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Abstract 
 
Background 
The Peroxiredoxins (Prx) are a family of proteins that play a major role in antioxidant defense and 
peroxide-regulated signaling. Six distinct Prx subgroups have been defined based on analysis of structure 
and sequence regions in proximity to the Prx active site.  Analysis of other sequence regions of these 
annotated proteins may improve the ability to distinguish subgroups and uncover additional representative 
sequence regions beyond the active site.   
 
Results 
The space of Prx subgroup classifiers is surveyed to highlight similarities and differences in the available 
approaches.  Exploiting the recent growth in annotated Prx proteins, a whole sequence-based classifier is 
presented that employs support vector machines and a k-mer (k=3) sequence representation. 
Distinguishing k-mers are extracted and located relative to published active site regions.   
 
Conclusions  
This work demonstrates that the 3-mer based classifier can attain high accuracy in subgroup annotation, at 
rates similar to the current state-of-the-art.  Analysis of the classifier's automatically derived models show 
that the classification decision is based on a combination of conserved features, including a significant 
number of residue regions that have not been previously suggested as informative by other classifiers but 
for which there is evidence of functional relevance. 
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Background  
The Peroxiredoxins (Prx) represent a family of enzymes found in a wide range of organisms that act as 
antioxidant defenses and play a role in managing cell signaling mediated by peroxide [1].  A highly 
conserved cysteine plays a primary role in imparting peroxide sensing functionality.  Previous work [2,3] 
has provided evidence for six distinct subgroups of the Prx family - AhpE, Prx1-AhpC, Prx5, Prx6, PrxQ-
BCP, and Tpx - and over 38,000 proteins have been annotated to the level of a Prx subgroup [4]. 
 
To discover proteins belonging to Prx subgroups, the state-of-the-art approach extracts sequence 
fragments containing residues within the active site region, a 10 angstrom region around the active site of 
Prxs for which structures are known.  Subgroup specific active site sequence profiles can then be aligned 
against sequences in biological databases, with high scoring matches indicating likely membership of a 
protein into a subgroup. MISST [4], which implements a version of this search process that can iteratively 
expand and split clusters representing subgroups, resulted in the most recent 38,739 Prx subgroup-specific 
annotations.  
 
These annotations approaches have, to date, limited sequence analysis to the active site regions. The idea 
of a k-mer representation, a list of counts of each length k sliding fragment along a sequence, has been 
widely adopted for fast approximations of a sequence identity [5,6,7,8], including applications to protein 
classification [9]. Subgroup-distinguishing k-mers represent small sequence fragments conserved between 
proteins within a subgroup but distinct across subgroups.  It is shown in this manuscript that training a 
machine learning classifier on 3-mer-encoded subgroup-annotated proteins can allow for accurate Prx 
subgroup annotation.  The distinguishing k-mers represent both previously known active site sequence 
fragments as well as additional sequence regions that are likely to be functionally relevant. 
 
Methods 
Data acquisition 
The Structure-Function Linkage Database (SFLD) [10] provides a highly-curated protein database, 
organizing proteins by shared chemical function and providing a mapping between a given chemical 
function and associated active site features as represented in available protein sequences and structures. 
The SFLD, as of December 2017, annotates 7,345 proteins to the level of one of six Peroxiredoxin 
subgroups and annotates 12,239 (including the 7,345 annotated to the subgroup level) proteins as 
members of the Peroxiredoxin Superfamily.   
 
The recent work of Harper et al. [4], using an iterative approach to search Genbank for proteins that have 
active site regions similar in sequence to those of known Prx structures, suggests a total of 38,739 Prx 
proteins annotated to a subgroup, of which 6,909 overlap with proteins annotated in the SFLD.  The full 
data set of 38,739 proteins will be referred to as the Harper dataset, and the overlap set will be hereafter 
referred to as the Harper-SFLD dataset.  The proteins in each subgroup of the Harper-SFLD data set were 
clustered at 95% sequence similarity using the CD-Hit algorithm [11, 12] to remove instances of  proteins 
with high sequence similarity.  The resulting set of 4,751 proteins will be referred to as the 0.95-Harper-
SFLD data set.  The distributions over subgroups of the proteins in these data sets are shown in Table 1.  
There is imbalance among the subgroups, with up to an order of magnitude difference in the number of 
examples between subgroups. 
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Table 1: Counts of proteins in each Prx subgroup in each dataset 
Data Set AhpE Prx1 Prx5 Prx6 PrxQ Tpx Total 
Harper 1,489 9,660 5,434 5,212 12,014 4,930 38,739 
Harper-
SFLD 

152 2,130 1,039 942 1,786 860 6,909 

0.95-
Harper-
SFLD 

138 1,310 725 702 1,330 546 4,751 

Each column represents the number of examples for a Prx subgroup available in the 
corresponding data set.  The Harper-SFLD data set is the result of the intersection of the Harper 
data set with the subgroup-annotated Peroxiredoxins available in SFLD as of December 2017.  
The 0.95-Harper-SFLD data set encompasses the representative proteins after clustering the 
Harper-SFLD data set using the CD-Hit algorithm with a 95% similarity setting. 

