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A Uniform Description of Perioperative Brain MRI Findings in
Infants with Severe Congenital Heart Disease:

Results of a European Collaboration
R. Stegeman, M. Feldmann, N.H.P. Claessens, N.J.G. Jansen, J.M.P.J. Breur, L.S. de Vries, T. Logeswaran, B. Reich,

W. Knirsch, R. Kottke, C. Hagmann, B. Latal, J. Simpson, K. Pushparajah, A.F. Bonthrone, C.J. Kelly,
S. Arulkumaran, M.A. Rutherford, S.J. Counsell, and M.J.N.L. Benders, for

the European Association Brain in Congenital Heart Disease Consortium

ABSTRACT

BACKGROUND AND PURPOSE: A uniform description of brain MR imaging findings in infants with severe congenital heart disease
to assess risk factors, predict outcome, and compare centers is lacking. Our objective was to uniformly describe the spectrum of
perioperative brain MR imaging findings in infants with congenital heart disease.

MATERIALS AND METHODS: Prospective observational studies were performed at 3 European centers between 2009 and 2019.
Brain MR imaging was performed preoperatively and/or postoperatively in infants with transposition of the great arteries, single-
ventricle physiology, or left ventricular outflow tract obstruction undergoing cardiac surgery within the first 6 weeks of life. Brain
injury was assessed on T1, T2, DWI, SWI, and MRV. A subsample of images was assessed jointly to reach a consensus.

RESULTS: A total of 348 MR imaging scans (180 preoperatively, 168 postoperatively, 146 pre- and postoperatively) were obtained in
202 infants. Preoperative, new postoperative, and cumulative postoperative white matter injury was identified in 25%, 30%, and
36%; arterial ischemic stroke, in 6%, 10%, and 14%; hypoxic-ischemic watershed injury in 2%, 1%, and 1%; intraparenchymal cerebral
hemorrhage, in 0%, 4%, and 5%; cerebellar hemorrhage, in 6%, 2%, and 6%; intraventricular hemorrhage, in 14%, 6%, and 13%; sub-
dural hemorrhage, in 29%, 17%, and 29%; and cerebral sinovenous thrombosis, in 0%, 10%, and 10%, respectively.

CONCLUSIONS: A broad spectrum of perioperative brain MR imaging findings was found in infants with severe congenital heart
disease. We propose an MR imaging protocol including T1-, T2-, diffusion-, and susceptibility-weighted imaging, and MRV to identify
ischemic, hemorrhagic, and thrombotic lesions observed in this patient group.

ABBREVIATIONS: AIS ¼ arterial ischemic stroke; CHD ¼ severe congenital heart disease; CSVT ¼ cerebral sinovenous thrombosis; IVH ¼ intraventricular hemor-
rhage; KCL ¼ St. Thomas’ Hospital London; LVOTO ¼ left ventricular outflow tract obstruction; SVP ¼ single ventricle physiology; TGA ¼ transposition of the
great arteries; UCZ ¼ University Children’s Hospital Zurich; WKZ ¼ Wilhelmina Children’s Hospital Utrecht; WMI ¼ white matter injury

The incidence of patients with severe congenital heart disease
(CHD), presenting as severely ill and requiring expert cardio-

logic care in the neonatal period or early infancy is around 3/1000

live births.1 Mortality among infants has declined in recent deca-
des, and 90% of children with CHD now survive into adulthood.2,3
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However, neurodevelopmental sequelae are a frequent long-term
complication.4

Consequently, in an endeavor to elucidate the underlying
mechanisms of impaired neurodevelopment, a number of studies
have reported performance of brain MR imaging before and after
open heart surgery in infants with CHD. A combined pattern of
abnormal brain development and acquired brain injury has been
found.5-7 The most frequently reported lesions on perioperative
MR imaging include white matter injury (WMI) and focal
strokes.8-11 In addition, other findings such as hypoxic-ischemic
watershed injury, intraparenchymal hemorrhage, and cerebral
sinovenous thrombosis (CSVT) have also been reported.12-15

The prevalence of brain lesions varies considerably across stud-
ies.11,13,16-26 The large variability in the prevalence of brain lesions
might reflect differences in inclusion criteria and practices among
centers, but also a lack of a standardization in scoring and reporting
of perioperative brain MR imaging findings in infants with CHD.26

A standardized description of perioperative brain MR imag-
ing findings is important to accurately characterize the risks and
patterns of brain lesions in infants with CHD. It facilitates the
combination of data across centers to assess differences in medi-
cal care to determine lesion severity in relation to risk factors
and subsequent neurodevelopmental outcome and enables neu-
roprotective approaches to be evaluated. The aim of this study
was to describe the spectrum and prevalence of perioperative
brain MR imaging findings in infants with CHD in a consistent
manner, in terms of number, location, signal intensity, size, and
volume across 3 European centers.

