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ORIGINAL RESEARCH
BRAIN

Quantitative CT Densitometry for Predicting Intracerebral
Hemorrhage Growth

C.D. Barras, B.M. Tress, S. Christensen, M. Collins, P.M. Desmond, B.E. Skolnick, S.A. Mayer, and S.M. Davis, for the
Recombinant Activated Factor VII Intracerebral Hemorrhage Trial Investigators

ABSTRACT

BACKGROUND AND PURPOSE: Intracerebral hemorrhage growth independently predicts disability and death. We hypothesized that
noncontrast quantitative CT densitometry reflects active bleeding and improves predictive models of growth.

MATERIALS ANDMETHODS: We analyzed 81 of the 96 available baseline CT scans obtained�3 hours post-ICH from the placebo arm of
the phase IIb trial of recombinant factor VIIa. Fifteen scans could not be analyzed for technical reasons, but baseline characteristics were
not statistically significantly different. Hounsfield unit histograms for each ICH were generated. Analyzed qCTD parameters included the
following: mean, SD, coefficient of variation, skewness (distribution asymmetry), and kurtosis (“peakedness” versus “flatness”). These
densitometry parameters were examined in statistical models accounting for baseline volume and time-to-scan.

RESULTS: The coefficient of variation of the ICH attenuation was themost significant individual predictor of hematoma growth (adjusted
R2� 0.107, P� .002), superior to BV (adjusted R2� 0.08, P� .006) or TTS (adjusted R2� 0.03, P� .05). Themost significant combinedmodel
incorporated coefficient of variation, BV, and TTS (adjusted R2� 0.202, P� .009 for coefficient of variation) compared with BV and TTS
alone (adjusted R2� 0.115, P� .05). qCTD increased the number of growth predictionswithin�1 mL of actual 24-hour growth by up to 47%.

CONCLUSIONS: Heterogeneous ICH attenuation on hyperacute (�3 hours) CT imaging is predictive of subsequent hematoma expansion
and may reflect an active bleeding process. Further studies are required to determine whether qCTD can be incorporated into standard
imaging protocols for predicting ICH growth.

ABBREVIATIONS: BV� baseline ICH volume; ICH� intracerebral hemorrhage; qCTD� quantitative CT densitometry; rFVIIa� recombinant activated factor VII;
TTS� time-to-scan (from ictus)

ICH is the most devastating and least treatable stroke subtype.

Hematoma growth is an important independent predictor of

mortality and poor outcome and is a promising therapeutic tar-

get.1 It occurs in �70% of patients studied within 3 hours of the

onset of ICH.1 Hemostatic studies by using rFVIIa have demon-

strated approximately 50% less growth compared with a pla-

cebo.2,3 Despite this potent biologic effect, discordant clinical re-

sults were found between an initial phase IIb proof-of-concept

trial2 and a pivotal phase III trial.3 However, post hoc analyses of

enriched patient subgroups from the phase III trial suggest that

the utility of hemostatic therapy may be improved by the appro-

priate identification of patients at high risk for hematoma

growth.4

As a result, there is a critical need to establish imaging predic-

tors of ICH growth that are rapidly and easily accessible.5,6 Estab-

lished imaging predictors of hematoma growth include baseline

ICH volume and time to baseline CT scan.7,8 With contrast CT,

the CTA “spot sign” has more recently been identified as an inde-

pendent predictor of hematoma growth and outcome9-11 and is

being prospectively validated in multiple centers worldwide.12

While the sign is reasonably easily identified and may be readily

applied in practice, caution is needed in the exclusion of spot sign

mimics.13 In addition, spot sign identification requires a contrast

CT scan and interpretive skill. Hemostatic agent trials based on spot

sign treatment selection are being conducted in North America

(NCT00810888, NCT01359202) and Australia (NCT01702636).

