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ORIGINAL RESEARCH
ADULT BRAIN

Texture Feature Ratios from Relative CBV Maps of Perfusion
MRI Are Associated with Patient Survival in Glioblastoma

J. Lee, X R. Jain, K. Khalil, B. Griffith, R. Bosca, G. Rao, and A. Rao

ABSTRACT

BACKGROUND AND PURPOSE: Texture analysis has been applied to medical images to assist in tumor tissue classification and charac-
terization. In this study, we obtained textural features from parametric (relative CBV) maps of dynamic susceptibility contrast-enhanced
MR images in glioblastoma and assessed their relationship with patient survival.

MATERIALS AND METHODS: MR perfusion data of 24 patients with glioblastoma from The Cancer Genome Atlas were analyzed in this
study. One- and 2D texture feature ratios and kinetic textural features based on relative CBV values in the contrast-enhancing and
nonenhancing lesions of the tumor were obtained. Receiver operating characteristic, Kaplan-Meier, and multivariate Cox proportional
hazards regression analyses were used to assess the relationship between texture feature ratios and overall survival.

RESULTS: Several feature ratios are capable of stratifying survival in a statistically significant manner. These feature ratios correspond to
homogeneity (P � .008, based on the log-rank test), angular second moment (P � .003), inverse difference moment (P � .013), and entropy
(P � .008). Multivariate Cox proportional hazards regression analysis showed that homogeneity, angular second moment, inverse differ-
ence moment, and entropy from the contrast-enhancing lesion were significantly associated with overall survival. For the nonenhancing
lesion, skewness and variance ratios of relative CBV texture were associated with overall survival in a statistically significant manner. For the
kinetic texture analysis, the Haralick correlation feature showed a P value close to .05.

CONCLUSIONS: Our study revealed that texture feature ratios from contrast-enhancing and nonenhancing lesions and kinetic texture
analysis obtained from perfusion parametric maps provide useful information for predicting survival in patients with glioblastoma.

ABBREVIATIONS: ASM � angular second moment; CEL � contrast-enhancing lesion; GBM � glioblastoma multiforme; GLCM � gray-level co-occurrence matrix;
IDM � inverse difference moment; LoG � Laplacian of Gaussian; NEL � nonenhancing lesion; rCBV � relative CBV; ROC � receiver operating characteristic

Glioblastoma multiforme (GBM) is one of the most common

and aggressive types of malignant brain tumors. The prog-

nosis for patients with GBM remains very poor with median sur-

vival rates between 12 and 15 months.1,2 Several computer-based

analyses, including image texture analysis, have been proposed to

improve the diagnostic performance of imaging-derived mea-

surements in cancer studies including GBM.3 Image texture anal-

ysis measures the local characteristic pattern of image intensity

and has been applied to different image-processing domains, such

as texture classification and texture segmentation, to identify dis-

tinct textural regions in an image.4 In recent studies, texture anal-

ysis has been applied to medical images to assist in tumor tissue

classification and characterization. One study of PET and CT

showed that the features for tumor heterogeneity extracted from

the normalized gray-level co-occurrence matrix (GLCM) could

represent an independent prognostic predictor in patients.5 An-

other texture study in PET/CT suggested that regional and local

characterization of the PET tracer heterogeneity in tumors is

more powerful than global measurements currently used in clin-

ical practice.6 Also, a textural feature study in non-small cell lung

cancer showed that baseline fluorine 18 fluorodeoxyglucose (18F-

FDG) PET scan uptake values are associated with nonresponse to

chemoradiotherapy.7 Recently, a novel method defined, as tex-
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tural kinetics, was studied with breast dynamic contrast-en-

hanced MR imaging by Agner et al.8 This method attempted to

capture spatiotemporal changes in breast lesion texture for clas-

sifying malignant and benign lesions.

In this work, we investigated tumor-derived texture feature

ratios from relative CBV (rCBV) values (derived from dynamic

contrast-enhanced MR imaging) of 2 different tumor regions: the

contrast-enhancing lesion (CEL) region and the nonenhancing

lesion (NEL) region. We extracted first-order statistics, such as

homogeneity, mean, SD, skewness, and kurtosis from the inten-

sity histogram, as well as Haralick texture features obtained from

the intensity GLCM.9 Subsequently, ratios of these texture fea-

tures between Laplacian-of-Gaussian (LoG) filtered and unfil-

tered versions of the rCBV map were also derived. Basically, the

Laplacian-of-Gaussian filters are useful for detecting edges in im-

ages, and the feature ratio can give us quantitative relations of

features between filtered and unfiltered versions of the rCBV

map, which would provide an effective normalization to mini-

mize the effects of any potential variations in MR images from

different patients.10 In addition, we obtained textural kinetic fea-

tures of brain tumor dynamic suscepti-

bility contrast MR imaging data

within these CEL/NEL ROIs. The pur-

pose of this study was to determine the

association of these DSC-MR imaging

textural feature ratios with the overall

survival status of GBM.

