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ORIGINAL RESEARCH
ADULT BRAIN

Development and Practical Implementation of a Deep
Learning–Based Pipeline for Automated Pre- and

Postoperative Glioma Segmentation
E. Lotan, B. Zhang, S. Dogra, W.D. Wang, D. Carbone, G. Fatterpekar, E.K. Oermann, and Y.W. Lui

ABSTRACT

BACKGROUND AND PURPOSE: Quantitative volumetric segmentation of gliomas has important implications for diagnosis, treat-
ment, and prognosis. We present a deep-learning model that accommodates automated preoperative and postoperative glioma
segmentation with a pipeline for clinical implementation. Developed and engineered in concert, the work seeks to accelerate clini-
cal realization of such tools.

MATERIALS AND METHODS: A deep learning model, autoencoder regularization–cascaded anisotropic, was developed, trained, and
tested fusing key elements of autoencoder regularization with a cascaded anisotropic convolutional neural network. We con-
structed a dataset consisting of 437 cases with 40 cases reserved as a held-out test and the remainder split 80:20 for training and
validation. We performed data augmentation and hyperparameter optimization and used a mean Dice score to evaluate against
baseline models. To facilitate clinical adoption, we developed the model with an end-to-end pipeline including routing, preprocess-
ing, and end-user interaction.

RESULTS: The autoencoder regularization–cascaded anisotropic model achieved median and mean Dice scores of 0.88/0.83 (SD, 0.09),
0.89/0.84 (SD, 0.08), and 0.81/0.72 (SD, 0.1) for whole-tumor, tumor core/resection cavity, and enhancing tumor subregions, respectively,
including both preoperative and postoperative follow-up cases. The overall total processing time per case was �10minutes, including
data routing (�1 minute), preprocessing (�6 minute), segmentation (�1–2 minute), and postprocessing (�1 minute). Implementation chal-
lenges were discussed.

CONCLUSIONS:We show the feasibility and advantages of building a coordinated model with a clinical pipeline for the rapid and
accurate deep learning segmentation of both preoperative and postoperative gliomas. The ability of the model to accommodate
cases of postoperative glioma is clinically important for follow-up. An end-to-end approach, such as used here, may lead us toward
successful clinical translation of tools for quantitative volume measures for glioma.

ABBREVIATIONS: AR ¼ autoencoder regularization; BraTS ¼ Brain Tumor Segmentation; CA ¼ cascaded anisotropic; CNN ¼ convolutional neural network;
DL ¼ deep learning; ET ¼ enhancing tumor; HGG ¼ high-grade glioma; LGG ¼ low-grade glioma; NC ¼ necrotic core; RC ¼ resection cavity; T1ce ¼ T1 post-
contrast; TC ¼ tumor core; WT ¼ whole tumor

There is a growing body of literature suggesting that machine
learning may revolutionize the diagnosis, treatment, and fol-

low-up of patients with gliomas, some of the most difficult malig-
nancies to manage.1-3 In the near-term, deep learning (DL)

promises to facilitate rapid and user-independent quantitative tu-
mor segmentation.4 There is evidence that accurate delineation of
tumor subregions of enhancement and edema can form the basis
for individualized, precision medicine such as predicting a
response to therapy and survival,5 as well as aiding in streamlin-
ing radiation therapy planning.6

Thus far, the literature demonstrates proof of concept, showing

state-of-the-art DL models using convolutional neural networks

(CNNs) with moderately good median and mean Dice scores with

respect to ground truth manual segmentations in the range of

0.74–0.85 and 0.61–0.77, respectively, for enhancing tumor.7-9

Despite promising initial results, multisequence DL-based auto-

matic glioma segmentation methods have yet to reach clinical

practice, and several barriers to implementation exist.1,10-12 Besides
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the requisite testing of models for accuracy and generalizability to

local data,13 clinical implementation requires end-to-end solutions

with streamlined preprocessing14 and integrated user interfaces as

well as the ability to accommodate postoperative cases.7

All too often, machine learning models are developed isolated
from the intended clinical environment, making it difficult to
later engineer a clinical translation. Here, we present an end-to-
end pipeline for development and implementation of an auto-
matic segmentation tool for both preoperative and postoperative
cases and discuss the strength and challenges of such an approach
to development.

