






changes of kurtosis have been reported
previously in nonconcussed young foot-
ball players with cumulative head impact
exposure.27 In addition, the affected WM
regions in the SRC group compared with
non-contact-sport controls decreased
across time points, suggesting partial re-
covery of microstructural changes dur-
ing the study period (Fig 2B). Most
interesting, persistent higher AK in the
SRC group was observed compared with
the non-contact-sport controls mainly
in the CC on 6-month follow-up scans
(Fig 2A), suggesting longer-term persist-
ence of microstructural changes associ-
ated with SRC. Although AK is not
specific, it reflects tissue microstructural
complexity along the long axis of the
axon and has been previously associated
with changes such as reactive astroglio-
sis28 as well as frank axon damage.13

We observed few scattered, focal
areas of higher De,|| in the SRC group
compared with the non-contact-sport
controls only at the acute stage (Fig 1);
however, in the RHI group, higher De,||

was persistently observed across all time
points compared with the non-contact-
sport controls (Online Supplemental
Data). Previous studies have reported
De,|| to be sensitive to changes along the
axons in the extra-axial space due to glio-
sis, loss of oligodendrocytes, extracellular
inflammation, and vasogenic edema.15

FIG 2. Evolution of differences in AK between the SRC and HC groups across 4 time points. A, Maps show regions along the WM skeleton that
demonstrate a signi� cant difference (blue) in AK between the SRC and HC groups across 4 time points (T1–T4). B, Corresponding bar graphs show
the percentage of signi� cantly different voxels on the skeleton across time points. The extent of signi� cantly different WM regions decreases
across time points, remaining present primarily within the corpus callosum at time point 4.

FIG 3. TBSS results comparing the RHI and HC groups (time point 1): Clusters of voxels (blue) dem-
onstrating signi� cantly higher AK and MK in the RHI group compared with the HC group are also
present diffusely across the entire WM. Additionally, increased De,|| and AWF in the RHI group are
seen in focal areas of WM regions including the corpus callosum, corona radiata, superior longitudi-
nal fasciculus, posterior limb of the internal capsule, retrolenticular part of the internal capsule, pos-
terior thalamic radiation, and cerebral peduncle. The signi� cance level was P, .05, corrected for
multiple comparisons by controlling the family-wise error rate.
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Of note, these individuals with RHI, unlike the players with SRC
who were taken out of active play, were exposed to repeat head
impacts throughout the study period. Our findings of the elevated
De,|| accompanied by the increases in AK and MK in these individ-
uals indicate the presence of complex microstructural alterations,
localizing to the extracellular space, that seem to relate to exposure
to repeat head impacts. While similar findings were present at the
initial time point in the SRC group, these were no longer present at
later time points after a recuperation period without RHI exposure,
suggesting that at least some of the white matter microstructural
changes associated with RHI exposure may be reversible early on.

We also observed decreased RK and Daxon and increased AK in
the SRC group compared with non-contact-sport controls, present
only at time point 3 when the players with SRC were cleared to
return to play. These observations were present mainly in the mid-
posterior CC (Online Supplemental Data). Both increased AK and
decreased RK have previously been reported by Zhuo et al28 in a
controlled compact injury rat model, similarly in the subacute
stage after injury (7 days postinjury). These findings support the
notion that some changes may become apparent in the subacute
phase after the initial insult and that diffusion characteristics relat-
ing to the intra-axonal compartment itself are affected. Changes in
Daxon have been attributed to a range of pathologies, including axo-
nal disruption as well as axonal injuries such as beading, varicosity,
undulation, and swelling.29–31 Decreases in Daxon have previously
been observed in the setting of ischemic brain injury13 as well as in
subacute civilian, non-sports-related mild traumatic brain injury.9

From biomedical modeling of torsional and stretch forces after
head impact, it is known that the CC is an at-risk structure.32,33

Our findings are in keeping with prior evidence that the CC is one
of the most affected WM regions after SRC, and this result was
also the case in our group exposed to RHI.5,9,34,35 The CC is the
largest transhemispheric WM structure, composed of several im-
portant anatomically and functionally distinct WM tracts. Our
results reinforce the idea that WM injury, particularly affecting the
CC, is mechanistically important in SRC and also suggest that this
is important in RHI as well.

Our findings add to previously published results from a larger
cohort from the National Collegiate Athletic Association-
Department of Defense Concussion Assessment, Research and
Education (CARE) Consortium study.4,5,36 The current study
focuses on diffusion MR imaging microstructural changes; specif-
ically here, we study the subset of the total cohort who underwent
multishell diffusion MR imaging accommodating compartment
diffusion modeling as discussed in the Materials and Methods
section. We also restricted our study by scanner type and sport to
minimize data variability relating to these factors.37,38 Moreover,
the main difference between the current study and previous stud-
ies4,5,36 is that we have used compartment-specific diffusion pa-
rameters to try to understand potential changes in the underlying
tissue microstructure. Of note, in this restricted cohort, we found
no significant differences in conventional DTI metrics such as FA
or MD that were present in previous studies, possibly due to use
of a smaller subset of the cohort.39

There are several limitations to this study. First, study time
points were based on symptomatology and clinical status rather
than a predefined follow-up interval, prohibiting parsing of the

precise temporal evolution of diffusion MR imaging changes
relating to injury and/or exposure. The range in the length of the
symptomatic period after injury is, however, reflective of the nat-
ural history of SRC. Second, the study includes relatively small
sample sizes, which can reduce statistical power, particularly at
later time points (time points 3 and 4). The smaller cohort size
may have also explained why we did not see changes in FA and
MD, which others have previously shown.4,5,36 Finally, we used
standard TBSS methods that are well-documented, but TBSS is
sensitive to maximal deviations in diffusion metrics because of
the use of maximum values projected onto the white matter skel-
eton. The benefit of such an approach is that it reduces the need
for image smoothing and alleviates any residual misalignment.40

In this study, we used both TBSS and post hoc ROI analyses to
assess WM changes to look for consistencies between the
methods.

CONCLUSIONS
There are differences not only in concussed football athletes but
also in nonconcussed football athletes compared with non-con-
tact-sport control athletes in terms of diffusion microstructure
measures. These findings reinforce previous work showing that
the corpus callosum is specifically implicated in football athletes
with SRC and also suggest this to be true for football athletes with
RHI. Further study on the effect of RHI across time may provide
insight into the temporal dynamics of injury in both SRC and
athletes who may be exposed to RHI.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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