MATERIALS AND METHODS
Data
We identified 24 patients with GMB

from The Cancer Genome Atlas based

on the availability of companion perfu-

sion DSC-MR imaging data in The Can-

cer Imaging Archive. One of the patients

had tumors in both the left occipital re-

gion and left frontal region. These 2 tu-

mors are treated distinctly. Previously,

these data were assessed for genomic re-

lationships with rCBV values.11 In this

study, we performed 1D and 2D tex-

ture analysis and kinetic texture anal-

ysis of rCBV values within CEL and

NEL regions for survival prediction.

The clinical data were obtained from

the cBioPortal for Cancer Genomics

(http://www.cbioportal.org) (Table 1). In

addition, a survival class variable was

created by dichotomizing the overall

survival value at 12 months based on the

typical median survival time (�15

months) in GBM.2,12

Relative cerebral blood volume values were calculated from

ROIs within the CEL, the NEL, and the normal-appearing

white matter, respectively, on the basis of rCBV maps obtained

previously.11 The methods for this processing are explained in

more detail in Jain et al.11 The rCBV intensities for the CEL and

NEL were normalized with the mean value of the rCBV inten-

sities for the unaffected normal-appearing white matter re-

gion.13 The ROIs of the CEL, NEL, and normal-appearing

white matter were segmented by experts manually after co-

registering rCBV parametric maps with T1 postcontrast and

T2 FLAIR images, respectively. The NEL ROIs were placed

adjacent to the CEL margin in the white matter within the

FLAIR signal-abnormality region. Figure 1 shows an example

of an rCBV map from the tumor in a female patient.

Image Texture Feature Ratio Computation
Textural feature ratios were computed from the normalized rCBV

data in 2 steps. First, we applied a Laplacian-of-Gaussian Equa-

tion 1, �2G, LoG filter to a normalized rCBV ROI to obtain fil-

tered images.

FIG 1. A, T1 postcontrast image. B, T2 FLAIR image. C, rCBV map of the brain in a female patient.
D, The CEL and NEL ROIs on the rCBV map.

Table 1: Patient demographics
Age at First Diagnosis

(yr) (range) (mean)
Overall Survival

(mo) (range) (mean)
Disease-Free Survival
(mo) (range) (mean) Sex Overall Status

40�77 3.4�56.9 2.6�46.9 17 Males, 7 females 22 Deceased, 2 living
60.0 19.5 10.8
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1) �2G�x,y� �
�1

��4 �1 �
x2 � y2

2�2 � e�� x2 � y2�/ 2 �2
,

where � corresponds to the SD of the LoG filter (here we use a

medium level of coarseness, � � 1.8).10,14 The filter size chosen is

11 � 11, which was determined from the SD value. The LoG filter

derives edge-like features from the local-intensity variations in

images. Gray-level co-occurrence matrices were derived from

both unfiltered and filtered images. Next, 1D and 2D textural

features were computed from the GLCMs of the unfiltered and

filtered images.14 Finally, ratios of filtered texture descriptors to

the unfiltered texture descriptors were calculated to yield texture

feature ratios.

1D and 2D Texture Features
Image gray-level heterogeneity was quantified by using first-order

statistics such as mean, SD, skewness, and kurtosis of the pixel-

intensity distribution. Skewness and kurtosis are measures of the

asymmetry and peakedness of the distri-

bution, respectively. For the 2D texture

features, to quantify the spatial distribu-

tion of the pixel values (rCBV values)

within the ROI, we derived the GLCMs

from the unfiltered and filtered images.

The GLCM measures the probability of

the occurrence of a specific gray-level

value pair as a function of distance and

direction. We used 8 gray levels, com-

monly used in these types of studies15

with 1 pixel offset to compute the

GLCMs from the filtered and original

images. We then computed 13 different

second-order Haralick statistical mea-

sures from the GLCMs.16 The detailed equations for the second-

order texture features are described in the Appendix.

