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ORIGINAL RESEARCH
PEDIATRICS

Disorders of Microtubule Function in Neurons: Imaging
Correlates

X C.A. Mutch, X A. Poduri, X M. Sahin, X B. Barry, X C.A. Walsh, and X A.J. Barkovich

ABSTRACT

BACKGROUND AND PURPOSE: A number of recent studies have described malformations of cortical development with mutations
of components of microtubules and microtubule-associated proteins. Despite examinations of a large number of MRIs, good
phenotype-genotype correlations have been elusive. Additionally, most of these studies focused exclusively on cerebral cortical
findings. The purpose of this study was to characterize imaging findings associated with disorders of microtubule function.

MATERIALS AND METHODS: MRIs from 18 patients with confirmed tubulin mutations (8 TUBA1A, 5 TUBB2B, and 5 TUBB3) and 15 patients
with known mutations of the genes encoding microtubule-associated proteins (5 LIS1, 4 DCX, and 6 DYNC1H1) were carefully visually
analyzed and compared. Specific note was made of the cortical gyral pattern, basal ganglia, and white matter to assess internal capsular
size, cortical thickness, ventricular and cisternal size, and the size and contours of the brain stem, cerebellar hemispheres and vermis, and
the corpus callosum of patients with tubulin and microtubule-associated protein gene mutations. Results were determined by unanimous
consensus of the authors.

RESULTS: All patients had abnormal findings on MR imaging. A large number of patients with tubulin gene mutations were found to have
multiple cortical and subcortical abnormalities, including microcephaly, ventriculomegaly, abnormal gyral and sulcal patterns (termed
“dysgyria”), a small or absent corpus callosum, and a small pons. All patients with microtubule-associated protein mutations also had
abnormal cerebral cortices (predominantly pachygyria and agyria), but fewer subcortical abnormalities were noted.

CONCLUSIONS: Comparison of MRIs from patients with known mutations of tubulin genes and microtubule-associated proteins allows the
establishment of some early correlations of phenotype with genotype and may assist in identification and diagnosis of these rare disorders.

ABBREVIATIONS: MAP � microtubule-associated protein; MT � microtubule

The relationship of lissencephaly and pachygyria to mutations

of specific genes, such as LIS1,1 DCX,2 and ARX,3 has been

known for �20 years, with some mutations resulting in milder

forms known as double cortex2 or band heterotopia.4 Many liss-

encephalies, in particular lissencephalies associated with signifi-

cant microcephaly (head circumference of �3 SDs below the

mean for age, also called “microlissencephalies”5), were not asso-

ciated with mutations of any of these genes. In the past decade,

studies have shown that many lissencephalies (and microlissen-

cephalies) are associated with mutations of genes coding for tu-

bulins, proteins that form the components of microtubules

(MTs),6,7 and microtubule-associated proteins (MAPs)8 which,

interestingly, include LIS1 and DCX. The recent literature has

revealed that mutations of genes encoding tubulin and MAPs

cause severe developmental delay, epilepsy, and severe anomalies

of brain development. Although most mutations of both tubulin

and MAP genes cause abnormal sulcation, tubulin gene muta-

tions are associated with severe microcephaly and white matter

anomalies, while patients with mutations of MAP genes have

small normal brains or mild microcephaly with normal or nearly

normal white matter structures. Specific MR imaging phenotype-
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genotype correlations have been elusive, despite examinations of

large numbers of MR images.8-10 In this report, we describe the

imaging appearances of 18 patients with brain malformations sec-

ondary to tubulin mutations and 15 patients with malformations

secondary to tubulin-associated protein mutations, including

cortical malformations, white matter disorders (corpus callosum,

white matter volume, brain stem anomalies), and head size. These

data allow establishment of some early correlations of phenotype

with genotype.

