespread implementation.

ABBREVIATIONS: AI ¼ artificial intelligence; ASiR ¼ adaptive statistical iterative reconstruction; DSS ¼ decision support system; CSFx ¼ cervical spinal fractures

Cervical spinal fractures (CSFx) are devastating injuries that can
cause severe morbidity and mortality from damage to the

enclosed spinal cord, the craniocervical junction, and cervical vas-
culature.1 Failure of the osseous spinal column can lead to instabil-
ity and impingement of the underlying spinal cord;2 therefore,
timely identification and stabilization of CSFx are crucial to prevent
further disability.1,3 In the acute clinical setting, NCCT of the cervi-
cal spine is the recommended method for detecting CSFx;4 how-
ever, with diagnostic imaging volumes dramatically increasing,5,6

these increased imaging volumes place a burden on radiologists
whomust maintain diagnostic accuracy and efficiency.7 While there
has been great effort to reduce the number of unnecessary scans or-
dered, including the use and implementation of the National
Emergency X-Radiography Utilization Study Group8 criteria and
the Canadian C-Spine Rule9 to reduce the number of unnecessary
cervical spinal NCCTs, their effectiveness appears to be modest,10,11

and diagnostic imaging volumes continue to increase.
To assist radiologists in managing these rising case volumes,

artificial intelligence (AI) decision support systems (DSSs) have
been developed to help prioritize imaging studies with critical
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findings.12,13 These DSSs identify and subsequently flag studies
with actionable results, allowing radiologists to prioritize them
over scans with likely negative findings to speed the reporting of
critical findings. However, DSSs that incorrectly flag an excessive
number of studies with negative findings or conversely miss criti-
cal findings might slow the radiologist’s performance. Rigorous
analysis is, therefore, crucial. AI algorithms are known to have
numerous limitations, including the need for large, diverse, and
unbiased datasets,14 which can be difficult to acquire or curate15

and operate in a manner that precludes direct interrogation of
the decision process itself. These issues can lead to poor perform-
ance, which is difficult or impossible to troubleshoot, especially
when the algorithms are implemented in settings beyond their
initial training environment.16–18 While the rapid development
and clinical implementation of DSSs are exciting, this prolifera-
tion risks outstripping our ability to rigorously assess and validate
their performance. This validation and assessment have not been
extensively performed or reported in the literature. Furthermore,
site-specific performance differences without obvious etiologies
have been observed for AI DSSs.16-18 Thus, rigorous studies to
guide AI DSS installations in varied clinical settings and a greater
understanding of the generalizability (or lack thereof) of AI DSSs
are needed to safely translate this important tool into widespread
clinical practice.

Our institution recently implemented Aidoc (Aidoc Medical),
an FDA-cleared, commercially available AI DSS for the detection
of CSFx.19 While several spine fracture DSSs have been devel-
oped,19-23 their diagnostic accuracy and overall performance
remain unknown. To gain insight into the performance of this
system specifically and AI DSSs more generally, we conducted a
retrospective review of Aidoc as clinically implemented in our
institution. The aim of this study was to characterize the perform-
ance of Aidoc for the detection of CSFx and conduct a failure
mode analysis to identify areas of poor diagnostic performance.

MATERIALS AND METHODS
This Health Insurance Portability and Accountability Act–compliant
retrospective study was approved by the institutional review board.
The requirement for informed consent was waived. The data were
analyzed and controlled by the authors exclusively, none of whom
are employees of or consultants to AidocMedical or its competitors.