Noncontrast CT is the standard investigation tool in acute

stroke, given its widespread availability, relatively low cost, rapid

acquisition time, and safety. We first described the qualitative
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categorization of density heterogeneity as an independent predic-

tor of hematoma growth, according to specific growth defini-

tions.14 However, qualitative assessment has a number of limita-

tions, including reliance on operator-dependent methodology

and limited representation of the extent of attenuation

variation.14

We therefore set out to create new predictive models of hema-

toma growth on the basis of noncontrast CT, by using CT densi-

tometry, and compared a variety of models with existing predic-

tors, BV and TTS. We hypothesized that qCTD would enhance

the prediction of hematoma growth and would be able to do so

rapidly and with minimal operator intervention.

MATERIALS AND METHODS
The dataset used was the baseline CT scans from the placebo

group of the proof-of-concept trial of rFVIIa.2 Briefly, this ran-

domized, double-blind, placebo-controlled trial involved 399 pa-

tients with spontaneous ICH, diagnosed by baseline CT within 3

hours of onset, who were randomized to placebo (n � 96) or 1 of

3 dose regimens of rFVIIa. Of the 96 placebo patients, 81 were

available for analysis. Fifteen scans were either unsuccessfully

transferred for technical reasons or had been digitized from hard

copy films with loss of true Hounsfield unit densities. Baseline

characteristics, BV (defined as baseline ICH volume on diagnostic

NCCT) and TTS (defined as the time from symptom onset to

baseline NCCT), of the unavailable scans were compared with

those included to detect any baseline imbalances. We used the

ROIs for each patient’s hematoma and the corresponding ICH

volumes manually outlined by 1 of the 2 neuroradiologists for the

trial by using computer-assisted planimetrics (Analyze, Version

9.0; Mayo Clinic, Minneapolis, Minnesota). Scans were assessed

in random order, and the reader was blinded to treatment assign-

ment. Detailed methodology and reliability studies of imaging

analysis in this trial have been published demonstrating within

and between-rater intraclass correlation coefficients of �0.95.15

For our study, ICH growth was defined by using a continuous

scale and 3 binary definitions based on previous studies of hema-

toma growth: any growth; �33% or �12.5 mL growth; and

�1-mm radial growth (median radial growth of the baseline

scans).1,7,8,16 Each baseline CT scan and its ROIs were loaded into

a graphic user interface created in Matlab (Version R2008b;

MathWorks, Natick, Massachusetts). Hounsfield unit attenua-

tion distributions were sampled from every voxel within each pa-

tient’s entire ICH as defined by the Analyze ROIs, and densitom-

etry variables were calculated directly from this sample, as

described below.

Heterogeneity of ICH attenuation was analyzed in several

ways. The 4 moments of a distribution or their commonly applied

derivatives were calculated as descriptors of the distributions of

ICH densities. We calculated the mean attenuation (first mo-

ment), SD (square root of variance, the second moment), coeffi-

cient of variation (CV, SD/mean), skewness (S, third moment),

and kurtosis (K, fourth moment).17 Skewness is a measure of the

asymmetry of a distribution around its mean. Kurtosis is a mea-

sure of its “peakedness,” or its tendency to cluster around a mean

value compared with a more flattened distribution. Skewness and

kurtosis, which are dimensionless quantities, were calculated

from Hounsfield unit attenuation samples directly as a function

within Matlab, according to the standard definitions.18

The dependent variable, volume change from baseline at 24

hours, was cube root transformed to satisfy normality assump-

tions applied to the residuals of the models used. With growth on

a continuous scale, we used multiple linear regression, starting

with known predictors for hematoma growth, namely BV and

TTS, and sequentially adding individual densitometry variables as

independent variables 1 at a time. No individual model incorpo-

rated �3 variables, and no more than 1 densitometry variable was

included within any model, avoiding collinear coefficients. A set

of predictive models was also constructed with the exclusion of

TTS, because this parameter is frequently unknown (eg, in

wake-up stroke), to examine the predictive performance of qCTD

in this setting. Model-predicted values for the dependent vari-

ables required back-transformation to the original scale.

The various predictive models generated were compared by using

the adjusted R2 statistic (between 0 and 1). Adjusted R2 provides an

indication of the goodness of fit of the predictive linear model to the

ICH growth data or the extent to which the variability in the outcome

is explained by the model, adjusting for the number of explanatory

terms included. The models were run within the Statistical Package

for the Social Sciences (SPSS, Chicago, Illinois) to generate predicted

24-hour growth values for each patient, by using a dataset generated

by leave-one-out cross-validation.19,20 This technique avoids overes-

timation of model significance caused by testing a model on its der-

ivation dataset. These predictions were compared with actual growth

values, and an absolute difference was calculated. A time-interaction

term was explored across 2 time epochs, �1.5 hours and �1.5 hours,

for TTS.