MATERIALS AND METHODS
Imaging
MRIs were retrieved from a large file of imaging studies of

�2500 patients with malformations of cortical development

that is part of ongoing studies of the genetics of epilepsy and

cerebral malformations. The file includes MRIs of patients of

all ages who were imaged during the past 30 years, mainly for

developmental disorders or epilepsy, and were referred to one

of the authors for evaluation; all consented to the use of their

studies for research purposes. All patients have mutations

identified in specific genes that are thought to be the cause of

the malformation. Because these studies were obtained in

many different facilities in multiple countries during �25

years, both the MR imaging techniques and the techniques for

identifying mutations differed considerably. Most MRIs were

obtained at 1.5T, though some recent scans were obtained at

3T. T1WI and T2WI (spin-echo or spoiled gradient-echo in

more recent volumetric acquisitions) with section thicknesses

ranging from 1 to 3 mm were analyzed. For inclusion, MRIs

required 3 orthogonal planes with adequate contrast between

the cerebral cortex and (myelinated or unmyelinated) white

matter to determine the cortical gyral pattern, basal ganglia,

and white matter to visually assess internal capsular presence

or absence, cortical thickness (normal, �4 mm), ventricular

and cisternal size, and the size and contours of the brain stem,

cerebellar hemispheres and vermis, and the corpus callosum.

Patients
All patients were referred for seizures and developmental

anomalies, often associated with microcephaly that was vari-

able in severity. Genetic analyses required that the candidate

gene have a logarithm of odds score of �3 or microarray dem-

onstration of abnormal gene expression. Targeted genetic

analyses during the past few years revealed 18 patients with

confirmed diagnoses of tubulin mutations: 8 with TUBA1A

mutations, 5 with TUBB2B mutations, and 5 with TUBB3 mu-

tations. No TUBA8, TUBB5, or TUBG1 mutations were iden-

tified in any of our patients. The MR imaging findings of these

patients were carefully analyzed and compared with those of 15

patients with known mutations of the MAP genes LIS1 (5 pa-

tients), DCX (4 patients), and DYNC1H1 (6 patients). In-

cluded patients ranged in age from 2 days to 33 years. Although

the scans had already been reviewed and findings recorded, all

were rereviewed by the authors. Results were then analyzed to

determine which imaging features best defined mutations of

tubulin and MAP genes, which features overlapped, and which

features or combinations of features, if any, allowed specific

diagnoses. Recorded results were determined by unanimous

consensus of the authors.

RESULTS
All patients had abnormal findings on brain MR imaging. In

particular, abnormalities of white matter structures/pathways

(corpus callosum, internal capsules, and portions of the brain

stem), the cerebral cortex (gyral pattern), and the cerebellum

(vermis more frequently than hemispheres) were seen in essen-

tially all patients. When the olfactory sulci and bulbs were

adequately visualized with coronal images, the sulcal depth

and appearance of the bulbs were assessed. Abnormalities of

the midbrain tectum were recorded when present.

Tubulin Mutations
All 18 patients with mutations of tubulin genes had diminished

white matter volume, ranging from moderate to severe, asso-

ciated, in all cases, with microcephaly (by provided clinical

history). Ventriculomegaly was present in 8/8 patients with

TUBA1A mutations, 3/5 patients with TUBB2B mutations, and

2/5 patients with TUBB3 mutations (Table). The degree of

enlargement varied considerably, from mild to severe; in more

severely affected patients, ventricular enlargement was diffuse

(Figs 1 and 2), but in 2 TUBA1A mutations, ventriculomegaly

was asymmetric (1 left � right, the other right � left). A third

patient had colpocephaly with enlarged trigones and occipital

horns but normal temporal horns, frontal horns, and ventric-

ular bodies.

All patients had abnormalities of the corpus callosum, dys-

morphic or absent in all patients with TUBA1A or TUBB2B

mutations and either dysmorphic (2/5) or abnormally thin

(4/5) in patients with TUBB3 mutations (Figs 1–3 and On-line

Fig 3). All patients with tubulin gene mutations also had ab-

normalities of the basal ganglia, including an enlarged caudate

and an absent or diminutive internal capsule dividing the cau-

date from the putamen, resulting in a fused striatum (Figs

1–3). Additionally, nearly all patients with tubulin gene muta-

tions had a small, often asymmetric brain stem (Table, Fig 2D,

and On-line Fig 2) and a small cerebellar vermis; and a number

had large midbrain tecta (Figs 2 and 3).