MATERIALS AND METHODS
Study Design and Population
Three prospective observational cohort studies were combined.
Infants with severe CHD who underwent corrective or palliative
cardiac surgery during the first 6 weeks of life in the respective
centers at Wilhelmina Children’s Hospital Utrecht (WKZ,
2016–2019), University Children’s Hospital Zurich (UCZ,
2009–2019), and St. Thomas’ Hospital London (KCL, 2014–
2019) were eligible for inclusion. We considered cardiac surgery
to include both median and lateral thoracotomies, with or with-
out use of cardiopulmonary bypass. Brain MR imaging was per-
formed pre- and/or postoperatively per clinical (WKZ) or
research study (UCZ, KCL) protocol. Severe CHD types
included transposition of the great arteries, single-ventricle
physiology, or left ventricular outflow tract obstruction (such as
aortic arch coarctation, hypoplasia with/without coarctation,
interruption, valve stenosis, or hypoplastic left-heart complex).
Infants with known or suspected genetic or syndromic disorders
and other types of CHD were excluded. Clinical characteristics
of the infants were collected prospectively at each center and
subsequently combined. The respective institutional ethics
research committees approved the studies (WKZ, No. 16–093;
UCZ, KEK StV-23/619/04; KCL, 07/H0707/105). Parental
informed consent was obtained for the use of clinically obtained
data for research purposes (WKZ) or before study enrollment
(UCZ, KCL). All methods were performed in accordance with
relevant guidelines and regulations. The de-identified data will
be made available upon reasonable request.

Brain MR Imaging Protocols
MR images were acquired on a 3T scanner (Philips Healthcare,
Best, the Netherlands) using a 32-channel head coil in WKZ, a
neonate-specific 32-channel head coil at KCL, and a 3T Signa
HDxt (GE Healthcare) scanner with an 8-channel head coil in
UCZ. Infants were swaddled in a vacuum cushion and received
noise-protecting earplugs, and vital functions were monitored. In
WKZ, infants were scanned in natural sleep or, if necessary,
sedated with oral chloral hydrate (50mg/kg) during MR imaging
or received continuous sedation when mechanically ventilated.26

In UCZ, infants underwent MR imaging in natural sleep when
clinically stable. In KCL, MR imaging was performed in natural
sleep. MR imaging protocols included T1, T2, DWI and SWI,
and MRV.11,24,27 In UCZ, SWI and MRV were acquired when
there was suspicion of hemorrhage on conventional imaging or
sinovenous thrombosis needed to be confirmed. Details of MR
imaging protocols are available in the Online Supplemental Data.

Describing Perioperative Brain MR Imaging Findings
The system of describing perioperative brain MR imaging findings
was determined jointly by the European Association Brain in
Congenital Heart Disease Consortium and was based on the injury
scoring sheet by Beca et al.19 This adapted template was used in
joint European MR imaging reviewing sessions to find a consensus
on terminology, definitions, and scoring of brain MR imaging
findings in infants with CHD. This uniform European description
was then applied to score MR images of each cohort according to
the scoring sheet presented in the Online Supplemental Data. All
MR imaging findings were described irrespective of the potential
pathologic significance and consequences for neurodevelopmental
outcome. Type, number, size, volume, location, and signal inten-
sity of brain MR imaging findings were examined. Postoperative
brain findings were classified as new if preoperative MR imaging
showed no corresponding findings, findings were in a different
location, and/or there was an increase in size or number compared
with the preoperative findings. Cumulative postoperative brain
MR imaging findings included all infants with CHD with a postop-
erative MR imaging irrespective of the availability of a preoperative
MR imaging.