MATERIALS AND METHODS
Data Description
The study was approved by our institutional research ethics com-
mittee. Ground truth MR imaging data of manually segmented
brain gliomas included 335 (259 high-grade glioma [HGG] and
76 low-grade glioma (LGG) preoperative cases from the Brain
Tumor Segmentation (BraTS) 2019 open-access repository and
an additional 102 cases from our local medical center, which
included 62 postoperative (52 HGGs, 10 LGGs) and 40 preopera-
tive (30 HGGs, 10 LGGs) cases. The postoperative cases consist
of follow-up MRIs beginning typically at and beyond 3months
after initial resection that serve clinically as postoperative base-
lines and that are used to track disease progression/recurrence,
respectively. Any scans performed in the immediate postsurgical
(within 48 hours of surgery) period were not included. Since its
inception in 2012, the BraTS, organized in conjunction with the
Medical Image Computing and Computer-Assisted Interventions
conferences, has been evaluating machine learning models for
volumetric segmentation of gliomas on brain MRIs. The BraTS
multi-institutional, international dataset, including data from 19
independent institutions, is widely used as a benchmark, contain-
ing manually segmented preoperative HGG and LGG across mul-
tiple vendors and machines.7,15,16 The dataset from our local
institution does not overlap the BraTS data (our institution was
not among the sites that originally contributed to the BraTS data-
set) and is composed of histologically confirmed grade II–IV glio-
mas according to World Health Organization criteria (2007 or
2016 criteria, depending on whether the case occurred before or
after 2016). Because these data are separate from the original
BraTS data, we refer here to these data as the local dataset. Each
glioma case consists of 4 different sequences (T1 precontrast, T1
postcontrast [T1ce], T2, and T2-FLAIR). Twenty preoperative
and 20 postoperative cases were randomly selected from the local
dataset for testing. The remainder of 397 cases were randomly
split between training and validation datasets using an 80:20
ratio.

MR Imaging Protocol
Data belonging to the local dataset consisted of imaging
performed on 3T scanners from 3 different scanner types
(Magnetom Skyra, Magnetom Vida, and Magnetom Prisma;
Siemens) and 5 imaging sites from a single vendor (Siemens)
using our local, standard clinical brain tumor preoperative and
postoperative MR imaging protocols consisting of the following
pulse sequence parameters: 1) axial precontrast 2D T1-weighted:

TE ¼ 12 ms, TR ¼ 715 ms, FOV ¼ 256� 256mm2, flip angle ¼
8°, resolution ¼ 1� 1mm, section thickness¼ 5mm; 2) post-
contrast 3D MPRAGE (�5-minute interval between contrast
injection and postcontrast acquisition): TE ¼ 4 ms, TR ¼ 2200
ms, FOV ¼ 256� 256mm2, flip angle ¼ 15°, isotropic resolu-
tion ¼ 1� 1 � 1mm; 3) 3D T2 FLAIR sampling perfection with
application-optimized contrasts by using different flip angle
evolution (SPACE sequence; Siemens): TE ¼ 325 ms, TR = 6000
ms, FOV ¼ 256� 232mm2, flip angle ¼ 120° using isotropic
1� 1 � 1mm voxels; and 4) T2-weighted imaging, preoperative
studies including a 3D T2 SPACE: TE ¼ 420 ms, TR¼ 3200 ms,
FOV ¼ 256� 232mm2, flip angle ¼ 120°, isotropic 1� 1 � 1
mm resolution. For postoperative, follow-up cases, we per-
formed an axial 2D T2-weighted series: TE ¼ 81 ms, TR ¼ 5460
ms, FOV ¼ 320� 260mm2, and flip angle ¼ 120° using a noni-
sotropic voxel size of 1� 1 � 5mm. This difference was to prac-
tically accommodate existing clinical follow-up brain tumor
protocols.