Abnormalities of the cerebral cortex were seen in essentially

all patients in this group, ranging from complete agyria to

mixtures of agyria and pachygyria to complete “dysgyria” (a

term intended to describe a cortex of normal thickness but

with an abnormal gyral pattern characterized by abnormalities

of sulcal depth or orientation: obliquely oriented sulci directed

radially toward the center of the cerebrum and narrow gyri

separated by abnormally deep or shallow sulci (Fig 1). Other

patients had regions of pachygyria mixed with regions of dys-

gyria. Of the 5 patients with TUBB3 mutations, 3 had both

dysgyria and pachygyria, with pachygyria located in the Sylvian

and supra-Sylvian areas. The cortex in patients with TUBA1A

mutations ranged from lissencephalic to pachygyric to dysgy-

ric, with pachygyria usually present in the parietal and occipital

lobes (Fig 4). Differentiation of regional pachygyria (with a cell

sparse zone) from localized band heterotopia was based on the
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widths of the gyri and depths of the sulci: For classification,

where sulci were deeper than the breadth of the gyri, the diag-

nosis of band heterotopia was made; and if the sulci were shal-

lower than the breadth of the gyri, pachygyria was diagnosed.

Four of the 5 patients with TUBB3 mutations exhibited dys-

gyria of varying severity, including 1 patient with both diffuse

dysgyria and bifrontal band heterotopia (Fig 2). The fifth pa-

tient had nearly normal cerebrocortical morphology. Hyp-

oplastic or absent olfactory bulbs or sulci were noted in 11/16

patients with tubulin mutations (4/6 TUBA1A, 3/5 TUBB2B,

4/5 TUBB3) for which they were adequately evaluated (On-line

Fig 1).

MAP Mutations
Of the 15 patients with mutations of MAPs, the imaging findings

were more consistent within groups (Table). Patients with LIS1

mutations (5 total) had cortical malformations ranging from

complete agyria to frontal pachygyria or shallow sulci with nearly

normal cortical thickness associated with parietal and occipital

pachygyria or agyria. They had anomalies of the corpus callosum,

with a small or absent rostrum and inferior genu, normal body,

and an unusual, sharp angle at the junction of the body and sp-

lenium (Fig 4), with the splenium coursing more caudal than

usual (4/5) or a short splenium (1/5). These findings were very

similar to the callosal anomaly seen in patients with DYNC1H1

mutations (6 total), who also had poste-

rior pachygyria (less severe, overall, than

that seen in the patients with LIS1 muta-

tions, but some cases were indistin-

guishable by imaging).

Half (3/6) of the patients with

DYNC1H1 mutations had a slightly small

anterior cerebellar vermis compared with

published norms,11 compared with 1/5

patients with LIS1 mutations and no pa-

tient with DCX mutations. This vermian

anomaly and the presence of large caudate

heads (found in all 6/6 patients with

DYNC1H1 mutations [Fig 4], but in no

[0/5] patients with LIS1 mutations) were

the only consistent differences between

patients with LIS1 and DYNC1H1

mutations.

The patients with DCX mutations

had different appearances of the corpus

callosum, which were either normal

(2/4) or diffusely thin (2/4). The cortex

of patients with DCX mutations, as has

been reported,12 varied from normal

FIG 1. A 5-year-old child with a TUBB3 mutation. Midline sagittal T1WI (A) shows a fully formed but thin corpus callosum, an enlarged third
ventricle, a dysmorphic cerebellar vermis with a disproportionately small anterior vermis, and a thin pons. Axial T1WI (B) shows asymmetry of the
basal ganglia with an unseparated left striatum (white arrowhead). Note that the gyral pattern is abnormal, with sulci coursing deeply at many
different angles and in unusual locations (white arrows). This abnormal pattern is classified as “dysgyria.” Axial T1WI at a slightly higher level of
the same patient (C) shows again the dysmorphic, asymmetric basal ganglia with an enlarged left caudate head (black arrows) and marked
ventriculomegaly. Cortical dysgyria is again noted (white arrows).