Predictive models of hematoma growth as defined by the 3

binary outcome measures were created by using binary logistic

regression, starting with known predictors (BV, TTS) and se-

quentially adding individual densitometry variables. The result-

ing models were compared by establishing the predicted proba-

bility of growth for each patient within a validation dataset created

by using leave-one-out cross-validation, converting these to bi-

nary predictions of the binary growth outcome by using a proba-

bility cutoff of .5, and calculating the proportion of patients cor-

rectly predicted. The best models were examined further by using

receiver operating characteristic curve, with an optimized cut-

point identified by calculation of the Youden index.21,22 In all

cases, a P value � .05 was considered statistically significant. Anal-

yses were performed by using SPSS, Version 16.0.

RESULTS
Baseline Data
Median ICH BV was 14.1 mL (interquartile range [IQR], 27.4).

Median TTS was 101 minutes (IQR, 37.5). Median ICH growth

was 2.1 mL (IQR, 10.9). With binary growth definitions, 64 (79%)

cases underwent any growth, 29 (36%) grew �33% or �12.5 mL,

and 35 (43%) demonstrated radial expansion of �1 mm.

Baseline ICH volume and TTS of the 15 patients excluded

from the study did not vary from those included.

The densitometry values of the ICH attenuation distributions

are summarized in Table 1.
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Growth on a Continuous Scale
In multiple linear regression modeling (On-line Table), cube root

transformation of the dependent variable satisfied assumptions of

normality and constant variance for each model fitted. Of the

predictors examined, coefficient of variation was the most signif-

icant individual predictor, with an adjusted R2 of 0.107 (P �

.002), which was greater than either BV or TTS and almost as high

as their combination. A model incorporating BV, TTS, and coef-

ficient of variation accounted for more data variability (adjusted

R2 � 0.202, P � .003 for coefficient of variation) than a model in-

volving BV and TTS alone (adjusted R2 � 0.115), with a 47% im-

provement in the number of predictions correct to within �1 mL

(28/81 versus 19/81, respectively). In the model including BV, TTS,

and coefficient of variation, time was a significant interaction term

when considered across 2 time epochs, �1.5 hours and �1.5 hours

from onset to baseline CT, with a greater magnitude of increase in

volume-per-unit decrease in coefficient of variation in the group

scanned earlier (P � .016). An illustrative case is presented in Fig 1.

In models excluding TTS as an independent variable, the in-

clusion of either SD of the attenuation distribution (adjusted

R2 � 0.147, P � .01 for SD) or coefficient of variation of the

attenuation distribution (adjusted R2 � 0.171, P � .003 for coef-

ficient of variation) proved to be superior to a model based on BV

alone (adjusted R2 � 0.082), with an extra 5 and 3 cases correctly

predicted to within �1 mL, respectively.

Binary Growth Definitions
With a growth definition of “any growth,” so many scans were

designated growers (79%) that none of the predictive models were

found to be significant. With a growth definition of �33%

or �12.5 mL, models including BV, TTS, and either SD or coef-

ficient of variation produced small receiver operating character-

istic curve improvements but with minimal impact on the pro-

portion of cases correctly predicted in the cross-validated dataset

(4 extra correct cases, 5%). However, with a definition of �1 mm

radial growth, models including BV (P � .02) and either SD (P �

.02) or coefficient of variation (P � .007) were statistically signif-

icant. The densitometric model incorporating BV, TTS, and co-

efficient of variation achieved a 5.5% improvement in the ROC

area under the curve (AUC � 0.729, Fig 2A) over a model based

on BV and TTS alone (AUC � 0.691, Fig 2B), with a similar

percentage increase in correct growth predictions and statistical

significance of the densitometric term (P � .006 for coefficient of

variation). The area under the curve in Fig 2A indicates that in a

random sample of patients with ICH, 73 of 100 who undergo ICH

growth will have a more positive predictive model output than

those without ICH growth. The Youden index (J statistic) of 0.404

indicated an optimized sensitivity of 60% and a specificity of 80%.