Study Population, Data Collection, Imaging Parameters,
and AI System
Adult (older than 18 years of age) CT cervical spine studies with-
out contrast from January 20, 2020, to October 8, 2020, in our radi-
ology information system were identified and contemporaneously
processed by Aidoc. Pediatric (younger than 18 years of age) stud-
ies and examinations with intrathecal contrast were excluded from
this study. Scans were performed at an academic level I trauma
center and associated outreach imaging centers with a fleet of 9
models of scanners (GE Healthcare) (summarized in Online
Supplemental Data). A total of 1904 adult, noncontrast cervical
spine CT scans were identified in 1923 emergent neck CT scans
(mean age, 60 [SD, 22 ] years; 50.3% men). Acquisition parameters
for noncontrast CT examinations of the cervical spine are as fol-
lows: 120 kV(peak); axial helical acquisition; pitch ¼ 0.625mm;

rotation speed ¼ 5.6mm/rotation; rotation time ¼ 0.5 seconds;
automatic exposure control ¼ smart mA (230–750 mA); section
thickness ¼ 1.25mm; interval ¼ 0.625mm. Standard soft-tissue
and bone window (Bone Plus algorithm [GE Healthcare]) recon-
structions were contemporaneously generated for review by radiol-
ogists (1.25-mm section thickness, sagittal and coronal; 0.625-mm
interval; no adaptive statistical iterative reconstruction [ASiR]).
Immediately following study acquisition, axial thin bone (Bone
Plus reconstruction; 0.625-mm section thickness; 0.312-mm inter-
val; no ASiR) and sagittal bone (Bone Plus reconstruction; 1.5-mm
section thickness; 0.98-mm interval; no ASiR) series were gener-
ated and analyzed by the Aidoc algorithm, which then classifies
each scan as positive or negative for CSFx. Aidoc-specific image se-
ries were not available to the interpreting radiologist for review.
However, because the algorithm was evaluated as clinically imple-
mented, the final Aidoc classification and key image indicating the
flagged pathology were available to the radiologist at the time of
initial study interpretation. For the purposes of this study, the final
neuroradiologist interpretation serves as ground truth data and is
in keeping with prior approaches evaluating the diagnostic per-
formance of AI-related systems.24,25

Data Processing and Analysis
The presence of a cervical spine fracture, type of fracture, vertebra
fractured, estimate of fracture age, and study indication were
manually extracted from the attending neuroradiologist imaging

FIG 1. Standards for reporting diagnostic accuracy studies (STARD)
patient flow diagram.
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report of each study. To establish the ground truth of the pres-
ence or absence of an CSFx, we compared the interpretations of
the neuroradiologist and Aidoc. Concordant interpretations were

assumed to be correct; studies with discordant inter-
pretations were reviewed by a third independent
reviewer not involved in the initial interpretation (ra-
diology resident and attending neuroradiologist with
6 years of experience) to make a final ground truth
determination. Study indication was inferred from
the report body and imaging order. Critical traumas
included motor vehicle collisions, falls from heights
or stairs, sporting accidents, assaults, and hangings.
Minor traumas largely involved falls from standing
height or lower. Last, traumas were categorized as
“not specified” if there was insufficient information
regarding the mechanism of trauma.

Statistical Analysis
x 2 tests and 2-sided paired t tests were used for sta-
tistical testing for categoric and quantitative com-
parisons, respectively, with a significance threshold
of .05. Diagnostic accuracy (sensitivity, specificity,
positive predictive value, negative predictive value,
and tests for statistical significance were all per-
formed in Excel 365 [Microsoft]).

RESULTS
To gauge the diagnostic accuracy of Aidoc as clini-
cally implemented in our institution, we identified

1904 noncontrast cervical spine CTs for inclusion during our
study. A total of 173 (9.1%) of the total studies were flagged by
Aidoc as positive for CSFx, and CSFx were identified on 38.7%
(67/173) of the flagged studies. Of the studies not flagged by
Aidoc, 3.2% (55/1731) contained fractures (Fig 1). Diagnostic
performance characteristics with 95% confidence intervals were
determined as follows: sensitivity, 54.9% (95% CI, 45.7%–63.9%);
specificity, 94.1% (95% CI, 92.9%–95.1%); positive predictive
value, 38.7% (95% CI, 33.1%–44.7%); and negative predictive
value, 96.8% (95% CI, 96.2%–97.4%).