Features of tubulin and microtubule-associated gene mutations
Tubulin Mutations MAP Mutations

TUBA1A TUBB2B TUBB3 LIS1 DCX DYNC1H1
Dysmorphic/absent corpus callosum 8/8a 5/5 2/5 5/5b 1/4 6/6c

Thin corpus callosum 4/5 4/5 4/5 0/5 2/4 1/6d

Dysgyric cerebral cortex 4/7e 4/5 5/5 0/5 0/4 0/6
Pachygyric/agyric cerebral cortex 4/7e 0/5 3/5 5/5f 4/4g 6/6h

Small cerebellar vermis 8/8 5/5i 4/5 2/5i 0/4 3/6i

Small cerebellar hemisphere 5/8 1/5 1/5j 0/5 0/4 0/6
Small brain stem 7/8k 5/5l 5/5m 3/5n 0/3o 3/6l

Large tectum 4/8 1/5 1/5 0/5 0/4 0/6
Mild ventriculomegaly 1/8 2/5 0/5 0/5 0/4 2/6
Moderate ventriculomegaly 3/8 1/5 1/5 0/5 0/4 0/6
Severe ventriculomegaly 4/8 0/5 1/5 0/5 0/4 0/6

a Corpus callosum absent 3/8.
b L-shaped corpus callosum 4/5.
c L-shaped corpus callosum 3/6.
d Thick corpus callosum 5/6.
e In 1 patient, poor gray-white differentiation precludes accurate cortical assessment.
f Complete agyria 1/5; posterior agyria and anterior pachygyria 4/5.
g Complete agyria 1/4; anterior pachygyria 3/4.
h Posterior pachygyria 6/6.
i Small anterior vermis in all cases.
j Dysmorphic vermis.
k Asymmetric 3/8.
l Small pons in all cases.
m Asymmetric in all cases.
n Diffusely thin brain stem 2/5, small pons 1/5.
o Brain stem not well-visualized, 1 case.
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thickness to slightly thick, associated with shallow sulci and a layer

of neurons (band heterotopia4) deep to the cortex; the cortical

anomaly was more severe frontally than in the occipital cortex. No

cerebellar or brain stem anomalies were identified; however, large

caudate heads were identified in 3/4 patients with DCX muta-

tions, and cerebral white matter volume was mildly or moderately

diminished in 3/4.

DISCUSSION
Microtubules are filamentous intracellular structures critical

for long-range intracellular cargo transport in neurons and,

therefore, important in brain formation and function.13 They

have key roles in mitosis, organization of intracellular struc-

ture, axonal pathfinding, neuronal migration, protein trans-

port, and ciliary motility.13-15 Not surprising, disorders of MT

formation affect multiple aspects of brain development, result-

ing in multiple malformations, including microcephaly

(presumably from impaired mitosis), lissencephaly, band het-

erotopia and other types of cortical dysgenesis (impaired neu-

ronal migration), anomalies of white matter pathways (im-

paired axonal pathfinding), anomalies of the cranial nerves

(impaired axonal pathfinding), and malformations of the mid-

brain and hindbrain (possibly impairment of both neuronal

migration and axonal pathfinding); these malformations have

some characteristic features that allow them to be recognized

on routine MR imaging.9,15-23

Similar malformations had been

previously reported in patients with

mutations of genes encoding MAPs,

such as LIS1 and DCX1,2,12 that bind

to MTs and aid long-range intracellu-

lar transport into distal axons, den-

drites, and leading processes (actin-

based transport is more important for

short-range transport to synapses and

axonal growth cones24). Recent revela-

tions on MT functions and their inter-

actions with MAPs in so many devel-

opmental processes make it clear that

disorders of MT and MAP formation

and function cause many develop-

mental brain disorders.8,13,25-29 Al-

though some MR imaging findings of

cortical malformations and cranial

neuropathies associated with muta-

tions of tubulins and MAPs have been

described, the precise nature of the

cortical anomalies (which have been

nearly uniformly called “pachygyria”