The negative predictive value was 100%, and the positive predic-

tive value was 49%. An alternative point on the receiver operating

characteristic curve yielded a sensitivity of 80% and a specificity of

54%. The most correct predictions occurred by using the BV and

coefficient of variation model (58% correct), with no significant

effect relating to time category (�1.5 hours versus �1.5 hours) as

an interaction term in the model (P � .317).

DISCUSSION
This study demonstrated that qCTD can be used to improve pre-

dictive models of ICH growth beyond known predictors, namely

BV and TTS, increasing predictions within a cross-validation-

derived dataset within �1 mL of actual growth by up to 47%, with

statistical significance of the densitometric variable in some mod-

els. In isolation, coefficient of variation was a superior predictor

(by using adjusted R2) to either BV or TTS and was statistically

significant. With a continuous growth scale, a predictive model

incorporating qCTD accounted for �20% of variability in cube

root volume change. This result represents a 76% improvement in

adjusted R2 compared with a model based on BV and TTS alone.

Calculation of qCTD was fully automated, with measurements

performed in a few seconds.

FIG 1. A, Baseline CT scan obtained 85 minutes post-ictus with a volume of 62 mL (region of interest in red). B, Hounsfield unit histogram (mean,
54.9; SD, 41; coefficient of variation, 0.75; skewness,�0.47; kurtosis, 2.27). C, Follow-up 24-hour CT scan, with 16-mL total ICH growth, predicted
to within 5 mL of actual growth by a model based on BV/TTS and within 1 mL of actual growth by a model based on BV/TTS/coefficient of
variation. Note that overall study results are tested on a cross-validation-derived dataset (see text).

Table 1: Densitometry values of the ICH density distributions
qCTD Parameter Average Value (SD, range)

Mean 56.4 (�6.16, 37.7–73.2)
SD 59.6 (�16.4, 28.3–119)
Coefficient of variation 1.05 (�0.25, 0.56–1.67)
Skewness �0.21 (�0.25,�0.84–0.33)
Kurtosis 2.21 (�0.39, 1.65–3.68)
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Early studies found CT densities to be helpful in the descrip-