Kinetic Texture
For the kinetic texture analysis, the gadolinium concentration

time-series of the DSC perfusion data in both CEL and NEL re-

gions were extracted by using an open-source software package:

Quantitative Utility for Assessing TreatmenT RespOnse (https://

github.com/rjbosca/QUATTRO).17 Each ROI voxel from the dy-

namic perfusion dataset was normalized by the corresponding

mean normal-appearing white matter intensity, and all 18 fea-

tures discussed above were calculated for each time point in the

DSC series. Thus, we have 18 kinetic texture features for each

perfusion dataset. Each time-series texture feature was then fitted

to a third-order polynomial model (Equation 2) to yield 4 coeffi-

cients (b0, b1, b2, b3).

2) f�t� � b0 � b1t � b2t2 � b3t3.

This 4D coefficient vector was then projected to 1D by using met-

ric multidimensional scaling.16

Statistical Analysis
Eighteen texture feature ratios were obtained and compared be-

tween the overall survival groups (	12 or �12 months). The

predictive accuracy of the CEL and NEL texture feature ratios for

survival status was assessed by using the receiver operating char-

acteristic (ROC) curve.

Correlations between 18 texture feature ratios and 18 kinetic

texture features with P values were assessed via the Spearman rank

correlation, which is a nonparametric measure of statistical de-

pendence between 2 variables. Statistical significance was defined

as a P value 
 .05. The Kruskal-Wallis test, a nonparametric

method for testing the equality of population medians among

groups, was used to determine whether the median feature value

differed significantly between survival groups. Texture feature ra-

tios were assessed with Kaplan-Meier and ROC analyses to mea-

sure their associations with overall survival. Each feature ratio was

dichotomized on the basis of an optimum cutoff value derived

from ROC analysis. Survival difference between the groups was

assessed via a log-rank test. Multivariate Cox proportional haz-

ards regression analysis was performed to assess the texture fea-

ture ratios as predictors, independent of volume, age, and Karnof-

Table 2: Spearman rank correlation and associated P values from the following feature
ratios for the CEL region

Homogeneity ASM IDM Entropy
Homogeneity – 0.83 (
.001) 0.99 (
.001) �0.84 (
.001)
ASM 0.83 (
.001) – 0.84 (
.001) �0.94 (
.001)
IDM 0.99 (
.001) 0.84 (
.001) – �0.85 (
.001)
Entropy �0.84 (
.001) �0.94 (
.001) �0.85 (
.001) –

Note:— – indicates not applicable.

Table 3: The rank correlation and P values within the NEL region
Skewness Variance Sum Average Sum Variance

Skewness – �0.47 (.022) �0.51 (.010) �0.52 (.008)
Variance �0.47 (.022) – 0.94 (
.001) 0.95 (
.001)
Sum average �0.51 (.010) 0.94 (
.001) – 0.99 (
.001)
Sum variance �0.52 (.008) 0.95 (
.001) 0.99 (
.001) –

Note:— – indicates not applicable.

Table 4: Range in texture feature ratios with and without LoG
filtration for CEL

Homogeneity ASM IDM Entropy
LoG/unfiltered 1.08 � 0.18 1.11 � 0.74 1.10 � 0.24 1.02 � 0.18

a Data are means.

Table 5: Range in texture feature ratios with and without LoG
filtration for NEL

Skewness Variance
Sum

Average
Sum

Variance
LoG/unfiltered 3.57 � 11.83 2.30 � 3.77 1.37 � 0.83 2.84 � 5.50

a Data are means.

Table 6: Areas under ROC curves (for prediction of 12-month
survival status) from the CEL and NEL texture feature ratiosa

AUC 95% CI P Value
CEL

Homogeneity 0.826 0.542–0.986 .003
ASM 0.757 0.500–0.951 .019
IDM 0.806 0.562–0.972 .006
Entropy 0.799 0.556–0.972 .007

NEL
Skewness 0.799 0.549–0.944 .007
Variance 0.715 0.465–0.896 .042
Sum average 0.715 0.465–0.889 .042
Sum variance 0.708 0.438–0.847 .048

Note:—AUC indicates area under the curve.
a Only features with statistically significant AUCs are shown.
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sky Performance Status, for overall survival.18 In this study,

MATLAB Version 8.0 (MathWorks, Natick, Massachusetts) and

R software (R Project for Statistical Computing, http://www

.r-project.org) were used for statistical analyses.