and “polymicrogyria”) and the other

aspects of abnormal brain develop-

ment associated with them, such as

callosal anomalies, brain stem anoma-

lies, and cerebellar anomalies, have

not been previously compared and

contrasted, to our knowledge. In mak-

ing this comparison, we have discov-

ered several MR imaging findings that

may help narrow the search for genes responsible for

malformations.

A brief description of how microtubules form and function

may be useful in this discussion. MTs form by polymerization

of tubulin heterodimers, which are composed of the 2 main

tubulin proteins, �-tubulin (formed from proteins con-

structed by transcription and translation of TUBA genes) and

�-tubulin (from TUBB genes), which spontaneously combine

(dimerize) to form �-�-heterodimers. To initiate the forma-

tion of an MT, heterodimers bind to a �-tubulin ring complex,

composed of �-tubulins (formed by transcription and transla-

tion of TUBG genes) bound to �-tubulin complex proteins in

the wall of a centrosome.25 The �-tubulin ring complex func-

tions as a scaffold, with exposed �-tubulin on its periphery, to

which �-�-heterodimers bind and begin to polymerize, ulti-

mately forming the MT (Fig 5D).25 The advancing ends of the

MTs, at the growth cone of a pathfinding axon or the leading

process of a migrating neuron, follow actin and myosin scaf-

folding that interacts with chemical signals in the interstitium

(Fig 5B, -C).24 Attractive signals cause rapid growth of the

actin in that direction, which quickly stimulates MT polymer-

ization in its wake, whereas repulsive signals cause actin break-

down, quickly followed by MT depolymerization.24,26

Thus, the MT plays a critical role in the navigation and forma-

tion of axons and neurons through the developing brain.13,27,28

FIG 2. A 7-week-old infant with a TUBB2B mutation. Midline sagittal T1WI (A) shows a short, thin
corpus callosum; a small cerebellar vermis; and a thin pons with a disproportionately large tectum
(white arrow). Axial T2WI (B–D from superior to inferior) reveals severe ventriculomegaly. There
is diffuse cortical dysgyria with bilateral frontal lobe band heterotopia (B). More inferiorly, there
are abnormally enlarged caudates with fused striata (C) and an asymmetric, small pons (D), smaller
on the right (black arrowhead) with a central cleft.
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The same process occurs during mitosis as the MTs migrate

from centrosomes to attach to and separate chromosomes and

begin cell division (Fig 5A). Thus, MTs are critical to the pro-

cesses of mitosis, axon navigation, and neuron migration, all

key factors in development. During neuronal migration, an

important role is also played by MAPs (in particular LIS1,

NudE, and Dynein), which are critical to the process of nucleo-

kinesis, by which the nucleus of the migrating neuron is pulled

forward after its leading process advances29; in the absence of

nucleokinesis, the neuron does not migrate. The precise role of

MAPs in axonal navigation is less well-established, but it is

becoming clear that external axonal guidance cues in the brain

interstitium couple with other molecules in the axonal growth

cone (such as ROBO3 or DCC) to direct microtubule dynam-

ics.30,31 It is entirely possible (and, indeed, likely) that MAPs

participate in this process to some extent.