 
Model construction 
3-mers were used to encode protein sequences. With 20 amino acid residue options at each position of the 
3-mer, this  leads to 8,000 potential 3-mer features.  Six one-versus-all classifiers were constructed, one 
per subgroup. All classifiers were built using linear-kernel support vector machines (SVM).  Rather than 
other supervised learning methods, support vector machines (SVM) with linear kernels were chosen due 
to their effectiveness and efficiency in problems with high-dimensional features [13, 14].  The SVM 
technique optimally identifies the maximum-margin hyperplane that separates the positive and negative 
classes in feature space [15].  Given the fact that the features for the developed classifier SVM are k-mer 
occurrences, the linear-kernel utilized is also referred to as a spectrum kernel in the literature for binary 
classifications on biological sequences [8, 9].  
 
The SVM-Light toolkit [16] was used for training and classification, with default values, automatically 
chosen by the SVM-Light implementation, used for training parameters. To classify a given protein 
sequence, the subgroup annotation associated with the maximum of the scores returned from the six 
classifiers was used.  The Peroxiredoxin 3-mer SVM Classifier constructed will be hereafter referred to as 
Prx_3-merSVM. 
 
Results 
Classifier performance 
Ten-fold cross validation was performed on the 0.95-Harper-SFLD data set, with 100% accuracy obtained 
in the cross validation experiment. To allow for a comparison with the work of Harper et al., a classifier 
built on all sequences from the 0.95-Harper-SFLD data set was then employed to classify the samples in 
the 38,739 protein Harper data set. Note that this large data set contains the 4,751 examples used for 
training.  None of these 4,751 were classified incorrectly and these counts have been removed from the 
rest of the presented results.  The confusion matrix comparing annotations generated by the Harper 
technique to those generated by the Prx_3-merSVM approach is shown in Table 2. 
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Table 2: Confusion matrix for classification on Harper data set 
 AhpE Prx1 Prx5 Prx6 PrxQ Tpx 

AhpE 1,348 0 1 0 2 0 

Prx1 0 8,350 0 0 0 0 

Prx5 0 0 4,709 0 0 0 

Prx6 0 0 0 4,509 1 0 

PrxQ 0 0 0 0 10,684 0 

Tpx 0 0 0 0 0 4,384 

The confusion matrix represents results from testing on the Harper data set, minus the 4,751 
proteins in that set used for training.  For a given protein, the row represents the known 
annotation as per Harper et al. and the column represents the annotation suggested by the Prx_3-
merSVM classifier.  The counts represent how many proteins had each pair of annotations, with 
large values along the diagonal, representing matching annotations, being ideal. 

 
Distinguishing k-mers 
Using the subgroup models constructed from the complete 0.95-Harper-SFLD data set, an exemplar set of 
distinguishing 3-mers (shown in Table 3) for each subgroup were extracted. These 3-mers were selected 
based on the ordered weights of the features from the linear kernel SVMs trained for each subgroup and 
permutation testing to determine the significance of observing such weights. Complete lists of 3-mers 
ordered by weight for each subgroup are included in the additional file Additional file 1. For all subgroups 
other than Prx1, the top ten high-weight 3-mers are included.  For Prx1, only the top seven 3-mers 
surpassed the permutation testing threshold. 
 
Permutation testing to determine a threshold SVM score at which to consider a SVM feature highly 
discriminating [17] was performed. For each Prx subgroup, the training data labels were randomly 
permuted and training was re-performed.  This was repeated 2,000 times for each subgroup, allowing for 
an estimation of the distribution of SVM scores for each feature (3-mer) under a null hypothesis that there 
is no meaningful association between features and classes.  The proportion of scores for a given feature 
greater than or equal to the observed score learned from the actual (non-permuted) training data was 
recorded as a P value. Given 2,000 permutations were performed, to ensure a conservative choice of 3-
mers the highly discriminating features were constrained to only those whose score on the actual training 
data was greater than all scores on permuted data. All 3-mers in Table 3 are highly discriminating, and the 
permutation-testing based P value for all features is included in the supplementary material. 
 