WMI was defined as single or multiple lesions in the white mat-
ter without restriction of maximum lesion size, with high signal in-
tensity on T1 and usually corresponding low signal intensity on
T2.24 Lesion sizes in each subject were measured on the T1 image
in the plane showing the largest diameter, and largest lesion size
was reported. Absolute WMI volume in cubic millimeters was seg-
mented and calculated on 3D T1 images using ITK-SNAP (www.
itksnap.org) (KCL) or 3D Slicer (http://www.slicer.org) (WKZ,
UCZ).28,29 Total brain volumes were automatically calculated on
T2 images using neonatal-specific segmentation pipelines and
were used to report the relative WMI burden (WMI volume/total
brain volume).30,31 Absolute WMI volume was not assessed in 7/
45 (16%) infants with preoperative WMI and in 8/60 (13%) with
postoperative WMI, due to motion corruption on 3D T1 images.
The relative WMI burden could not be assessed in 15/45 (33%)
infants with preoperative WMI and in 15/60 (25%) infants with
postoperative WMI as a result of movement artifacts on either the
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3D T1-weighted images (WMI volume segmentation) or the T2-
weighted images (total brain volume segmentation).

Arterial ischemic stroke (AIS) was defined as a homogeneous
area of altered signal intensity on T1- and T2-weighted images with
a specific arterial distribution involving cortical gray matter and/or
the basal ganglia/thalamus.24,26 AIS was classified on the basis of
the involved arterial territory: anterior, middle, or posterior cerebral
artery or perforator branch (involving the basal ganglia/thalamus).
Middle cerebral artery strokes were subcategorized as main, ante-
rior, middle, posterior, or cortical branch.32 Corticospinal tracts
were involved when the corona radiata, and/or the posterior limb
of the internal capsule, and/or the cerebral peduncle were affected.
Hypoxic-ischemic watershed injury was defined as diffuse ischemia
in intervascular borderzones among arterial territories.26 Restricted
diffusion, indicating recently acquired ischemic lesions, was
assessed by high signal intensity on DWI and/or low signal on
ADC images.

Hemorrhages (intraparenchymal cerebral/cerebellar, intra-
ventricular [IVH], and subdural) were assessed using SWI, if
available. For the intraparenchymal supratentorial hemorrhages,
we included lesions of any size when the lesion was hypointense
on the SWI. Cerebellar hemorrhages are single or multiple hem-
orrhages located within the cerebellum.24 The size of cerebellar
hemorrhages was quantified by measuring the largest diameter in
millimeters on the SWI. IVH grade I was defined as bleeding re-
stricted to the germinal matrix or choroid plexus; grade II, as
extension of blood into the ventricles without enlargement; grade
III, as ventricles enlarged by accumulated blood; and grade IV,
periventricular hemorrhagic infarction, was defined when IVH
was accompanied by periventricular hemorrhagic necrosis.26,33

CSVT was defined as MRV proved with T1 correlation (in
WKZ/KCL) or high suspicion on T1/T2 (UCZ).15

Examples of brain findings on preoperative MR imaging
sequences in infants with severe congenital heart disease are
shown in the Online Supplemental Data.

RESULTS
Study Participants
A total of 202 infants with severe CHD (131 males, 65%) with a
median gestational age of 39.0 weeks (interquartile range, 38.3–
40.0 weeks) and a median birth weight of 3200 g (interquartile
range, 2940–3648 g) (z score interquartile range �0.16, �0.77–
0.48) were enrolled at 3 European centers and met the inclusion
criteria. Details of demographic and clinical characteristics are
presented in the Online Supplemental Data.

Preoperative Brain MR Imaging Findings
Preoperative MR imaging was performed in 180 infants with
CHD at a median age of 6 days (interquartile range, 3–8 days)
and postmenstrual age of 39.7weeks (interquartile range, 38.9–
40.9 weeks). WMI was found in 45 infants (25%); AIS, in 11
(6%); hypoxic-ischemic watershed injury, in 3 (2%); cerebellar
hemorrhage, in 10 (6%); and IVH, in 25 (14%). We also observed
subdural hemorrhage in 53 patients (29%). Details of preopera-
tive brain MR imaging findings are described in the Online
Supplemental Data. Preoperatively, no lesions, 1 type of lesion, or

$2 types of lesions were observed in 110 (61%), 50 (28%), and 20
(11%) infants with CHD, respectively (Figure).