RESULTS
The texture features with and without Laplacian-of-Gaussian fil-

tration were obtained, and the ratios between the Laplacian-of-

Gaussian filtered and unfiltered features were calculated for

the CEL and NEL regions, respectively. For the CEL, there were

strong positive correlations between homogeneity and inverse
difference moment (IDM) (r � 0.99, P 
 .001), and there were
strong negative correlations between angular second moment
(ASM) and entropy (r � �0.94, P 
 .001). For the NEL, there
were strong positive correlations between the variance and sum
average (r � 0.94, P 
 .001) and between the variance and sum
variance (r � 0.95, P 
 .001) and between the sum average and
sum variance (r � 0.99, P 
 .001). The summaries of the Spear-
man rank correlations and P values for the CEL and NEL are listed
in Tables 2 and 3. Information about the 4 most significant feature
ratios, such as homogeneity, ASM, IDM, and entropy for the CEL
and skewness, variance, sum average, and sum variance for the
NEL, are listed in Tables 4 and 5.

The areas under the ROC curve for each significant predictor
of 12-month survival status (survival class) and corresponding P
values were assessed and are summarized in Table 6. The areas

under the curve for the CEL-derived fea-
ture ratios were 0.83 for homogeneity,
0.76 for ASM, 0.81 for IDM, and 0.80 for
entropy. The areas under the curve for
the NEL-derived feature ratios were 0.80
for skewness, 0.72 for variance, 0.72 for
sum average, and 0.71 for sum variance.
There was also a significant difference
between survival classes for homogene-
ity (P � .008), ASM (P � .036), IDM
(P � .013), and entropy (P � .015) from
the CEL. However, no significant differ-
ence was found for the NEL-derived tex-
ture feature ratios (Tables 7 and 8).

Kaplan-Meier survival curves for
groups induced by the ROC-optimized
cutoffs for the CEL-derived homogene-
ity, ASM, IDM, and entropy feature ra-
tios were significantly different (P 
 .05)
(Fig 2). The optimal cutoff points were
1.118 (P � .008) for homogeneity, 0.971
(P � .003) for ASM, 1.085 (P � .013) for
IDM, and 1.00 (P � .008) for entropy.
The median survival (in months) for
each of the groups induced by the cutoff
is listed in Table 9 for the CEL. Multivar-
iate Cox proportional hazards regres-
sion analysis (including clinical vari-
ables such as volume, age, Karnofsky
Performance Status) showed that CEL-
derived homogeneity, ASM, IDM, and
entropy feature ratios had P values of
.004, .012, .006, and .001, respectively,
indicating that these feature ratios were
independent predictors of overall sur-
vival. For the NEL, only skewness and
variance feature ratios had P values 
 .05
(Table 10). From the kinetic texture
analysis, only the Haralick correlation
feature showed a P value close to .05. All

FIG 2. Kaplan-Meier survival curves from ROC-induced cutoffs for CEL-derived feature ratios:
homogeneity (A), ASM (B), IDM (C), and entropy (D).

Table 7: Kruskal-Wallis test for the CEL texture feature ratios
(across survival classes)

Homogeneity ASM IDM Entropy
P value .008 .036 .013 .015

Table 8: Kruskal-Wallis test for the NEL texture feature ratios
(across survival classes)

Skewness Variance Sum Average Sum Variance
P value .13 .19 .26 .21
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other features were not statistically significant (P 	 .1). Figure 3
shows the ROC curve for the kinetic Haralick correlation fea-
ture, with an area under the curve of 0.849 and a P value of .003
(Table 11).

DISCUSSION
Several studies have shown that the hemodynamic parameter

rCBV from DSC-MR imaging is an important prognostic imaging

biomarker that provides useful prognostic information in pa-

tients with GBM.11,19 Boxerman et al13 have shown that the rCBV

measurement is significantly correlated with GBM grade and can

be used to predict time to progression and clinical outcome. Jain

et al20 showed that increased maximum rCBV in CEL is associated

with an increased risk of death and that high rCBV in NEL and

wild-type epidermal growth factor receptor mutation are associ-

ated with poor survival. In our study, we applied texture analysis

to the normalized hemodynamic parameter rCBV values from the

ROIs of the CEL and NEL in the rCBV map to investigate the

association of the perfusion MR imaging– derived image textural

feature ratios with overall survival in GBM.