Manual Segmentation
Ground truth manual segmentation data from BraTS were estab-
lished and verified by clinical experts and are described else-
where.7,15,16 Ground truth manual segmentation of the 102 cases
comprising the local dataset was performed using ITK-SNAP,
Version 3.6.0 (http://itksnap.org).17 For manual segmentation,
the following subregions were outlined following the established
BraTS protocol: whole tumor (WT), tumor core (TC, which
includes enhancing and nonenhancing portions of tumor as well
as central cystic or necrotic regions), and enhancing tumor (ET).7

Note that for regions defined above, each subsequent region is a
subregion of the previous one, with the following relationships:
WT–TC ¼ volume of peritumoral edema; TC–ET ¼ the sum of
nonenhancing tumor and any necrotic or cystic core (NC). In
addition, we adapted this previously published BraTS segmenta-
tion paradigm to accommodate postoperative scans illustrated by
the equation: TC–ET ¼ nonenhancing tumor1 NC1 resection
cavity (RC). Thus, the model was trained to derive the following
3 segments: WT, TC, and ET from which peritumoral edema,
TC–ET, and ET can be calculated and presented to the end user.
For manual segmentation, T1 MPRAGE was used for ET, and T2-
FLAIR sequences were used for peritumoral edema as was done
for the BraTS data. Coregistered T1 and T1ce images are used to
differentiate ET from nonenhancing subacute blood products.
Manual segmentations from all 102 cases were reviewed in consen-
sus by 2 board-certified neuroradiologists with Certificates of
Added Qualification and having 10 and 15 years of experience.
The average time for manual segmentation of the tumor subre-
gions per each case was approximately 1hour.

Data Preprocessing
MR imaging volumes were converted to NIfTI format using
“dcm2niix” (https://github.com/rordenlab/dcm2niix).18 DICOM
is not typically used directly in machine learning training and con-
version to a NIfTI format is a fairly standard and accepted method
for handling image data because the conversion is lossless and
there are good existing Python libraries for handling NIfTI.
Precontrast T1, T2, and FLAIR MR images were coregistered to
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T1ce volume via rigid transformation with 6 df from FMRIB’s
Linear Image Registration Tool (FLIRT; http://www.fmrib.ox.
ac.uk/fsl/fslwiki/FLIRT). When 3D T2 SPACE was not available,
we used only 2D T2. Skull-stripping in the patient’s space was
performed using the Advanced Normalization Tools software
package (ANTS; http://stnava.github.io/ANTs/) with a templ-
ate from the LONI Probabilistic Brain Atlas (LPBA40) to elimi-
nate superfluous data.19 The LPBA40 two dataset is composed
of 40 healthy subjects and their corresponding manually labeled
brain masks.20 Image intensities were normalized to a standard
normal distribution (m ¼ 0, s ¼ 1).

Model Architecture and Postprocessing
Our model architecture fuses key elements from 2 of the top-
ranked BraTS models that have made their source code publicly
available: 1) a cascaded anisotropic CNN (CA-CNN), ranked
number 2 in the 2017 BraTS Challenge;8 and 2) an autoencoder
regularization (AR), ranked number 1 in the 2018 BraTS
Challenge.9 These works are attributed originally to research
groups from University College London, United Kingdom, and
NVIDIA Corporation, respectively. We fused the autoencoder
regularization with the cascaded CNN (AR-CA); a summary
overview of the architecture is shown in Fig 1.

The first step in the fused model involves using a framework
combining CA-CNN and an additional branch of variational
autoencoder to reconstruct the input image of a brain glioma for
regularization consistent with the architecture described by
Myronenko.9 In addition to the CA-CNN encoder backbone, there
are 2 decoders: 1) a segmentation decoder that generates the seg-
mentation maps for the 3 subregions: WT, TC, and ET; and 2) a