These 3-mers were searched for within the active site (pseudo-)signatures for the Harper data set proteins 
provided in the Supporting Information S2 file of [4].  Those signatures represent, for proteins identified 
to be members of each Prx subgroup, the sequence regions that best align with active site signatures for 
representatives of the subgroup, where an active site signature was defined by Harper et al. as the set of 
sequence fragments within 10 angstroms of the three selected active site residues.  Repeated signatures 
for a subgroup were removed before searching for 3-mers. The search checked for whether a complete 3-
mer was found as part of the signature sequence.  The percentage of signatures for a subgroup in which 
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each 3-mer is fully found is included next to 3-mers in the table.   A significant proportion of active site 
region residues are represented by the distinguishing k-mers.  This is particularly true for the Prx1 and 
Prx6 subgroups.  These findings are reasonable given the high sequence conservation around the 
peroxidatic cysteine for these two subgroups as shown by Harper et al. It is also the case that a number of 
distinguishing k-mers are not contained within the published active site signatures.  Through further 
sequence analysis, some resolve to extensions (nearby in sequence space) of the published sequence 
fragments, while others are new fragments in distinct parts of the sequence space. For 3-mers with low 
occurrence (less than 5%) in the pseudo-signature sequences, the location of the 3-mers is annotated in 
Table 3 as Ext if evidence suggests the 3-mer is an extension of the active site sequence fragments 
published by Harper et al. or as Distinct if the evidence suggests the 3-mer is in a distinct part of the 
sequence space. The determination of Ext or Distinct was made by extracting small regions of residues (8 
residues in both directions) around the 3-mers of interest from the sequences containing the 3-mer, 
aligning the regions with ClustalOmega [18], generating a Weblogo [19], and visually inspecting the 
Weblogo against the Harper-specified regions. Information on 3-mers marked as Ext or Distinct that are 
not directly discussed in the manuscript is available in Additional file 2. 
 
Discussion 
Classification process comparison 
With respect to the process of searching, the developed classifier has several advantages compared to 
other methods to classify Prx proteins at the subgroup level.  Table 4 indicates the features of five 
different methods that can be used to classify Prx proteins to the subgroup level. These methods include 
HMM search against the SFLD database [10], use of the MISST algorithm [4] which builds on DASPs 
[20], BLAST search against the PREX database [3], search against the NCBI Conserved Domains 
database (CDD) [21], and the method described in this work named Prx_3-merSVM.   
 
All methods except MISST/DASP2 have a web interface through which sequences can be uploaded to be 
analyzed. SFLD and PREX allow only one sequence to be analyzed at a time, reducing their utility for 
batch analyses, while MISST/DASP, CDD, and Prx_3-merSVM all support batch processing.   
 
All of the approaches other than search against the PREX database are model-based, in that a model of 
subgroups is constructed and prediction is based on scoring against a model. These models are 
constructed via HMM learning in SFLD, construction of domain PSSMs with CDD, construction of 
active-site profiles with MISST/DASP, and construction of SVM models with Prx_3-merSVM.  The 
PREX database process employs a BLAST search against its database of proteins. The sequence 
databases, models, and annotation techniques behind SFLD and CDD support the ability to provide 
annotations outside of the six Prx subgroups, including generalized annotations such as a Peroxiredoxin 
or Thioredoxin-fold annotation. The PREX database provide annotations to one of the Prx subgroups or 
indicates no annotation is appropriate, while Prx_3-merSVM assumes the protein is already known to be 
a Prx protein. 
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Table 3: Discriminating 3-mers for each Prx subgroup 
Rank AhpE AS% Loc Prx1 AS% Loc Prx5 AS% Loc 

1 FFP 44.6  VCP 96.3  PGA 93.2  
2 ELC 50.5  CPT 84.7  VND 0.0 Ext 
3 LAF 31.1  FVC 94.6  GAF 85.4  
4 WPH 0.0 Ext PTE 85.0  VPG 58.6  
5 PHG 0.0 Ext FTF 89.6  LPG 32.7  
6 SDF 2.5 Ext TFV 89.2  AFT 83.4  
7 DFW 0.0 Ext FYP 83.0  KGV 0.2 Ext 
8 FWP 0.0 Ext    NDP 0.0 Ext 
9 VCT 35.3     FVM 0.0 Ext 
10 FPL 51.5     HLP 0.2 Ext 

Rank Prx6 AS% Loc PrxQ AS% Loc Tpx AS% Loc 
1 SHP 98.3  GCT 91.0  PFA 0.1 Ext 
2 FSH 97.4  YFY 78.4  DLP 0.0 Ext 
3 FTP 82.9  FYP 95.4  LPF 0.0 Ext 
4 TPV 97.0  PGC 76.1  RFC 67.1  
5 VCT 95.8  YPK 66.6  FAQ 0.0 Ext 
6 PVC 96.9  TPG 75.2  VPS 41.8  
7 TTE 92.7  LYF 0.0 Ext LDT 36.3  
8 LFS 0.0 Ext FRD 3.1 Ext PNY 0.0 Distinct 
9 CTT 92.5  GVS 49.8  IDT 38.0  
10 HPA 53.1  GIS 45.1  PSI 38.0  

Columns represent distinguishing 3-mers for the Prx subgroups, the percentage of corresponding 
subgroup active site pseudo signatures from the Harper data that each 3-mer occurs in, and the 
location relative to these active signatures site for 3-mers with low occurrence in the active site 
profile.  For the location data, Ext indicates a location that is an extension of published active site 
region fragments, while Distinct indicates a location distinct from published active site region 
fragments.  The rank ordering is based on weights extracted from the learned subgroup models, 
with low ranks (near 1) having the highest weights and having greater contribution in the SVM 
score computation. All percentages are rounded up to one decimal place. 