Laplacian-of-Gaussian filter is a precalculated filter obtained

from combining the Gaussian and Laplacian filters and is useful

for detecting edges in images.10 The texture feature ratios in our

study represent the quantitative relationship of features between

the Laplacian-of-Gaussian filtered images and the unfiltered im-

ages.14 In a preliminary study, these feature ratios demonstrated

lower dependence on scanner type compared with the original

features. The purpose of the use of feature ratios (aside from fol-

lowing previous literature, such as Ganeshan et al21) is to mini-

mize the effects of any potential systematic variations in MR im-

ages from various patients across different scanning or acquisition

protocols. With these texture feature ratios, statistically signifi-

cant differences were found for CEL-derived homogeneity, ASM,

IDM, and entropy feature ratios between survival classes that di-

chotomized survival at 12 months. This finding implies that these

feature ratios are associated with overall survival rates of GBM.

First-order statistics such as SD, skewness, and kurtosis de-

scribe the probability distributions of the pixel intensities; and

second-order statistics, such as Haralick features, describe the

spatial relationship between pairs of pixels. Tumor-derived pixel-

based heterogeneity can be measured by using first- and second-

order statistics. Many researchers have sought to determine

whether such heterogeneity is associated with malignancy.22 Sev-

eral studies of 18F-FDG PET/CT have suggested that tumor het-

erogeneity might provide better prognostic information, tissue

characterization, and tumor segmentation.23

Our results from the Kruskal-Wallis test indicate that the tex-

ture feature ratios for homogeneity (P � .008), ASM (P � .036),

IDM (P � .013), and entropy (P � .015) from the CEL had a

strong correlation with the survival group, suggesting that these

texture feature ratios are associated with overall survival and

could provide additional prognostic information. In addition, the

results of kinetic texture analysis showed that the correlation fea-

ture from kinetic texture analysis had a high predictive (area un-

der the curve) value (0.85). Conversely, the texture feature ratios

for the NEL exhibited no significant correlation with overall

survival.

There were several limitations in our study. First, this was a

retrospective study performed on a publicly available patient sub-

set, consisting of data acquired on multiple MR imaging systems

with varying protocols. A study that evaluates the robustness of

these feature ratios for the survival prediction task across scanning

protocols, scanner resolutions, and a larger sample size is essential

to establishing their predictive value. A large-sample-size study

will also enable the application of appropriate multiple testing

corrections to identify reliably predictive features (there is no cor-

FIG 3. ROC curve for prediction of survival status based on correla-
tion features from kinetic texture analysis. The area under the curve
value was 0.849 and the 2.5% and 97.5% confidence intervals for the
Mann-Whitney statistic were 0.667 and 0.952.

Table 9: Kaplan-Meier analysis based on ROCs for the CEL
texture feature ratios (only significant features are shown)

Threshold

Median (mo)
(No. of Cases)

P Value
Above

Threshold
Below

Threshold
Homogeneity 1.118 23 (9) 12 (16) .008
ASM 0.971 23 (11) 12 (14) .003
IDM 1.085 22 (14) 12 (11) .013
Entropy 1.001 11 (10) 23 (15) .008

Table 10: Multivariate Cox proportional hazards regression
analysis (in a model that includes volume, age, KPS) for the
CEL- and NEL-derived rCBV texture feature ratios

Hazard Ratio
95% Confidential

Interval P Value
CEL

Homogeneity 0.019 0.001 0.272 .004
ASM 0.121 0.023 0.632 .012
IDM 0.068 0.010 0.457 .006
Entropy 96.895 7.179 1307.8 
.001

NEL
Skewness 0.79 0.638 0.977 .029
Variance 1.507 1.011 2.245 .044
Sum average 2.203 0.996 5.024 .060
Sum variance 1.207 0.929 1.568 .159

Note:—KPS indicates Karnofsky Performance Status.

Table 11: AUC for the correlation feature from kinetic texture
analysis

AUC P Value

Confidence
Interval

2.5% 97.5%
Mann-Whitney 0.849 .003 0.667 0.952

Note:—AUC indicates area under the curve.
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rection for multiple testing in the current study because of its

exploratory nature). In addition, variable treatment regimens

with surgery, radiation, and chemotherapy may have a confound-

ing effect on the survival rates of patients. A separate dataset with

uniformity of treatment regimens is the next step to validating the

predictive value of these feature ratios. Furthermore, incorporat-

ing molecular markers like IDH mutation status or molecular

subtype can be useful to assess the additional predictive value of

imaging-based measurements to existing molecular markers. The

inclusion of other modalities or contrasts such as T1 postcontrast

or FLAIR MR imaging is a great area for future work as well.