variation decoder trained to reconstruct the input MR image used
only during the training step. The encoder backbone is composed
of 10 residual blocks with different dilations and 4 fused blocks.
Each of these blocks contains 2 intraslice convolution layers with an
intraslice 3 � 3 � 1 kernel. The input of a residual block is directly
added to the output, encouraging the block to learn residual func-
tions with reference to the input.8 The fused block has an interslice
1 � 1 � 3 kernel. Convolution layers with either of these kernels
have C output channels, and each is followed by a batch normaliza-
tion layer and a Parametric Rectified Linear Unit activation layer.
The segmentation decoder upsamples the previous fused blocks,
concatenates them, and produces a final block with 2 channels to
generate the final binary prediction. The WT is first segmented
(WNet); then the bounding box including the WT, which directly
combines the 4 sequences (T1, T1ce, T2, and FLAIR), is used as
multiview fusion input for the TC segmentation (TNet). On the ba-
sis of the obtained bounding box of the TC, the ET (ENet) is finally
segmented. The segmentation results from 3 different orthogonal
views (axial, coronal, and sagittal) are fused by averaging the soft-
max output to achieve higher accuracy for each individual network.
Once the glioma was segmented, postprocessing steps for hole fill-
ing and island removal were performed followed by reconversion
to DICOM. Hole filling fills holes smaller than 3mm3 inside pre-
dicted tumors, while the island removal keeps only tumor compo-
nents with volumes larger than 1/10 for WT, TC, and ET in each of
the cascaded segmentation steps performed (WNet, TNet, and
Enet, respectively). Reconversion to DICOM is performed on T1ce
and FLAIR volumes in the axial plane using SimpleITK (https://
simpleitk.org/). DICOMmetadata are copied from the original cor-
responding series section by section.

FIG 1. Summary of network architecture showing the combined use of triple CA-CNN8 and autoencoder regularization.9 Three networks hier-
archically segment whole tumor (WNet), tumor core (TNet), and enhancing tumor (ENet) sequentially. These are structurally similar, and each
network has a dilated ResNetlike block with the GroupNorm normalization, multiscale fusion, downsampling, and upsampling. ENet uses only 1
downsampling layer. The output of the segmentation decoder has 2 channels followed by a sigmoid for segmentation maps. The AC branch
reconstructs the input image into itself and is used only during training to regularize the shared encoder.

AJNR Am J Neuroradiol �:� � 2022 www.ajnr.org 3

http://www.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
http://www.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
http://stnava.github.io/ANTs/
https://simpleitk.org/
https://simpleitk.org/


Learning
All models, AR-CA and individual baseline models, were trained
and tested using the same datasets as described above. We applied
data augmentation by flipping and randomly applying volume
center shifting and scaling (factor within 0.9–1.1). We tuned and
optimized network hyperparameters: learning rate, optimization
function, drop-out rate, batch size (number of images simultane-
ously processed during training), number of epochs (full training
cycles), Adam optimizer for gradient descent optimization,21 and
D and patience of the early stop. The early stop is a mechanism to
preemptively stop training when the increase in performance on
the validation set (D) becomes too small for a certain time
(patience). To prevent overfitting, we applied the Parametric
Rectified Linear Units activation function. All calculations were
done on a single NVIDIA Tesla V100 SXM2 32 GB of memory
(https://www.nvidia.com/en-gb/data-center/tesla-v100/). A hyper-
parameter tuning loop typically took �18hours and was per-
formed using the validation data. Three hundred epochs were
trained by setting the learning rate to 0.001 and the decay rate to
0.01, with a 3-epoch interval to derive the optimal validation Dice
scores. The code was implemented in Python 3.6 with Pytorch 1.2
(https://pypi.org/project/pytorch-pipeline/).

Model Assessment
The accuracy of the output of the DL segmentation model was com-
pared with expert manual segmentation of subregions using the
Dice score and the Jaccard index, and all cases were visually
inspected. The Dice score and Jaccard index are mathematically
related similarity indices [Jaccard index ¼ Dice/(2-Dice)] ranging
between 0 and 1, where 1 corresponds to perfect agreement. The dis-
tributions of the preoperative and postoperative tumor volumes are
given in the Online Supplemental Data. Comparison is made of the
AR-CA model performance on the test dataset against both original
implementations of the CA-CNN and AR as baseline models.

Pipeline Implementation
For clinical implementation of automatic tumor segmentation,
an end-to-end pipeline was constructed to identify and route
the MR imaging DICOM of patients with glioma, perform the
file conversion and necessary preprocessing steps, run the DL-
based model, and push quantitative results to clinical viewing.