Postoperative Brain MR Imaging Findings (New Lesions)
New postoperative brain MR imaging findings were assessed in 146
infants with CHD and serial pre- and postoperative MR images.
New WMI was found in 43 infants (30%); AIS, in 15 (10%); cere-
bellar hemorrhage, in 3 (2%); IVH, in 8 (6%); and subdural hemor-
rhage, in 25 (17%). Intraparenchymal cerebral hemorrhage (n¼ 6,
4%) and CSVT (n¼ 15, 10%) were exclusively observed postopera-
tively (Online Supplemental Data). Postoperatively, no new lesions,
1 type of new lesion, or $2 types of new lesion were shown in 83
(57%), 42 (29%), and 21 (14%) infants, respectively (Figure).

Postoperative Brain MR Imaging Findings (Also Including
Infants without Preoperative MR Imaging)
Cumulative postoperative brain MR imaging findings were assessed
in 168 infants with CHD at a median age of 22days (interquartile
range, 15–29 days), median postmenstrual age of 42.7weeks (inter-
quartile range, 41.2–43.8 weeks), and a median of 10days (7–15) af-
ter surgery. WMI was observed in 60 infants (36%); AIS, in 24
(14%); hypoxic-ischemic watershed injury, in 2 (1%); intraparen-
chymal cerebral hemorrhage, in 8 (5%); cerebellar hemorrhage, in
10 (6%); IVH, in 22 (13%); subdural hemorrhage, in 48 (29%); and
CSVT, in 17 (10%). Details of postoperative brain MR imaging
findings are described in the Online Supplemental Data.
Postoperatively, no cumulative lesions, 1 type of cumulative lesion,
or $2 types of cumulative lesion were present in 75 (45%), 60
(36%), and 33 (20%) infants, respectively (Figure).

New Postoperative Brain Lesions in Infants with and
without Preoperative Brain Lesions
Forty-eight percent of infants with preoperative brain lesions
showed new lesions on postoperative MR imaging. Thirty-nine
percent of infants without preoperative brain lesions had new
lesions on postoperative MR imaging. In 51 infants (35%), no
brain lesions were observed on either preoperative and postoper-
ative MR imaging (Online Supplemental Data).

DISCUSSION
The aims of this European collaborative study were to standardize
the description and consistently report perioperative brain MR
imaging findings in infants with CHD. We report results from the
largest combined cohort of infants with severe CHD thus far and
found a broad spectrum of ischemic, hemorrhagic, and thrombotic
brain lesions. WMI was the most prevalent lesion type, and WMI
and AIS were common on both pre- and postoperative MR imag-
ing. Cerebellar, intraventricular, and subdural hemorrhages were
mainly observed preoperatively. Intraparenchymal cerebral hemor-
rhages and CSVT were exclusively detected on postoperative MR
imaging.

WMI was the predominant finding on both pre- and postop-
erative MR imaging as reported previously.8,9,11,13,19,24 The distri-
bution of WMI that we observed matched the pattern previously
reported. Kelly et al24 and Guo et al34 found WMI to be wide-
spread throughout the whole brain, including some cases with
involvement of the corona radiata. Total WMI volume on pre-
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and postoperative MR imaging in our European cohorts was in a
similar range as reported recently in a multicenter analysis, sug-
gesting that our findings might reflect the general pattern of
WMI in neonates with CHD.34 The mechanisms underpinning
WMI are not entirely clear, but it is possible that focal ischemic
injury such as a single, large white matter lesion may have a
thromboembolic origin, while multifocal WMI is probably
caused by acute or chronic hypoxia-ischemia in infants with
CHD. In a recent study by Claessens et al,26 focal injury (stroke,
single white matter lesion) was more frequently seen after balloon
atrial septostomy and associated with intraoperative, selective
cerebral perfusion, while multifocal injury (watershed, WMI) was
associated with low cardiac output syndrome. In our cohort, we
recognize that thromboembolic strokes possibly caused single,
large ischemic lesions, often confirmed on DWI or T1 as high sig-
nal, that exclusively affected the white matter.