Previous studies have suggested that textural features can be

used in several areas of image analysis, such as segmentation, clas-

sification, and prediction of tissue abnormality. In this study, we

found that several feature ratios obtained from the rCBV map, in

addition to kinetic textures, provided useful information for pre-

dicting the 12-month survival status from the CEL and NEL re-

gions of patients with GBM.

CONCLUSIONS
The methods developed in this work are sufficiently general and

might be applicable to other disease processes and sites where

perfusion MR imaging is used for assessment of disease or treat-

ment response. Our study presents the results of an exploratory

study demonstrating the relationship of texture feature ratios

(from 1D and 2D texture features and kinetic texture features)

with survival in patients with GBM. These findings suggest that

texture feature ratios from perfusion MR imaging data are prom-

ising as a clinical prognostic tool.

APPENDIX
We provide detailed equations for 2D texture features such as 13

Haralick texture features and homogeneity features in equations

A1 to A14.

The angular second moment measures the homogeneity of an

image. A more homogeneous image has fewer gray levels with

higher pixel elements of the GLCM and sum of square values:

A1) f1 � �
i � 1

Ng �
j � 1

Ng

p�i, j�2,

where Ng is the number of gray levels present in an image and

p(i, j) corresponds to the (i, j)th element of the GLCM.

Contrast measures the luminance (differences in gray-level in-

tensity values) present in an image:

A2) f2 � �
k � 0

Ng�1

k2 � �
i � 1

Ng �
j � 1

Ng

p�i, j�� , k � �i � j�.

Correlation measures the gray-level linear dependence of pixels at

specified positions:

A3) f3 �
1

�x�y
�

i � 1

Ng �
j � 1

Ng

�ij� p�i, j� � �x�y

Variance differentially weighs the gray levels that significantly de-

viate from the mean value of p(i, j):

A4) f4 � �
i � 1

Ng �
j � 1

Ng

�i � ��2 p�i, j�.

The local homogeneity or inverse difference moment enhances

local homogeneous regions by reducing the weight of inhomoge-

neous regions where i � j:

A5) f5 � �
i � 1

Ng �
j � 1

Ng 1

1 � �i � j�2 p�i, j�.

The sum and difference histograms form the principal axes of

the second-order probability attenuation function. The sum av-

erage (A6) and variance (A7) quantify the mean and extent of the

sum histogram, respectively. The sum entropy (A8) and differ-

ence entropy (A11) measure the homogeneity of the sum and

difference histograms, respectively.

Sum average:

A6) f6 � �
k � 0

2Ng�2

k 	 px � y �k�,

Sum variance:

A7) f7 � �
k � 0

2Ng�2

�k � f8�
2 px � y �k�.

Sum entropy:

A8) f8 � ��
k � 0

2Ng�2

px � y �k� log(Px � y �k�).

Entropy quantifies the homogeneity of the image, suggesting

that homogeneous regions have lower entropy values:

A9) f9 � ��
i � 1

Ng �
j � 1

Ng

p�i, j� log(p�i, j�).

Difference variance:

A10) f10 � �
k � 0

Ng�1 �� k � �
l � 0

Ng�1

l 	 Px � y �k�� 2� px � y.

Difference entropy:

A11) f11 � � �
k � 0

Ng�1

px � y �k� log (Px � y �k�).

Information measure of correlation I and II:

A12) f12 �

� f9 � �
i � 1

Ng �
j � 1

Ng

P(i,j) log � p(i) p(j)� �
�

g � 1

Ng

p(g) log [p(g)]

,

A13)

f13 � �1 � exp��2	��
i � 1

Ng �
j � 1

Ng

p(i) p(j) log � p(i) p(j)� � f9	� .

In addition to the Haralick texture features, we added a homo-

geneity feature that measures the closeness of the distribution of

elements in the GLCM to the GLCM diagonal.

6 Lee ● 2016 www.ajnr.org



A14) f14 � �
i � 1

Ng �
j � 1

Ng 1

1 � �i � j�
p�i, j�.

The definitions for px � y�k� and p�x � y��k� are given in Equations

A15 and A16, respectively:

A15) px � y�k� � �
i � 1

Ng �
j � 1

Ng

p�i, j�, k � i � j,

A16) px � y�k� � �
i � 1

Ng �
j � 1

Ng

p�i, j�, k � �i � j�.
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