RESULTS
The Table and the Online Supplemental Data outline mean andme-
dian Dice scores and Jaccard indices, respectively, in 40 test cases for
the fusion model, AR-CA, and the baseline models CA-CNN and

AR, compared against the expert manual segmentations for WT,
TC, and ET subregions. Preoperative and postoperative cases are
reported separately. In general, there is an overlap in performance
among these approaches in terms of Dice scores for both pre- and
postoperative cases, with the highest mean and median values
achieved using the combination approach in the fusion model com-
pared with the 2 individual baseline models, which inform its main
architecture (Table).8,9 Most important, our results were achieved
across different machines across multiple imaging sites (Online
Supplemental Data). Segmentation labels computed by baseline and
AR-CA models compared against ground truth manual segmenta-
tion are shown on representative preoperative and postoperative
test cases in Fig 2.

Pipeline Implementation
An overview of the implementation pipeline framework is shown
in Fig 3. The pipeline operates by using 2 servers: one for data
transmission and the other for inference. The former is responsi-
ble for routing of images to the inference server and pushing its
output back to the PACS. The inference server contains 3 mod-
ules: 1) the preprocessor for image conversion to NIfTI, skull-
stripping, and coregistration among series; 2) segmentation using
the fusion model, AR-CA, to produce segmentation for ET, TC,
and WT;7 and 3) the postprocessor for tumor ROI volume quan-
tification including island removal and hole-filling operations,
followed by reverse conversion back to DICOM. The overall total
processing time for 1 case was �10minutes including data rout-
ing (�1 minute), preprocessing (�6 minutes), segmentation
(�1–2 minutes), and postprocessing (�1 minute).

DISCUSSION
We present an open source, end-to-end pipeline for fully auto-
matic volumetric segmentation of both pre- and postoperative
gliomas and describe the required measures for practical inte-
grated implementation to routine clinical workflow. The AR-CA
model described here is inspired by a fusion of key model ele-
ments from 2 publicly available top-ranked BraTS models that
were designed to segment preoperative gliomas. We retrained on
an enlarged cohort that also included postoperative follow-up
imaging, achieving high performance on both preoperative and
postoperative cases. In fact, this fused model enhanced via hyper-
parameter optimization and data augmentation resulted in higher
Dice scores overall compared with results obtained by individual
original top-ranked BraTS models.8,9

An automatic volumetric approach to measuring tumor bur-
den may offer notable advantages over 1D and 2D methods

Median and mean Dice scores for AR-CA model and 2 baseline models compared against expert manual segmentations for preoper-
ative and postoperative test glioma cases

Model
Dice Score, Preoperative Cases (Median/Mean [SD]) Dice Score, Postoperative Cases (Median/Mean [SD])

WT TC ET WT TC ET
AR-CA 0.91/0.88/0.09a 0.91/0.79/0.23a 0.87/0.75/0.27a 0.84/0.83/0.08a 0.86/0.84/0.06a 0.74/0.72/0.12a

CA-CNN8 0.90/0.85/0.11 0.91/0.83/0.17 0.84/0.70/0.31 0.80/0.80/0.14 0.84/0.81/0.07 0.69/0.67/0.14
AR9 0.87/0.84/0.09 0.82/0.72/0.12 0.71/0.68/0.21 0.82/0.75/0.14 0.63/0.63/0.2 0.66/0.61/0.16

Note:—TC indicates tumor core, including nonenhancing tumor, necrotic or cystic central regions and, in the case of postoperative cases, the resection cavity.
a Best-performing model in terms of median Dice scores.
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commonly used for glioma measurement and ultimately may
even achieve better performance than manual segmentations.
Indeed, a recent randomized and blinded comparison study using
a data base of 741 glioma cases reported a better qualitative per-
formance of the DL-based segmentation algorithm compared
with human raters, with a mean Dice score of 0.87 for the whole
tumor.22 There is evidence that volumetric measures provide
more accurate and consistent estimation with better prediction of

overall survival, especially for HGGs in light of their often com-
plex shape.23-26 Specifically, postoperative contrast-enhancing tu-
mor volume is strongly associated with overall survival and
progression-free survival in patients with glioblastoma.23,27