 
Table 4: Features of methods for annotating Prx proteins to the subgroup level 

Method Web Batch Prx-specific Hierarchical 
SFLD Yes No No Yes 

MISST/DASP No Yes Yes No 
PREX Yes No Yes No 
CDD Yes Yes No Yes 

Prx_3-merSVM Yes Yes Yes No 
Each row represents a method that can be employed to annotate Prx proteins at the subgroup 
level.  Each column beyond the first represents a feature of a given method.  Web represents 
whether or not a method is available via  a web interface.  Batch indicates whether more than one 
protein sequence can be processed at a time.  Prx-specific indicates whether an annotation method 
is specific only to Prx subgroups.  Hierarchical indicates whether the method is designed to return 
more generalized annotations in lieu of or in addition to a Prx subgroup annotation.  

 
Prx_3-merSVM only currently provides as outputs the scores for each Prx subgroup for an input 
sequence.  Other searching methods have hooks to additional information in their search output.  Given 
PREX uses BLAST, it provides E-values for and alignments of the query sequence against high-scoring 
hits (hits with E-values less than 1E-40). The SFLD HMM search returns the level in the SFLD hierarchy 
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for which an HMM match occurred, a corresponding E-value and score for the match, and the option to 
align against representative sequences in the matched group. CDD provides Prx subgroup annotations as 
specific conserved domain hits, with the output including RPS-BLAST E-values for the domain hits and 
the ability to see alignments against the sequences used to model a given domain.  With the 
MISST/DASP approach, for a given subgroup, the relevant matching pseudo-signature, composed of the 
segments in the query sequence that best match the subgroup active site profile, and a DASP search score 
are output.   
 
Several of the classification approaches also support means to directly query the data sets underlying their 
search mechanism. The PREX database can be searched using text via keyword, accession number, or 
genus and species.  Proteins in the database associated with the search term are returned, including the 
associated Prx subgroup, the active site signature for the protein, and alignments against representative 
Prx proteins within the same subgroup and from other subgroups for comparison.  The SFLD database 
can be searched by functional domain name, external identifiers, and by species, returning sequences, 
conserved residues, and the ability to compare the sequences against the rest of the SFLD database using 
BLAST and HMM approaches. In addition, sequence similarity networks for each Prx subgroup are 
available from SFLD, where edges between protein nodes are annotated with percent identity and logged 
E-value as computed by BLAST.  Harper et al.  provide in supplementary information active site region 
sequence signatures for all of the proteins that were annotated by their method.  
 
Classification performance comparison 
The classification process employed by Harper et al. makes use of alignment against active site profiles 
(ASP) [20, 22], where an active site profile consists of multiple (usually 4 to 5) sequence fragments for 
which the residues are within 10 angstroms in structural space of known active site key residues. The 
Harper annotations [4] are considered the current gold standard for Prx annotations.   
 
As a minimalist baseline to compare against the performance of the approaches described in Harper et al. 
and in this manuscript, six subgroup-specific canonical sequence motifs were also searched for in the 
proteins of the Harper data set.  These six canonical active site motifs were chosen by reviewing the 
subgroup Weblogos provided by Harper et al., and then extracting the one sequence region in each that 
extended the general Prx active site motif PXXX(T/S)XXC. The motifs are shown in column 2 of Table 
5. The data in that table represents for the Harper data set the percentage of proteins in each subgroup 
containing the simplified motif for that subgroup. These percentages align with the percentages reported 
by Harper [4], but are further broken down to show the percentage of sequences in each subgroup for 
which there are matches to more than one subgroup canonical motif.  While searches for these canonical 
motifs alone would allow for accurate classification into some subgroups, there would be significant 
issues with respect to the AhpE and Prx5 subgroups. Due to the nature of those two motifs, most matches 
against the Prx5 motif also match the AhpE motif (only cases where Y is in the 4th position of the Prx5 
motif do not). 
 