First, we sought to understand how patient factors might
impact the diagnostic accuracy of Aidoc (Table 1). Because the
mechanism of injury can determine the type and severity of
injury, we calculated the Aidoc false-negative rate based on the
indication for the CT examination of the cervical spine (eg,
trauma, neck pain, neurologic deficit). No significant differences
in Aidoc performance were noted for any of the study indica-
tions, study location (ie, academic center or outreach imaging
center), or model of CT scanner (Online Supplemental Data,
P ¼ .82). Similarly, the diagnostic error rate of Aidoc was not
impacted by either patient sex or history of cervical spine surgery.
We did observe, however, that patients incorrectly classified by
Aidoc were older than those correctly classified (mean 64
[SD, 21] years versus 60 [SD, 22] years, respectively; P¼ .03).

Next, we examined whether characteristics of the individual
fractures impacted algorithm performance (Online Supplemental
Data). Aidoc performance was found to be independent of the
number of vertebrae fractured (single versus multiple) and the
identity of the fractured vertebrae. However, while they were not
significant as a category, we observed a lower rate of incorrect
Aidoc calls with injuries of C2 and a higher rate at C5. We also

Table 1: The impact of patient characteristics on Aidoc performance

Factor

Aidoc
Incorrect
(No.) %

P
Value

Total (No.) (%) 1904, 100 161 100
Indication (No.) (%) .97
Trauma 1796, 94 155 96
Critical 511, 27 45 28
Minor 888, 47 74 46
Not specified 397, 21 36 22
Neck pain 27, 1 1 1
Neurologic deficit 33, 2 2 1
Postoperative 10, 1 1 1
Other 38, 2 2 1

Sex (No.) (%) .08
Male 958, 50 92 57
Female 946, 50 69 43

Imaging location (No.) (%) .86
Academic center 1659. 87 141 88
Outreach center 245, 13 20 12

History of cervical spine surgery
(No.) (%)

.57

Prior surgery 67, 4 7 4
No prior surgery 1837, 96 154 96

Age (mean) (yr) .03
Overall 60 (SD, 22)
Aidoc incorrect 64 (SD, 21)
Aidoc correct 60 (SD, 22)

Table 2: Etiology of the false-positive flagged studies

False-Positive Etiology Count

Percentage of All
Flagged Studies

(n= 173)
Degeneration 55 31.8
Degenerative ossicle 18 10.4
Facet degeneration 14 8.1
Calcified ligament 6 3.5
Cortical irregularity 7 4.0
Osteopenia 4 2.3
Cystic degeneration 4 2.3
Atlantodental joint 1 0.6
Osteophyte 1 0.6

Noncervical pathology 15 8.7
Rib fracture 8 4.6
Degeneration, thoracic 4 2.3
Skull fracture 2 1.2
Carotid calcification 1 0.6

Anatomic variant 10 5.8
Nonunion vertebrae 4 2.3
Transitional anatomy 2 1.2
Limbus 2 1.2
Bifid spinous process 1 0.6
Secondary transverse foramen 1 0.6

Nutrient foramen 9 5.2
Artifact 7 4.0
Unknown 8 4.6
Other 2 1.7
DISH 1 0.6
Occipital suture 1 0.6

Total 106 61.3

Note:—DISH indicates diffuse idiopathic skeletal hyperostosis.
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observed that the algorithm was significantly more successful at
identifying acute fractures than nonacute fractures (ie, chronic or
age-indeterminate). Furthermore, location of the fracture within
each vertebra was a significant contribution to algorithm per-
formance, with fractures of osteophytes or the vertebral body
overrepresented in the false-negative studies.

The timely identification of new fractures is of particular clini-
cal importance, so we explored the performance of Aidoc in the
detection of acute fractures. We did not find any significant dif-
ferences between the acute fractures correctly flagged by Aidoc
and those it missed, though our analysis was limited by the rela-
tively small number of acute fractures (Online Supplemental

Data). However, the algorithm missed
50% (5 of 10) of acute fractures involv-
ing the transverse foramen.