Until to now, there have been few attempts to use DL to seg-
ment postoperative MR images of patients with gliomas.10-12,15

Most of these works do not address identification of the surgical
cavity and achieve maximal Dice scores of 0.65–0.7 for postop-

erative cases. More recently, Ermiş et
al,6 developed a dedicated DL-based
model for automatic segmentation of
the RC in a cohort of 30 postopera-
tive patients with HGGs. They noted
that the model may be helpful for
postoperative radiation therapy with
effective time-savings, though the
results were still suboptimal com-
pared with human raters. Chang et
al10 developed a DL automatic algo-
rithm based on 3D U-Net architec-
ture for volumetric segmentation of
brain gliomas, which includes 2 sub-
regions: FLAIR hyperintensity and
T1 contrast-enhancing, omitting NC
and RC subregions. They used a
cohort of preoperative (n¼ 293) and
postoperative (n¼ 54) patients with
gliomas and found high agreement
between manual raters and autom-
atic volumetric segmentation with
reported Dice scores of 0.696 and
0.701 for the enhancing tumor and
peritumoral edema, respectively. In
that work, the surgical cavity was not
segmented. The results of our AR-CA
model outperformed these previously
reported Dice scores and further pro-
vide labeled segmentation of the NC/
RC subregions, which are important
for radiation therapy planning.6 Zeng
et al11 used a hybrid generative-dis-
criminative model (GLISTRboost) for
segmentation of pre- and postoperative

FIG 2. Segmentation labels computed using the AR-CA model and 2 baseline models for com-
parison, shown here with the ground truth expert manual segmentation on representative preop-
erative (A) and postoperative (B) glioma (at 5-months’ follow-up) test cases. Segmented tumor
regions overlaid on postcontrast 3D MPRAGE and 3D SPACE FLAIR. The blue mask denotes the
whole tumor (peritumoral edema and tumor core); the yellow mask denotes the tumor core
(nonenhancing, necrotic tumor/resection cavity, and enhancing portions of the tumor); and the
red mask denotes the enhancing tumor. Arrows mark areas of overestimation or underestima-
tion of peritumoral edema by the baseline models compared with the AR-CA model and the
ground truth segmentations.

FIG 3. Schematic visualization of the implementation pipeline. An end-to-end pipeline was built to automate routing of relevant DICOM series
from the MR imaging scanner through a vendor-neutral archive server to the inference server where preprocessing, automatic segmentation,
and postprocessing tasks are executed. Thereafter, output results are sent back to the PACS for viewing using the data-transmit server again.
Overall total processing time for 1 case is about 10minutes including data routing (�1 minute), preprocessing (�6 minutes), segmentation (�1–2
minutes), and postprocessing (�1 minute).
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MR images of patients with gliomas (186 preoperative and 32
postoperative MR images were included). Their results showed
median Dice scores of 0.75 and 0.65 for the preoperative and
postoperative cases, respectively, compared with the reference
segmentation.

Meier et al12 aimed to evaluate the use of a fully automatic
segmentation method, Brain Tumor Image Analysis (BraTumIA;
http://mia-software.artorg.unibe.ch/BraTumIA/) for estimating
the extent of resection and residual tumor volume of contrast-
enhancing tumor after an operation, reporting the segmentation
of the enhancing component without segmentation of the RC.
Although our results overall are promising, we did observe a few
postoperative segmentations with low accuracy, perhaps as a
result of limited resilience of the model to operative artifacts,
such as brain distortion, blood products, and air in the RC. There
were also some cases of periventricular tumors in which portions
of the ventricular system and choroid plexus were mislabelled as
TC and ET, respectively.

Once a pipeline is fully integrated
into the PACS and clinical workflows,
any model improvements and updates
can be made quite readily on the server
without requiring changes in other
components of the pipeline.

Challenges of Model Development
Preprocessing steps exactly analogous
to how data from the BraTS datasets
are processed are used here because the
model is inspired from top performers
on prior BraTS Challenges and the
BraTS dataset in model development.
In addition, preprocessing of DICOM
is almost always necessary for input
into machine learning models because
the current common software libraries
accommodate different image formats,
though generally not DICOM. Such
preprocessing steps are, of course, not
part of any routine clinical image
handling. Such preprocessing steps are
nontrivial, typically rule-based, and
account for �60% of the total process-
ing time, given the relative speed of in-
ference. Model performance is also
dependent on meticulously reproduc-
ing these steps or their equivalent
(Fig 4).