tion of hemorrhage morphology, intracranially and else-

where.23,24 CT densitometry has been used in the assessment of

intracerebral hematoma appearance in the setting of low hemat-

ocrit and thrombocytopenia25 and in the prediction of hemor-

rhage following tPA administration in acute ischemic stroke.26

The dynamic expansion of ICH was recognized in the pre-CT

era,27 and subsequently, by using CT, was shown to be maximal in

the first few hours following symptom onset.28 A primary hem-

orrhagic insult to the brain occurs at ictus with fresh, hypoattenu-

ated liquid blood rapidly clotting to appear hyperattenuated on

CT.29 Larger bleeds have been shown to be more heterogeneous in

attenuation at baseline CT.14 Kim et al11 found that a low-atten-

uation “swirl sign” within hematomas on noncontrast CT was

associated with increased mortality on univariate but not multi-

variate analysis. Secondary neural damage is then brought about

by edema and blood-breakdown products.30

Considerable attention has been given to the CTA spot sign, an

independent predictor of hematoma growth characterized by

uni- or multifocal contrast enhancement within the ICH at sites of

active bleeding.9-11 Densitometry has

been incorporated into refined criteria for

the spot sign.31

Although the phenomenon of wake-up

stroke is more common in ischemic

stroke,32,33 ICH takes place during sleep in

15% of patients, and these patients have a

significantly higher baseline hematoma

volume and 1-month mortality.34 The

current study provides support for the

supposition that in the absence of TTS in-

formation, qCTD might be substituted to

improve predictive models, in particular

the SD and coefficient of variation of the

attenuation distribution.
The current results expand on previ-

ous findings regarding qualitative density

heterogeneity14 and show that significant

prognostic information is available from

qCTD of NCCT. The strengths of this

study include the use of a high-quality CT

dataset and scans obtained within 3 hours

of symptom onset, the time most likely to

demonstrate ICH growth. Multiple

growth definitions were explored, includ-

ing growth as a continuous variable and

using several binary definitions applied in

the literature. The qCTD approach in-

volves rapid automated calculations by

using Matlab, which are operator-inde-

pendent, eliminating issues of interob-

server reliability. qCTD models may be

calculated at the time of diagnostic CT,

with or without the input of TTS infor-

mation, to derive a prediction of hema-

toma growth at 24 hours. Automation en-

abled our analyses to be performed in �5

seconds per patient, excluding region-of-

interest generation, but this function can also be fully auto-

mated.35 Leave-one-out cross-validation was used to test the predic-

tive models, serially excluding each patient in the dataset from

analysis, thereby establishing a validation dataset and avoiding over-

estimation of model significance.

Furthermore, this technique examines the full range of attenua-

tion information available from each patient’s entire ICH, improving

the limited “largest section” qualitative approach.14 In the setting of

absolute or relative contrast contraindications, qCTD may provide

an alternative to CTA methods of ICH growth-risk prediction, with

less radiation exposure. However, CTA provides vascular and other

information not available from NCCT.

There are several limitations of this study. Potential exists for

improvement of these predictive models, with examination of

larger datasets. In particular, examination of binary outcome

measures is impaired by using such small numbers with predictive

capacity limited to correct prediction of nongrowth by using 1

binary definition in this study. The binary definition of “any

growth” is prone to inclusion of patients on the basis of measure-

FIG 2. Receiver operating characteristic curves by using a binary growth definition of �1-mm
radial expansion, with a binary logistic regression model incorporating BV, TTS, and coefficient
of variation of ICH attenuation (A) and BV and TTS only (B).

4 Barras ● 2013 www.ajnr.org



ment error. While cross-validation was used to test predictive

models, an external validation dataset is necessary. We relied on a

post hoc data analysis by using proprietary software. The

Hounsfield unit scale is theoretically constant across all CT scan-

ners; however, this assumes correct calibration and identical tech-

nical factors (eg, kilovolts, milliamperes) of each scanner from

each trial center, representing a potential source of error. As such,

a future validation study ideally should be performed on 1 scanner

with identical technical factors for all patients. In this analysis, this

error was mitigated by the fact that coefficient of variation, skew-

ness, and kurtosis are resistant to left or right shifts in the distri-

bution (translation), where used. In addition, a review of scan

data revealed minor heterogeneity of scanning parameters, par-

ticularly kilovolts. Overall, the improvements in the predictive

models were small, but they were started from a low baseline. If

validated, predictive models such as these are potentially useful in the

assessment of general patient status and risk of deterioration. These

models could further enhance patient selection for trials that evaluate

potential ICH treatments but should, of course, be complemented by

clinical measures in decision-making for individual patients.

Anticoagulated patients were excluded from this hemostatic

agent trial.2 Hence, these findings cannot be extrapolated to war-

farin-related hemorrhages, without another study. This study was

limited to CT image analysis in the sub-3-hour time epoch. Asso-

ciation with clinical variables and outcome was not possible be-

cause hypertension, Glasgow Coma Scale, and other clinical vari-

ables also known to be of prognostic significance were not

available. The density of ICH is affected by hematocrit; low-he-

matocrit ICHs can be isointense to brain.25 Hematologic data

were not available for this analysis.

CONCLUSIONS
This study demonstrates that qCTD, in particular the densitom-

etry parameter coefficient of variation, can be used to predict ICH

growth and accounts for more variability than a model based

solely on established growth predictors, BV and TTS, with statis-

tical significance. In contrast to the previously described qualita-

tive assessment of density heterogeneity and the CTA spot sign,

these models are rapidly calculated and operator-independent.

On the basis of noncontrast CT, qCTD could be widely applicable,

if replicated. Clinical utility could be maximized by incorporation

of predictive models of ICH growth such as qCTD into CT work-

stations. qCTD prediction of hematoma growth should be vali-

dated in larger separate datasets at different scan times and corre-

lated with other predictive techniques, such as the CTA spot sign.
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