In Table 2, it was shown that there were four sequences that differed between the Harper and the 3-mer 
SVM annotations.  These are described below by providing the Harper annotation, followed by the 3-mer 
SVM annotation. There was one instance of labeling an AhpE protein as Prx5, two instances of labeling 
an AhpE protein as PrxQ, and one instance of labeling a Prx6 protein as PrxQ.  Additional annotations - 
from canonical motif search, the SFLD classifier, the PREX classifier, and the CDD classifier - for those 
four proteins are shown in Table 6. 
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Table 5: Matches of subgroup specific canonical motifs in the Harper data set 
 Motif Exact  Non-Unique  No Match 

AhpE PXAF(T/S)XXC 83.48 10.68 5.85 
Prx1 PXDF(T/S)FVC 93.85 0.00 6.15 
Prx5 P(G/A)A(F/Y)(T/S)(P/G)XC 6.90 90.50 2.60 
Prx6 PX(D/N)(F/Y)TPVC 96.68 0.00 3.32 
PrxQ P(K/A/R)(D/A)XTXGC 89.33 0.92 9.76 
Tpx PS(I/L/V)DTX(V/T/I)C 98.09 0.08 1.83 

Each row represents, for each Prx subgroup, percentages of the sequences in the Harper data set 
associated with that subgroup that match just the canonical active site motif for that subgroup 
(Exact), that match one or more additional subgroup motifs beyond the canonical motif for that 
subgroup (Non-Unique), and that don't match the canonical motif for that subgroup (No Match). 
Summed values across a row equal 100% barring small rounding issues. 

 
Table 6: Annotations by multiple methods for proteins differing in annotation between Harper and Prx_3-
merSVM 

Protein 
(Genus/Species) 

Harper Prx_3-
merSVM 

Motif SFLD PREX CDD 

WP_055763280.1 
(Geodermatophilaceae/ 
Geodermatophilus sp. 

Leaf369) 

AhpE PrxQ - Prx PrxQ PrxQ 

ELY63016.1 
(Natronococcus/ 
Natronococcus 

jeotgali) 

AhpE Prx5 AhpE 
Prx5 

Prx - TRX 

WP_051670221.1 
(Bryobacter/ 
Bryobacter 
aggregatus) 

AhpE PrxQ AhpE 
Prx5 
PrxQ 

Prx - TRX 

KFD50172.1 
(Trichuris/ 

Trichuris suis) 

Prx6 PrxQ - - - - 

Each labeled entry represents a protein for which the Prx_3-merSVM approach returned a label 
different from that provided by Harper et al. The first column represents the Genbank id for a 
protein, as well as, in parentheses underneath the id, the taxonomic genus and species of the 
corresponding organism.  The second and third columns represent the Harper and Prx_3-
merSVM annotations, respectively.  The fourth column shows which canonical motifs exist in the 
protein sequence, with multiple motifs possible shown one per row.  The fifth column indicates 
the annotation provided by a search against SFLD using the SFLD HMM tool.  The sixth column 
indicates the annotation provided by a search against the PREX database, taking the annotation of 
the highest scoring match.  The seventh column indicates the conserved domain provided by an 
NCBI CDD search on the sequence.  A - symbol indicates no match or value was returned by a 
given technique. 

 
The developed classifier determines the subgroup to suggest for an input protein by selecting the 
annotation associated with the maximal score across the six subgroup classifier scores. For the four 
proteins with different annotations between the Prx_3-merSVM and Harper approaches, the Prx_3-
merSVM scores from each subgroup classifier are shown in Table 7.  
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Table 7: Prx_3-merSVM classifier subgroup scores for proteins differing in annotation between Harper 
and Prx_3-merSVM 

Protein AhpE Prx1 Prx5 Prx6 PrxQ Tpx 
WP_055763280.1 -0.606 -1.054 -1.137 -1.002 0.498 -1.121 

ELY63016.1 -0.474 -0.938 -0.430 -0.897 -0.669 -0.915 
WP_051670221.1 -0.353 -0.949 -0.774 -1.220 -0.288 -0.891 

KFD50172.1 -0.883 -0.896 -0.438 -0.714 -0.408 -0.884 
Each row represents a protein for which the Prx_3-merSVM approach returned a label different 
from that provided by Harper [4]. The first column represents the Genbank id for a protein.  The 
remaining columns provide the score returned from each subgroup specific model, with values 
rounded upwards.  The maximum score for each protein is in bold font. 

 
For the protein WP_055763280.1, considering the positive PrxQ score, the negative scores for the other 
subgroups, and the results from the PREX and CDD searches shown earlier, it is hypothesized that 
WP_055763280.1 actually belongs to the PrxQ subgroup. The other three proteins with differing 
annotations exhibit negative scores from all of the Prx_3-merSVM subgroup classifiers. Typically, the 
sign of the score returned from an SVM classifier can be used to indicate the class to which the given 
input belongs.  A possible interpretation of all negative scores is that the proteins do not have 
characteristics of any of the subgroups.  Reviewing the classifier outputs for the 38,739 protein Harper 
data set, negative scores were returned from all the subgroup classifiers for 63 of the proteins (including 
the three discussed above). Even with negative scores returned by all the subgroup classifiers, most of the 
Prx_3-merSVM annotations match the Harper annotation.  The three differing annotations are from some 
of the lowest possible scores returned - these are shown as triangles in Figure 1. Similarly, the three 
proteins with differing annotations constitute three of the five proteins with the smallest difference 
between the highest scoring and next-highest scoring subgroup labels (for 38,739 proteins, that places 
them in the smallest 0.1%). For ELY63016.1 and WP_051670221.1 (the second and third proteins in 
Table 7), the Harper annotation is the second highest scoring Prx_3-merSVM annotation, but this does 
not hold for the fourth protein, KFD50172.1 
 