Another challenge is that publicly
available code repositories variably
include optimization parameters. The
lack of optimization parameters cer-
tainly limits cross-institution adoption.
As we move forward, sharing of opti-
mization parameters is also critical to
facilitate effective sharing of models.

While the BraTS Challenge has
contributed significantly to moving the field forward, ultimately
for clinical use, a model is needed that can handle both preopera-
tive and postoperative cases because longitudinal follow-up and
assessment of postoperative residua are desired. Thus, training
models to handle postoperative cases is necessary to achieve
higher clinical relevance. For postoperative cases, to the best of
our knowledge, there are no publicly available ground truth data-
sets. In performing our own manual segmentations, we also found
inherent difficulties in discrimination between NC versus RC and
ET versus postoperative enhancement. For consistency, our
approach was to label the RC and NC together and also label the
ET and postoperative enhancement together, a method that has
been used previously.1 While clearly incompletely precise, these
pairs of areas have overlapping intensity characteristics and are
simply not reproducibly segmented manually or otherwise; similar
observations have also been noted by others in the field.11,28,29

Not only is it important to test and potentially retrain on local
data due to differences in sequence parameters, in attempting to

FIG 4. AR-CA segmentation model performance for high-grade gliomas with (right) and without
(left) skull-stripping. T1 MPRAGE postcontrast (upper) and FLAIR (lower) images are shown. This
example demonstrates how preprocessing steps are necessary to facilitate proper segmentation
with obvious errors in estimating the whole tumor and entirely failing to segment the tumor core
and enhancing tumor subregions.
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do so, we also found that sequences used for our local clinical MR
imaging protocols (and likely also true for other imaging centers)
do not necessarily match BraTS imaging sequences. For example,
at our institution, it is not customary to acquire all three 3D pulse
sequences (T1-weighted, T2-weighted, and T2 FLAIR) in every fol-
low-up tumor case due to the long acquisition times associated
with such a protocol, mainly reserved for operative cases for stereo-
taxis. Thus, effective clinical segmentation models need be able to
handle differences in preoperative and postoperative protocols.
The model performance may well have been higher for postopera-
tive cases if we had access to 3D T2 SPACE for training in all cases;
however, with the aim of developing a tool adaptive to its clinical
environment rather than the other way around, we retrained using
our existing clinical protocols achieving 4%–6% improvement in
Dice scores for the different subregions. Most important, once the
pipeline is worked out, model improvements or substitutions or
both are easy to implement. Therefore, continued clinical evalua-
tions of segmentation models should be performed.

Challenges of Implementation
A number of practical challenges were present when mapping
out implementation. Correct routing of studies and series to the
model is required, necessitating mapping from multiple scanners
and sites. Studies were routed on the basis of the type of protocol.
Unfortunately, we have a single protocol for preoperative neuro-
surgical cases that include pathologies different from gliomas (eg,

meningioma, metastasis, arteriovenous malformation). When
these were input into the model, some of the output was reasona-
ble (Fig 5), though the model is not reliable for these other path-
ologies because it has not been trained or tested on any such
examples. To address this issue, we had to create a discrete proto-
col for presurgical MR imaging with glioma segmentation. Of
note, there is a clinical precedent for specialized protocols such as
this, for example, for the indication of dementia and referrer
requests for quantitative volumetrics of the brain. For series rout-
ing, filtering rules were set up on the basis of series description,
though due to description drift with time and inconsistent nam-
ing convention, this currently requires manual periodic evalua-
tion for updating of rules, and irregularities were encountered
more frequently initially.