Because the number of false-positive
flagged studies exceeded the number of
true-positives (106 versus 67), we next
sought to understand the poor positive
predictive value of Aidoc by exploring
possible failure modes of the false-
positive studies. Each study flagged by
Aidoc is accompanied by a probability
heat map highlighting the suspected frac-
ture identified by Aidoc, thus allowing us
to identify the etiology of each false-
positive finding (Table 2). The most
common etiology was the presence of de-
generative structures such as a degenera-
tive ossicle (Fig 2A), facet degeneration
(Fig 2B), ossification of the ligamentum
flavum (Fig 2C), or other degenerative
cortical irregularities. The next most
common sources of false-positive find-
ings were pathologies outside the cervical
spine and scope of the algorithm, such as
rib or skull fractures (Fig 3A), and nonpa-
thologic anatomic variants (Fig 2B, -C).
False-positives were also found to have
been triggered by motion artifacts or nor-
mal anatomy, and in a small number of
cases, we were unable to identify any
abnormality.

DISCUSSION
A wide range of AI DSSs have been devel-
oped to reduce the risk of missing or
delaying the reporting of time-sensitive
findings.12,13 However, AI algorithms are
known to have limitations and can be dif-
ficult to generalize to clinical sites with
disease prevalence and imaging protocols
that differ from training datasets. Because
poorly performing DSSs can hinder radi-
ologists, it is crucial that these tools
undergo rigorous evaluation before wide-
spread implementation. While the imple-

mentation of Aidoc for CSFx has excellent reported diagnostic
characteristics (sensitivity of 91.7% and specificity of 88.6%, as
reported in the initial FDA disclosure),19 to our knowledge, no in-
dependent evaluations of its performance have been published or,
more generally, any data evaluating the diagnostic accuracy of AI
DSSs in detecting cervical spine fractures. To this end, we con-
ducted a retrospective study to evaluate the diagnostic accuracy of
Aidoc, an FDA-cleared AI DSS for the evaluation of CSFx as clini-
cally implemented at our institution.

At our institution, Aidoc fared poorly, with a notably lower
sensitivity and positive predictive value than initially
reported to the FDA.19 To understand this unexpected

FIG 2. Examples of degenerative findings falsely flagged by Aidoc. Each panel shows the sagittal
noncontrast cervical spine CT (left) and the Aidoc key image indicating the flagged pathology in
red (right). A, A chronic ossicle falsely flagged by Aidoc. B, False-positive findings triggered by
facet degeneration. C, Ossification of the ligamentum flavum incorrectly identified as a fracture
by Aidoc.
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performance gap, we conducted a failure mode analysis to
identify possible sources of this impaired performance.
Neither imaging location, scanner model, nor study indica-
tions were found to be significantly associated with the diag-
nostic performance of Aidoc. However, the sensitivity was
affected by patient age and characteristics of the underlying
fracture, specifically the fracture acuity and location of the
fracture, with chronic fractures and fractures of osteophytes
and the vertebral body overrepresented among the missed
fractures. Osteophyte formation and compression fractures
are degenerative in nature, so underperformance in their
detection may contribute to the worsened algorithm per-
formance in older patients.

Because the value of this and similar
algorithms stems from the faster detec-
tion of findings that can alter clinical
management, it is especially important
to consider the performance in the
detection of acute fractures. We did not
find any differences between the acute
fractures correctly identified or missed
by Aidoc, though our statistical analysis
was limited by the relatively small num-
ber of acute fractures missed by the
algorithm. However, it is notable that
the 50% of the acute fractures involving
the transverse foramen were missed by
Aidoc. These fractures can indicate
compromise of the underlying vertebral
artery, so rapid detection by the algo-
rithm is especially valuable and more
examples should be included in the
algorithm training set.

In cases with multiple fractures, the
algorithm needs to correctly identify only
a single fracture to score as correct.
Therefore, we hypothesized that these
studies would have a lower false-negative
rate. However, we observed that the miss
rate did not depend on the total number
of fractures present in an imaging exami-
nation, suggesting that fracture identifi-
cation may have been precluded by other
features of the study rather than fracture
characteristics themselves.