Knowledge of the developmental functions of MTs and

MAPs helps in understanding imaging findings. MTs play a key

role in mitosis; therefore, cell proliferation is diminished in

patients who have mutations of MT genes. In addition, pa-

tients with tubulin mutations (TUBA1A, TUBB2B, TUBB3,

TUBG, and so forth) almost universally have microcephaly6,8-10;

the most severely affected do not survive gestation.32 A review

of the recent literature indicates that patients with MT muta-

tions very commonly have severe mi-

crocephaly, some profoundly so, and

the severity of the microcephaly seems

to be directly related to the severity of

the brain malformation: most severe

in microlissencephaly followed by lis-

sencephaly and pachygyria and least

severe with dysgyria (60% of these pa-

tients are normocephalic).9 The mi-

crocephaly seems likely to be related to

abnormalities of mitosis. In contrast,

patients with MAP mutations have

much milder impairment of brain

growth,33,34 with most normoce-

phalic, and those with small heads

usually mildly affected.

Because neuronal migration is dis-

turbed in tubulinopathies, enlarged or

asymmetric basal ganglia, heteroto-

pias, and cortical dysgenesis are com-

mon. Pachygyria and agyria appear to

be most common in TUBA1A and

TUBG mutations. However, the MR

imaging appearance of the cortex in

the patients in our study and those

described in the literature does not re-

semble true polymicrogyria. Patho-

logic analysis of the brains with tubu-

lin mutations showed migration of

neurons through gaps in the pial-lim-

iting membrane into the subarachnoid

space,32 which is not found in polymi-

crogyria. Moreover, the appearance of

a smooth cortical surface with radially oriented sulci, even on

high-resolution images, is not consistent with polymicrogyria.

Because the appearance in these patients has not been previ-

ously described, we have coined the term “dysgyria” to de-

scribe a malformation in which sulci course at unusual angles

and unusual depths, an appearance that has been illustrated in

published MR imaging figures from patients with mutations of

all the tubulin genes described at this time9,17,19,22,23 but not

discussed in detail. We suggest that recognition of this charac-

teristic feature aids in the diagnosis of tubulinopathy, espe-

cially when associated with microcephaly. In addition, the an-

terior cerebellar vermis is very commonly small, and the

midbrain tectum is often large (which can be a result of abnor-

mal migration of cerebellar granule cells35).

Finally, because axonal pathfinding is disturbed, patients with

tubulin mutations may have congenital fibrosis of the extraocular

muscles or hypoplastic olfactory nerves18; hypoplasia or absence

of the corpus callosum; a small, often asymmetric brain stem;

abnormal-appearing, fused striatum due to the absence of various

parts of the internal capsule (most commonly the anterior limb);

and diminished overall white matter volume.8,9 All of these find-

ings were seen in some of our patients, and nearly all were seen in

many of the patients with tubulin mutations.

FIG 3. Patients with TUBA1A mutations. Midline sagittal T1WI in a 2-day-old patient (A) shows a
thick, dysmorphic corpus callosum; a small cerebellar vermis; and a thin pons with a dispropor-
tionately large tectum. Axial T2WI in the same patient (B) shows cortical lissencephaly with a cell
sparse zone, enlarged caudate heads with fused striata, and mild ventriculomegaly. Midline sag-
ittal (C) and axial (D) T1WI from a different 3-year-old patient with TUBA1A mutation reveals
contrasting dysgyric cortex (D) and a thin corpus callosum with an absent genu and rostrum (C).
Again note a thin pons and moderate ventriculomegaly.
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Of particular interest in this study is the observation that ab-

normalities of axon pathfinding were much more common in

patients with mutations of MT genes compared with those with

MAP genes, while the abnormalities of neuronal migration were

not. Therefore, these findings appear to be important in making

the differentiation. Eighteen of 19 patients with MT gene muta-

tions had a dysmorphic or absent corpus callosum (in the other,

the corpus was uniformly thin). Most of the dysmorphic ones

were thin and incompletely formed, with an absent rostrum and

inferior genu and a thin, short splenium. One was of normal

thickness but very short (rostrocaudally). Although only 2/15 pa-

tients with MAP gene mutations had a normal corpus callosum, 7

of them (4 with LIS1 mutations and 3 with DYNC1H1 mutations)