AIS was identified more frequently on postoperative MR imag-
ing compared with preoperative MR imaging, while hypoxic-ische-
mic watershed injury was rare, as reported previously.10,12,13 A
wide spectrum of AIS was observed with different arterial distribu-
tions, sizes, and ages of lesions as indicated by diffusion restriction,
which was in line with previous results by Chen et al.10 Most inter-
esting, the middle cerebral artery branches were most frequently
affected preoperatively, while the specific subtype of focal perfora-
tor strokes in the basal ganglia/thalamus region, including the pos-
terior and middle cerebral artery branches, were most common on

postoperative MR imaging. Preoperative AIS may be associated
with balloon atrial septostomy, while selective cerebral perfusion
has previously been associated with deep gray matter infarctions
postoperatively.17,26,35 AIS with diffusion restriction and without
clear signal intensity alterations on T1- and T2-weighted images,
indicative of recent injury, was more often observed on pre- com-
pared with postoperative MR imaging, presumably because preop-
erative AIS was still visible on postoperative conventional T1- and
T2-weighted images, while DWI and ADC had pseudonormalized.
These findings show that infants with CHD are vulnerable to AIS
at different time points from birth to the postoperative period.
Thromboembolic events or cerebral hypoperfusion by low cardiac
output might contribute to the observed patterns and timing of
AIS.10,26

Cerebellar hemorrhages, low-grade IVH, and subdural hem-
orrhages were mainly present on preoperative MR imaging, while
intraparenchymal cerebral hemorrhages and CSVT were exclu-
sively observed on postoperative MR imaging, findings possibly
indicating differences in the underlying etiology.13-15,24,36-38

Subdural hemorrhage has been observed at a similar rate in
asymptomatic term-born infants that underwent instrumental
vaginal delivery and in other CHD populations and may be
explained by a tendency toward more frequent use of instrumen-
tal vaginal delivery in labor complicated by CHD as suggested by
CJ Kelly et al.24,37-40 Perioperative disturbances in cerebral autor-
egulation and coagulation could be responsible for postoperative

FIGURE. Proportion of infants with CHD with any kind of brain lesions. Any lesion included white matter injury, arterial ischemic stroke,
hypoxic-ischemic watershed injury, intraparenchymal cerebral hemorrhage, cerebellar hemorrhage, intraventricular hemorrhage, and cerebral
sinovenous thrombosis. Subdural hemorrhage was recorded but was not considered brain injury, being extra-axial and given its frequent occur-
rence in the healthy neonatal population.
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hemorrhages and thromboses such as CSVT.41 Previous studies
have highlighted the importance of SWI to assess intraparenchy-
mal hemosiderin foci because signal abnormalities are not always
identified on conventional T1- or T2-weighted images.13,14 CSVT
was found less often postoperatively compared with the study by
Claessens et al,15 which might be explained by differences in the
proportions of CHD types and differences or interim changes in
anticoagulatory and perioperative approaches.41 In both studies,
the transverse sinus was most affected.15

Variability in brain lesions between our and other cohorts
may be due to differences in the proportions of CHD types stud-
ied, clinical approaches such as age at surgery, and MR imaging
protocols including section thickness, in-plane resolution, and
timing of imaging. A larger interval between birth and the opera-
tion is associated with an increased incidence of preoperative
WMI in infants with transposition of the great arteries, while
hypoxic-ischemic brain injury is more often present on postoper-
ative MR imaging after neonatal compared with postneonatal or
infant heart surgery.8,18,42 Longer times between the operation
and postoperative MR imaging could impair the sensitivity of
DWI and ADC to detect transient ischemic lesions.12,13

This study has some limitations: Infants in UCZ and KCL
were scanned as part of a research study and only after parental
consent was given, with the risk of selection bias in types of
CHD, while infants at WKZ were scanned as part of standard
clinical care. Differences in the timing of pre- and postoperative
MR imaging, the operation, and image resolution may affect the
sensitivity to detect small brain lesions. SWI and MRV were not
performed routinely at UCZ, which might have impaired the sen-
sitivity to detect small parenchymal hemorrhages and CSVT and
led to an underestimation of respective prevalence. It was not
possible to determine which portion of newly detected postopera-
tive brain lesions actually occurred between the day of preopera-
tive MR imaging and the day of the operation. Quantification
methods of WMI volume and total brain volume differed among
sites, though these were only used to determine the burden of
WMI in relation to the total brain volume.

CONCLUSIONS
A broad spectrum of pre- and postoperative brain MR imaging
findings was found in infants with severe CHD. An MR imaging
protocol including T1-, T2-, DWI/ADC, SWI, and MRV is
required to identify ischemic, hemorrhagic, and thrombotic
lesions. Applying this standardized consensus description of
perioperative brain MR imaging findings will enable future
studies to determine lesion type, location, and extent in relation
to outcome, identify risk factors across and among centers, and
evaluate neuroprotective strategies in individuals with severe
CHD.
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