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REVIEW ARTICLE

Gadolinium-Based Contrast Agent Accumulation and Toxicity:
An Update

X J. Ramalho, X R.C. Semelka, X M. Ramalho, X R.H. Nunes, X M. AlObaidy, and X M. Castillo

ABSTRACT
SUMMARY: In current practice, gadolinium-based contrast agents have been considered safe when used at clinically recommended
doses in patients without severe renal insufficiency. The causal relationship between gadolinium-based contrast agents and nephrogenic
systemic fibrosis in patients with renal insufficiency resulted in new policies regarding the administration of these agents. After an effective
screening of patients with renal disease by performing either unenhanced or reduced-dose-enhanced studies in these patients and by
using the most stable contrast agents, nephrogenic systemic fibrosis has been largely eliminated since 2009. Evidence of in vivo gadolinium
deposition in bone tissue in patients with normal renal function is well-established, but recent literature showing that gadolinium might
also deposit in the brain in patients with intact blood-brain barriers caught many individuals in the imaging community by surprise. The
purpose of this review was to summarize the literature on gadolinium-based contrast agents, tying together information on agent stability
and animal and human studies, and to emphasize that low-stability agents are the ones most often associated with brain deposition.

ABBREVIATIONS: DN � dentate nuclei; GBCA � gadolinium-based contrast agent; NSF� nephrogenic systemic fibrosis

Gadolinium-based contrast agents (GBCAs) have been widely

used in clinical MR imaging studies since the initial FDA

approval of gadopentetate dimeglumine (Magnevist; Bayer

HealthCare Pharmaceuticals, Wayne, New Jersey) in 1988. To

date, 9 GBCAs are available for clinical use in 1 or more regions of

the world (Table 1), and it is estimated that �200 million doses

have been administered worldwide.1

All GBCAs approved for clinical use have been considered to

have a wide safety margin when used at relatively low doses (0.1–

0.3 mmol/kg) in patients with normal renal function. The accu-

mulated safety record is excellent, with serious adverse reactions

occurring in roughly 0.03% of all administrations.2,3 These ad-

verse reactions are more common in patients with history of

asthma, allergies, and renal insufficiency and in patients injected

at faster rates.1,4,5

GBCAs had an exceptional safety reputation from 1988 to

2006, to the point that in 2004 and 2005 GBCAs were recom-

mended as a substitute for iodine-based contrast media in pa-

tients with renal failure for CT and in interventional studies.6-9

In 2006, the association between the administration of GBCAs

and the development of nephrogenic systemic fibrosis (NSF) in

patients with renal insufficiency was described.10,11 NSF is a de-

bilitating and potentially life-threatening disease characterized by

widespread progressive tissue fibrosis that results from the depo-

sition of fibroblasts and collagen. It predominantly involves the

skin but may also affect other organs such as the lungs, liver, heart,

and muscles.

The exact pathophysiology of NSF remains unknown, but

the dissociation of gadolinium ions from their chelating li-

gands has been accepted as the primary etiology, which is more

likely to occur in patients with renal failure than in those with

normal renal function because the excretion rate is reduced in

the former, allowing time for the chelates to disassociate in

vivo. Most cases of NSF reported in the literature have been

associated with administration of nonionic, linear gadodi-

amide (Omniscan; GE Healthcare, Piscataway, New Jersey),12

though reports also described substantial incidents with an-

other nonionic linear agent, gadoversetamide (OptiMARK;

Covidien, Irvine, California), and with an ionic linear agent,

gadopentetate dimeglumine (Magnevist).13-17

Since mid-2009, no new cases of NSF have been reported. This

finding reflects the use of more stable GBCAs and limiting the use

of GBCAs in patients with renal failure. As a result, from 2009 to

2014, confidence in the safety profile of GBCAs has been largely
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restored. However, in the past 2 years, numerous studies regard-

ing gadolinium deposition in neural tissues in patients with nor-

mal renal function have been published.

This deposition was first postulated by MR imaging studies in

which progressively increased signal intensity in the globi pallidi

and/or dentate nuclei (DN) on unenhanced T1-weighted images

in patients with normal renal function was related to multiple

administrations of GBCAs. As with NSF, the agent most associ-

ated with this finding was gadodiamide (Omniscan) (Fig 1),18-21

but it has also been shown with gadopentetate dimeglumine

(Magnevist).18,22

T1 hyperintensity in the DN was pre-

viously described in the progressive sub-

type of multiple sclerosis and was asso-

ciated with increased clinical disability,
lesion load, and brain atrophy.23

Similar findings were also reported
with brain irradiation.24 From the per-
spective of our current understanding,
none of these studies considered the
number of contrast-enhanced MR im-
aging studies performed in their analy-
ses, raising the question of whether these
findings reflect gadolinium deposition
rather than a primary disease manifesta-
tion, as demonstrated recently by Adin
et al25 in a study with 184 subjects who
were treated with brain irradiation.