Left/right mirror-image flipping occurred in some cases
with one of the 3D sequences. This may have resulted from
scanner differences in terms of setup, defaults, and direction of
scanning. This occasionally prevented proper coregistration,
resulting in nonsense output. Another barrier encountered was
sudden failure of the pipeline, resulting in no studies being
processed. After investigation, it appeared that the mount
between the data transit server and the storage space discon-
nected due to a reboot of one of the servers. Thus, we set up a
notification mechanism when the mount/server was down.
Finally, in �5% of cases, we encountered inconsistent delays in
routing to the inference node because there was no notification
of completion of image routing and, thus, no clear trigger for
the model to run. Typically, routing to the inference node took
1–2 minutes; however, in about 20% of the cases typically due
to delays on the scanner itself, the delay could be as much as
15–30minutes. We set a wait-time window on the inference
node of 2minutes for a new study, looping over all previously
received studies during that day. In aggregate, across all modes
of failure described, approximately 90% of cases yielded useful
segmentation masks. Most important, routing solutions are
likely to benefit from machine learning, possibly DL.30

Toward successful deployment, the need to educate end users
including radiologists, neurosurgeons, and neuro-oncologists
about the strengths and limitations of the tool is paramount.
Tumor segmentations must be reviewed and volume calculations
must not be blindly followed. Over- and underestimation of tu-
mor will occur, and the calculation of a 95% confidence interval
for all measurements is further recommended. One should con-
sider what the output looks like, whether to output directly to the
clinical PACS environment or a separate application. For work-
flow purposes, more often than not, viewing in the PACS is pre-
ferred by clinical radiologists and obviates the need for
navigating complex additional software; however, not all PACS
vendors can accommodate specific output (color, overlays, and
so forth), and sending too many unnecessary, additional series to
the PACS can overwhelm and possibly confuse viewers. In this
case, we sent output segmentations directly to the PACS superim-
posed on SPACE FLAIR and MPRAGE postcontrast in the axial
plane. We avoided complex interactions between the end user
and the segmentation, though a templated macro is added to the
report regarding the accuracy of the segmentation and poor seg-
mentations can be marked in the PACS as such.

FIG 5. AR-CN segmentation model performance in a patient with
left convexity meningioma. Despite reasonably good performance of
the model is this case, the model has not been trained or tested on
this type of pathology and would not be reliably expected to per-
form on such cases.
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Limitations
The postoperative segmentation definitions used here are defined
on the basis of imaging characteristics and do not necessarily
imply that these should dictate specific treatments. We realize
that postsurgical tumors are challenging to detect and parse.
Ground truth manual segmentations are generally considered the
criterion standard for this task; however, they are also known to
have interobserver variability.31 This tool is not intended as a
classification tool for recurrent tumor and notably does not
incorporate information from diffusion and perfusion MR imag-
ing. We believe that a tool such as the one described here can
help inform follow-up in patients with gliomas by providing
quantitative 3D measures based on the standard imaging pulse
sequences described, though clearly these must be interpreted in
conjunction with the images themselves in addition to any other
available pulse sequences, prior imaging, and, as always, by a
trained radiologist and oncologic care team with knowledge of
the clinical history, treatment regimen, and current presentation.
In addition, postoperative cases are not represented in the BraTS
dataset, so these are derived exclusively from our local dataset,
which is relatively small. Although there are images obtained
from 3 different scanner types (Magnetom Skyra, Magnetom
Prisma, and Magnetom Vida) and 5 imaging sites, these are from
a single institution, represent images from a single vendor, and
are all acquired at 3T. Adoption for use in a different institution
would require testing and possible fine-tuning the model on local
data. In the future, the model would likely benefit from a greater
number of training datasets.

CONCLUSIONS
This study serves as proof of concept of model development coor-
dinated with pipeline implementation for a DL-based model for
automatic volumetric segmentation that can handle both pre- and
postoperative gliomas. Such a unified approach facilitates model
design and training compatible with routine clinical workflow. We
present a model that most importantly accommodates postopera-
tive cases that are clinically important to assess for disease progres-
sion and recurrence. The model fuses key innovations from
available top-ranked source codes with favorable performance
achieved after hyperparameter optimization and discusses the chal-
lenges and limitations of the tool. Such a tool may help finally real-
ize clinical translation of quantitative measures for brain tumors.

Source code can be found at https://github.com/abenpy/
ARCNet.
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