Out of the 63 proteins with all negative Prx_3-merSVM scores, 53 are annotated as AhpE by Harper et al. 
47 of those 53 are not in SFLD; the other 6 are in SFLD, but are not characterized to a subgroup. This is 
shown in Table 8. The AhpE subgroup has the least training data (an order of magnitude smaller than 
some of the other subgroups) and only has one structural representative. The signature conservation graph 
for AhpE in the work of Harper et al. is noisy relative to the other signature conservation graphs, 
highlighting increased variability in residues located structurally near the active site. Both of these help 
explain the lower-than-expected maximum scores for these proteins. 
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Figure 1: Maximum score for all proteins with negative scores from all Prx_3-merSVM subgroup 
classifiers 

 
For all 63 proteins in the Harper data set where all Prx_3-merSVM classifiers returned a negative 
score, the maximum score for each protein is plotted.  Plus shapes indicate the scores for the 60 
proteins where the Prx_3-merSVM classification matched the Harper classification, while 
triangle shapes indicate the three proteins where there was a mismatch between the two 
approaches to classification. 

 
Table 8: Distribution of subgroup annotations for proteins receiving all negative Prx_3-merSVM scores 

 AhpE Prx1 Prx5 Prx6 PrxQ Tpx 
AhpE 51 0 1 0 1 0 
Prx1 0 3 0 0 0 0 
Prx5 0 0 0 0 0 0 
Prx6 0 0 0 2 1 0 
PrxQ 0 0 0 0 3 0 
Tpx 0 0 0 0 0 1 

The matrix represents the distribution of subgroup annotations for proteins from the Harper data 
set which received all negative scores from the Prx_3-merSVM models. For a given protein, the 
row represents the known annotation (as per Harper et al.) and the column represents the 
annotation suggested by the developed classifier.  The counts represent how many proteins had 
each pair of annotations. 
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Analysis of distinguishing k-mers 
Comparison of the distinguishing k-mers to the residues of Prx active sites suggests that a significant 
proportion of active site residues are represented by the distinguishing k-mers. In this work, as described 
previously, active site residues will be those annotated as being within an active site profile per Harper et 
al. Importantly, however, some distinguishing k-mers map in sequence space to functionally-relevant 
regions that are either extensions of the active site or are in distinct (non-active site) regions. Five 
exemplar sets of residues are presented below to highlight the type of information that can be extracted 
and made use of by the Prx_3-merSVM approach.  Weblogo images of the +/- 8 residue sequence regions 
surrounding a given 3-mer of interest are included.  While some alignments end up being greater than 
nineteen residues in length (for example, due to a repeated use of a 3-mer in a sequence), all logos have 
been trimmed to only show the nineteen residue majority component of the alignment. 
 
For the AhpE subgroup, the set of 3-mers DFW, FWP, WPH, and PHG commonly occur together.  The 
information in Table 9 represents in how many proteins in the 0.95-Harper-SFLD data set and in the 
Harper data set each 3-mer occurs and how often they all occur in the same protein.  These 3-mers 
commonly occur as a region of residues DFWPHG that occur as an extension of the active site profile 
region described as (F/A/Y)(P/D)(L/D)(L/F/V)(S/T/E/A) by Harper et al. The image in Figure 2 is a 
Weblogo representation of the region +/- 8 residues centered on the 3-mer FWP extracted from the set of 
1,055 AhpE sequences that all four 3-mers occur in. This set of residues is annotated as a turn in available 
protein structures for AhpE (1XVW, 4X0X) and has been suggested as playing an important role in the 
oligomerization interface [23]. 
 
Table 9: Counts of occurrence in AhpE proteins for four AhpE-distinguishing 3-mers 

3-mer 0.95-Harper-SFLD (138) Harper (1,489) 
WPH 84 1,068 
PHG 84 1,067 
DFW 84 1,071 
FWP 83 1,056 
All 83 1,055 

Each row represents a 3-mer of interest or the set of all listed 3-mers.  Each column represents a 
data set of interest. The counts represent in how many proteins of the data a given 3-mer or set of 
3-mers occurs. The title of each column indicates both the name of and, in parentheses, the total 
number of proteins in a given data set. 
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Figure 2: Weblogo of FWP-centered regions extracted from AhpE proteins 

 
A Weblogo alignment of the regions +/- 8 residues centered on the 3-mer FWP extracted from the 
sequences that all four AhpE 3-mers shown in Table 9 occur in. 