A study by McDonald et al26 was the
first to document that the high signal in
the neural tissues reflected deposited
gadolinium. In brain specimens from
postmortem examinations of 13 sub-
jects who underwent at least 4 MR imag-
ing examinations with gadodiamide
(Omniscan), the presence of gadolin-

ium was histologically confirmed by us-

ing inductively coupled plasma mass spectroscopy. They also

showed a dose-dependent relationship between intravenous

gadodiamide administrations and subsequent neural tissue de-

position that was independent of renal function. Kanda et al27

confirmed neural tissue deposition in 5 patients with normal

renal function who had received gadopentetate dimeglumine

(Magnevist), gadodiamide (Omniscan), or gadoteridol (Pro-

Hance; Bracco Diagnostics, Princeton, New Jersey) in varying

combinations.

Confirming human studies, an animal study28 also demonstrated

that repeated administrations of linear gadodiamide (Omniscan) to

FIG 1. Axial MR images in a 51-year-old woman with parkinsonism. Unenhanced T1-weighted MR
imagings of the first (A and C) and fifth (3 years later; B and D) gadolinium-enhanced MR imagings
performed with a nonionic linear GBCA (Omniscan) at the level of the basal ganglia (A and B) and
the level of the dentate nuclei of the cerebellum (C and D). The images show progressively
increased T1 signal of the globi pallidi and dentate nuclei (white arrows, B and D), undetectable on
the first MR imaging.

Table 1: Gadolinium-based contrast agents currently approved for clinical use: biochemical properties

Chemical Structure Trade Name
Thermodynamic Stability

Constant
Conditional Stability

Constant
Elimination

Pathway
Linear

Nonionic
Gadodiamide Omniscan, 0.5 mmol/mL 16.8 14.9 Renal
Gadoversetamide OptiMARK, 0.5 mmol/mL 16.6 15 Renal

Ionic
Gadopentetate dimeglumine Magnevist, 0.5 mmol/mL 22.1 17.7 Renal
Gadobenate dimeglumine MultiHance, 0.5 mmol/mL 22.6 18.4 93% Renal

3% Biliary
Gadoxetic acid disodium Primovist, 0.25 mmol/mL 23.5 NA 50% Renal

50% Biliary
Gadofosveset trisodium Vasovist, 0.25 mmol/mLa 22 NA 91% Renal

9% Biliary
Macrocyclic

Nonionic
Gadoteridol ProHance, 0.5 mmol/mL 22.8 17.1 Renal
Gadobutrol Gadavist, 0.5 mmol/mL 21.8 NA Renal

Ionic
Gadoterate meglumine Dotarem, 0.5 mmol/mL 25.4 19 Renal

Note:—NA indicates not applicable.
a Bayer Schering Pharma.

2 Ramalho ● 2016 www.ajnr.org



healthy rats was associated with progressive and persistent T1 signal

hyperintensity in the DN and with histologic gadolinium deposits in

the cerebellum, in contrast to those who received the macrocyclic

agent gadoterate meglumine (Dotarem; Guerbet, Aulnay-sous-Bois,

France), in whom no effects were observed.

The more stable macrocyclic GBCAs, such as gadoteridol

(ProHance),22 and gadoterate meglumine (Dotarem),28,29 were

not associated with substantial MR imaging changes or even brain

deposition in the case of gadoterate meglumine (Dotarem),28

supporting the concept that gadolinium accumulation varies de-

pending on the stability of the agent used. Gadobenate dimeglu-

mine (MultiHance; Bracco Diagnostics), an agent of intermediate

stability, was associated with fewer MR imaging changes com-

pared with the linear gadodiamide (Omniscan) and was only ap-

preciated in the DN.21 Recently, Weberling et al30 suggested that

this agent releases less gadolinium than gadopentetate dimeglu-

mine (Magnevist) but more than gadoterate meglumine (Dota-

rem). Most surprising, a more stable macrocyclic agent, gad-

obuterol (Gadavist; Bayer Schering Pharma, Berlin, Germany),

has also been shown to result in brain deposition.31 These findings

suggest that all GBCAs should be evaluated individually, despite

their molecular structures.

Gadolinium-Based Contrast Agents: In Vitro Stability,
Pharmacokinetics, and Biodistribution
GBCAs are used as MR imaging contrast agents because of their

excellent paramagnetic properties. Gadolinium is a rare earth el-

ement and one of the 15 metallic atoms in the lanthanide series.