had a very similar finding of a rather thick corpus callosum with a

small inferior genu, absent rostrum, and a rather sharp angle in

the posterior half of the callosal body, resulting in an overly ver-

tical splenium situated within a few millimeters of the superior

colliculus (Fig 4A). The brain stem was small in 17/18 patients

with MT gene mutations and asymmetric in 8, but a small brain

stem was seen in only 6/15 patients with MAP gene mutations and

all brain stems were symmetric. Mutations of other axonal path-

finding genes, such as ROBO3,36 can cause similar (though usu-

FIG 4. Patients with microtubule-associated protein mutations. Midline sagittal T1WI (A), axial T1WI (B), and T2WI (C) in an 8-month-old patient
with a DYNC1H1 mutation. An abnormal corpus callosum with an absent inferior genu and rostrum and an L-shaped angulation of the body and
splenium with small pons (A) are noted. Axial images (B and C) reveal parietal pachygyria with a cell sparse zone. Midline sagittal T1WI in a
7-year-old patient with a DCX mutation shows normal midline structures, including the corpus callosum, pons, cerebellar vermis, and tectum (D).
Axial images from the same patient with a DCX mutation (E and F) reveal diffuse shallow sulci consistent with pachygyria and moderate band
heterotopia. Midline sagittal T1WI from a 33-year-old patient with a LIS1 mutation (G) demonstrates a small anterior vermis and pons, with a
mildly dysmorphic corpus callosum (small inferior genu and short splenium). Axial T2WI (H and I) from the same patient with a LIS1 mutation
shows a typical cortical anteroposterior gradient with frontal pachygyria progressing to agyria in the parietal and occipital lobes. A thin cell
sparse zone is present in the parietal and occipital lobes (H, white arrows). The basal ganglia are normal (I).
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ally symmetric) clefts in the pons and medulla, but they are not

associated with cortical malformations. Therefore, a finding of a

small, asymmetric brain stem with a midline cleft in the setting of

cortical malformations should strongly suggest a tubulin muta-

tion as the cause.

In terms of cortical malformations, areas of dysgyria were

present in 13/17 patients with MT gene mutations, in whom the

cortex was adequately visualized, while pachygyria was seen in 7.

Peri-Sylvian pachygyria was seen in addition to dysgyria in 3/5

patients with TUBB3 mutations. In contrast, dysgyria was not

seen in patients with MAP gene mutations, while pachygyria was

present in all, mostly in the posterior parietal/occipital regions.

Only 5/15 patients with MAP mutations (3/6 with DYNC1H1

mutations) had a small vermis (in contrast to 17/18 of patients

with tubulin gene mutations); notably, anterior vermis atrophy

predominated in both groups. No patients with predominantly

posterior vermian atrophy were seen.

CONCLUSIONS
The human brain is formed in a complex and highly regulated

process that includes neurogenesis (proliferation of progenitor

cells and production of immature neurons), neuronal migration

(migration of immature neurons from germinal zones into orga-

nized gray matter structures), and connectivity (formation of

white matter tracts by extension of axons). Microtubules and their

associated proteins are integral components of all of these pro-

cesses in the developing brain; thus, their mutations can result in

complex, overlapping imaging phenotypes. Diagnostically, these

features can be useful because combinations of findings seen in

other malformations of cortical development, when present to-

gether, can suggest a disorder of MT function. For example, in a

patient with the combination of microcephaly, dysgyria, and a

small corpus callosum and brain stem, the diagnosis of a tubulin

mutation should be considered. It follows logically that while tu-

bulin gene mutations often affect all categories (neurogenesis, mi-

gration and axonal pathfinding), mutations of MAPs often have

more limited phenotypes, suggesting specialized or redundant

functions. MAP gene mutations most notably caused errors in

neuronal migration (particularly pachygyria and agyria), while

axonal pathfinding abnormalities were much more common in

the patients with tubulin mutations.
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