 
For the Tpx subgroup, the set of 3-mers DLP, LPF, PFA, and FAQ commonly occur together.  The 
information in Table 10 represents in how many proteins in the 0.95-Harper-SFLD data set and in the 
Harper data set each 3-mer occurs and how often they all occur in the same protein.  These 3-mers 
commonly appear as an extension of the Tpx active site profile region described as 
A(Q/A/L/M)(K/A/S/G)R(F/W)C by Harper et al. The image in Figure 3 is a Weblogo representation of 
the region +/- 8 residues centered on the 3-mer LPF extracted from the set of 3,570 Tpx sequences that all 
three 3-mers occur in. The set of residues corresponding with these 3-mers is annotated as a turn and the 
start of the alpha-helix containing the Tpx resolving cysteine in available protein structures for Tpx 
(1Y25, 3HVS). This region has been suggested as being highly conserved in sequence and playing roles 
as part of the dimer interface and as loop anchors [24]. 
 
Table 10: Counts of occurrence in Tpx proteins for three Tpx-distinguishing 3-mers 

3-mer 0.95-Harper-SFLD (546) Harper (4,930) 
DLP 540 4,890 
LPF 539 4,856 
PFA 544 4,875 
FAQ 356 3,602 
All 351 3,570 

Each row represents a 3-mer of interest or the set of all listed 3-mers.  Each column represents a 
data set of interest. The counts represent in how many proteins of the data a given 3-mer or set of 
3-mers occurs. The title of each column indicates both the name of and, in parentheses, the total 
number of proteins in a given data set. 
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Figure 3: Weblogo of LPF-centered regions extracted from Tpx proteins 

 
A Weblogo alignment of the regions +/- 8 residues centered on the 3-mer LPF extracted from the 
sequences that all four Tpx 3-mers shown in Table 10 occur in. 

 
The 3-mer PNY, also for the Tpx subgroup, is, out of the set of highly distinguishing 3-mers shown in 
Table 3, the one marked as Distinct from the active site sequence regions published in the work of Harper 
et al.  In Additional file 1, PDY is the 11th highly weighted 3-mer, also with a permutation testing P score 
of 0.  PNY occurs in 233 of the 546 Tpx samples in the 0.95-Harper-SFLD data set and 2,275 of the 4,930 
Tpx samples in the Harper data set, while PDY occurs in 253 of the 546 and 2,001 of the 4,930 
respectively.  The image in Figure 4 is a Weblogo representation of the region +/- 8 residues centered on 
the 3-mer region P(N/D)Y as extracted from the set of 4,276 Tpx sequences containing either PNY or 
PDY. P(N/D)Y has been shown to be over 90% conserved across bacterial Tpx and to play a role in 
forming the structure of the cradle surrounding the  α2 helix where the peroxidatic cysteine sits [24]. 
 
Figure 4: Weblogo of P(N/D)Y-centered regions extracted from Tpx proteins 

 
A Weblogo alignment of the regions +/- 8 residues centered on the 3-mer P(N/D)Y extracted 
from the Tpx sequences that contain either PNY or PDY. 

 
For the Prx5 subgroup, the set of 3-mers VND and FVM occur together in a large percentage of the Prx5 
protein sequences.  The information in Table 11 represents in how many proteins in the 0.95-Harper-
SFLD data set and in the Harper data set each 3-mer occurs and how often they all occur in the same 
protein.  NDP is a less common extension of VND. VND and FVM are one-residue extensions to two 
different active sites regions described by Harper et al., the first region described as 
(C/V)(V/L/I/T/M)(S/A)VN and the other described by V(M/L/T)(N/G/K)(A/E/Q)W followed by several 
noisy positions.  The high weights for VND and FVM suggests the D and F extensions are highly 
conserved as well.  As shown in Figure 5 below, these two regions active site regions are themselves 
close in sequence space. They occur within or near the α3 helix (PDB 1NM3, 1HD2). Both the D and F 
residues are implicated as important in the dimerization interface [25] and the F residue (Phe79 in the 
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1HD2 structure) has been suggested to play a role in forming a neighborhood of hydrophobic residues 
around a benzoate ion ligand seen in the 1HD2 crystal structure [26].    
 
Table 11: Counts of occurrence in Prx5 proteins for three Prx5-distinguishing 3-mers 

3-mer 0.95-Harper-SFLD (725) Harper (5,434) 
VND 634 4,886 
FVM 567 4,259 
NDP 209 1,232 

VND & FVM 521 3,973 
All 121 726 

Each row represents a 3-mer of interest or a set of listed 3-mers.  Each column represents a data 
set of interest. The counts represent in how many proteins of the data a given 3-mer or set of 3-
mers occurs. The title of each column indicates both the name of and, in parentheses, the total 
number of proteins in a given data set. 

 
Figure 5: Weblogo of VND-centered regions extracted from Prx5 proteins 

 
A Weblogo alignment of the regions +/- 8 residues centered on the 3-mer VND extracted from 
the sequences that the Prx5 3-mers VND and FVM occur in. 