We noted a significant and unex-
pected number of false-positive studies
in our dataset, outnumbering the
flagged true CSFx. Spine degeneration
was the most common etiology of false-
positives observed. This is perhaps not
surprising because degeneration occurs
with aging and generates abnormalities
such ossicles or irregularities in the
bony surface that could be mistaken for
fractures. Accordingly, the age of
patients misclassified by Aidoc was

higher than that in the correctly classified group, and we
hypothesize that the increased burden of degeneration may have
led to impaired performance. Our dataset lacked an accessible
way to assess the extent of degeneration directly, but this could be
explored in future studies. We speculate that greater representa-
tion of nonfractured examples of both degeneration and
anatomic variants in the training set would likely reduce the
false-positive burden, given their overrepresentation here in our
analysis as false-positives. In addition, differences in diagnostic
accuracy may also be attributed to institution-specific differ-
ences and would be difficult to disentangle. However, in the
FDA 510(k) application, the number of cases positive and
negative for CSFx were adjusted to be roughly equal. Because

FIG 3. Examples of nondegenerative findings falsely flagged by Aidoc. Sagittal noncontrast cervi-
cal spine CT (left) and the Aidoc key image indicating the flagged pathology in red (right). A, Rib
fracture outside of the cervical spine incorrectly flagged by Aidoc. B, Congenital hypoplasia of
the posterior arch of the atlas flagged as a fracture. C, A nonpathologic nutrient foramen with
degenerative changes identified as a fracture by Aidoc.
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diagnostic performance is strongly influenced by disease
prevalence, this also likely contributes to the observed differ-
ences in the reported diagnostic accuracy of Aidoc and our
clinical observations.19 Our observed rate of positive findings
is 6.4%, which reflects the true rate of CSFx at our institution.
Because positive and negative predictive values depend on the
underlying prevalence of the disease, we believe our measurements
will more closely reflect the experience of other users. This discrep-
ancy highlights an emerging need to standardize study design to
allow rigorous and unbiased comparisons across different sites and
for accurate reporting and evaluation of AI DSS algorithms in the
imaging literature.

Our study has limitations that must be considered. First,
because Aidoc has already been clinically implemented at our insti-
tution, the interpretation by Aidoc of each study was available to the
neuroradiologist during the initial read. While this may have
inflated the accuracy of the neuroradiologist’s read, the diagnostic
accuracy of Aidoc is unaffected. Additionally, while the Aidoc algo-
rithm is available to all radiologists at our institution, there is
marked variation in how it has been incorporated into their individ-
ual workflow.We were, therefore, unable to assess whether the algo-
rithm reduced time to image analysis in cases flagged for CSFx.
Nevertheless, given the poor positive predictive value, we suspect
that any time savings would be diluted by the number of false-
positives. Last, this single-institution study was performed at an aca-
demic center equipped with GE Healthcare scanners, potentially
limiting the generalizability of our findings to institutions in other
practice settings or those with a different fleet of scanners from
other vendors.

CONCLUSIONS
We examined the diagnostic performance of Aidoc for the detec-
tion of CSFx as implemented at our institution and observed
meaningful worse diagnostic accuracy than previously reported.
Although the nature of neural network algorithms obscures a full
understanding of this impairment, our failure mode analysis has
identified several potential areas for improvement. Nevertheless,
the overall performance of this AI DSS at our institution is differ-
ent enough and raises potential concerns about the generalizabil-
ity of AI DSSs across heterogeneous clinical environments and
motivates the creation of data-reporting standards and standar-
dized study design, the lack of which precludes unbiased compar-
isons of AI DSS performance across both institutions and
algorithms. Adoption of a standardized design for all AI DSS
algorithms will help speed the development and safe implementa-
tion of this promising technology as we aim to integrate this im-
portant tool into clinical workflow.
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