 
For the Prx1 subgroup, none of the highly distinguishing 3-mers (with permutation testing P score of 0) 
were in regions not seen by previous researchers.  However, the 3-mer CPA, with P score 0.0035 (the 
most significant non-zero score; see Additional file 1), is an example of a region that is distinct from the 
active site sequence fragments published by Harper et al.  CPA occurs in 1,065 of the 1,310 Prx1 samples 
in the 0.95-Harper-SFLD data set and 7,479 of the 9,660 Prx1 samples in the Harper data set. The image 
in Figure 6 is a Weblogo representation of the region +/- 8 residues centered on the 3-mer CPA extracted 
from the set of 7,479 sequences the 3-mer occurs in. While distinct from the Harper active site sequence 
fragments, the C in this 3-mer represents the important resolving cysteine [27]. 
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Figure 6: Weblogo of CPA-centered regions extracted from Prx1 proteins 

 
A Weblogo alignment of the regions +/- 8 residues centered on the 3-mer CPA extracted from the 
Prx1 sequences that contain the CPA 3-mer. 

 
 
Limitations in analysis 
This work demonstrates that the use of 3-mers supports high accuracy subgroup annotation of Prx 
sequences. The classifiers have been constructed under the assumption that a sequence to be annotated is 
already known to be a Prx sequence.  To remove this constraint, the use of a hierarchical classification 
mechanism [28] could be developed to first annotate a protein as a Peroxiredoxin or not, and then to 
annotate to the subgroup level.  A check for the presence of the Prx canonical active site motif 
PXXX(T/S)XXC could also play this role. 
 
It is possible that a protein can receive negative scores from all six subgroup classifiers.  A traditional 
approach to handling this scenario is to suggest that annotating the protein to one of the six subgroups is 
inappropriate when none of the scores is 0 or above.  However, given the number of correct predictions 
made on the proteins in the Harper data set using the Prx_3-merSVM approach by using the annotation 
with the highest score, it may be suitable to adjust the threshold for when to suggest not providing an 
annotation to a score below 0. 
 
While the discovered 3-mers highlight sequence regions that distinguish between Prx subgroups, the use 
of 3-mers is a fairly low resolution technique.  A given 3-mer maps to a small portion of a given Prx 
sequence. The SVM classifier takes into account the presence of multiple 3-mers.  The use of k-mers with 
larger k-values (4-mers, 5-mers) and the use of gapped k-mers [29], where wildcard ('X') positions are 
allowed in the k-mer, could potentially support accurate prediction with fewer and more interpretable 
features. The presence of several regions that could be captured by larger or gapped k-mers was 
highlighted in this work, including DFWPHG for the AhpE subgroup, DLPFAQ for the Tpx subgroup, 
and VNDXFVM for the Prx5 subgroup. 
 
Additional members of the groups of highest weighted 3-mers, particularly those that are not part of the 
Harper published active site sequence regions, should be explored with respect to the role that the 3-mer 
residue regions play mechanistically. The use of other feature selection methods, such as recursive feature 
elimination (RFE) [30], to determine the subset of features to analyze beyond the exemplars provided is 
important, followed by analysis with respect to biochemical and biophysical features of the involved 
residues and the location of 3-mers in known protein structures. 
 
Adding information beyond subgroup Prx scores to the output of the Prx_3-merSVM classifier would 
allow users to gain additional insight into their query proteins and the classification process. 
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Conclusions 
In this work, a new high-accuracy classifier that can annotate Prx proteins to the subgroup level has been 
developed. The classifier, which encodes sequences as 3-mers, is publicly available and supports batch 
analyses. Comparison to the state-of-the-art approach to Prx subgroup annotation shows only four 
differences in subgroup assignments in over 38,000 annotations.  Examination of a subset of 3-mers that 
the developed classifier uses to distinguish between Prx subgroups reveals functionally relevant sequence 
fragments. These include sequence regions that extend or are distinct in sequence space from the active 
site sequence regions used in previous Prx subgroup analyses. Finding additional functionally-relevant 
regions has potential downstream uses in Prx inhibitor design. 
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Additional files 
Additional file 1 
Microsoft Excel (.xlsx) 
Ranking of 3-mers by subgroup linear SVM weight 
This file contains, for each Prx subgroup, weights from the trained linear SVM models for each 3-mer, as 
well as information from permutation testing, supporting understanding of the significance of a given 
SVM weight and allowing filtering of distinguishing 3-mers.   
 
Additional file 2 
Microsoft Word (.docx) 
Sequence counts and weblogos for Ext or Distinct 3-mers 
This file contains, for each Prx subgroup, sequence counts and Weblogos for the 3-mers listed as Ext or 
Distinct in Table 3 but which were not discussed directly in the manuscript.   
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