On the periodic table, its symbol is Gd, and its atomic number is

64. Free gadolinium (Gd3�) is toxic in humans, and to be used in

vivo, it must be chelated to organic ligands.32

Depending on the ligand structure, GBCAs can be classified in

2 major groups: macrocyclic molecules, in which the Gd3� is

caged in the preorganized cavity of the ligand; and linear or open

chain molecules, in which the ligand is not fully closed. From a

chemical structure perspective, each category may be further sub-

classified, according to their charges, into ionic and nonionic.33,34

Frenzel et al33 reported that under physiologic conditions (hu-

man serum, at 37°C), GBCAs can be divided into 3 distinct stabil-

ity classes: nonionic linear, ionic linear, and macrocyclic. Macro-

cyclic chelates are more stable than linear chelates, and ionic

linear chelates are more stable than the nonionic linear ones.

The dissociation of Gd3� from its ligand is an equilibrium

process defined by 2 distinct and independent parameters: kinetic

and thermodynamic stabilities.

Kinetic stability of a gadolinium complex is characterized by

its dissociation rate, which describes how fast a resting equilib-

rium is reached and thus how fast Gd3� is released from a gado-

linium complex.33 If the kinetic stability is high, the dissociation

rate is considerably slower than the elimination rate from the

body, and the release of Gd3� becomes negligible during the in

vivo residence time of the gadolinium complex. A simple way to

understand kinetic stability is the speed at which the chelated

gadolinium agent dissociates. At present, kinetic stability of

GBCAs is reported for a pH of 1 (hence, we prefer to designate

these values as “pH 1, kinetic stability”), in large part, because the

kinetic stability of some of the macrocyclic agents would need to

be expressed in terms of months or years at a pH of 7.4.

Thermodynamic stability reflects the energy required for the

metalloligand to release the Gd3� ion. When thermodynamic sta-

bility is high, the chelate less readily releases the free Gd3� ion. A

simple way to understand thermodynamic stability is that it rep-

resents the final equilibrium state between chelated and unche-

lated gadolinium. Thermodynamic stability is also determined at

a pH of 1, but a more appropriate measure when considering an in

vivo environment is to calculate it at the physiologic pH of 7.4,4,33

which is termed “conditional stability” (we prefer the term “pH 7,

thermodynamic stability”).

Other factors, including the concentration of competing ions

or ligands and the interaction times between the gadolinium che-

lates and the competitors,35,36 contribute to the stability of

GBCAs.4

In vivo, the gadolinium complex is surrounded by a variety of

competitors, which have the potential to interact with either the

Gd3� or the ligand. Different endogenous cations (eg, Fe3�,

Mg2�, Cu2�, Zn2�, or Ca2�) compete with Gd3� ions for the

ligand, and endogenous anions (eg, phosphate, carbonate, hy-

droxide) compete for the Gd3� ions. This competition may de-

stabilize the gadolinium complex in biologic fluids and shift the

dissociation equilibrium toward its free components. The com-

ponents do not exist as free ions but bind to other agents rapidly.

This exchange process is termed “transmetallation.”1,33,37-39

Most often, if the ligand releases Gd3� ions, they quickly rebind.

On the basis of the availability of other cations and the affinity of

the ligand to them, the ligand may bind to another cation.4,33 The

same phenomenon is experienced by the anionic component.

GBCAs are also classified according to their biodistribution as

extracellular, combined extracellular-intracellular, and blood-

pool agents. An intravenously administered chelate rapidly equil-

ibrates in the intravascular and interstitial fluid compartments

(extracellular compartment). Depending on its structure, the

complex may also be distributed in the intracellular compartment

(including the liver and kidneys) by passive diffusion or specific

uptake processes.40 Most GBCAs in clinical use are nonspecific

extracellular contrast agents, which, like iodine-based contrast

agents, are cleared almost exclusively by the kidneys. Combined

extracellular-intracellular agents are distributed into the extracel-

lular and intracellular compartments of hepatocytes; therefore,

they are also described as “hepatocyte-specific agents.” These

agents (gadobenate dimeglumine [MultiHance] and gadoxetic

acid/gadoxetate disodium [Primovist/Eovist; Bayer Schering

Pharma]) when taken up by hepatocytes are excreted into the bile

ducts, thus exhibiting dual-elimination routes (renal and biliary).

The biliary route is an important pathway of elimination of con-

trast if the kidneys are functioning poorly.32,41 With normally

functioning kidneys, most of the administered dose of GBCAs,

regardless of which agent was given, should be eliminated in �2

hours after injection and �95% by 24 hours. However, patients

with renal impairment have reduced GBCA elimination, and the

Gd complex remains inside the body for extended periods, allow-

ing dissociation to occur.4,33 In this setting, GBCAs with dual

elimination (biliary and renal) have an alternative elimination
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pathway, which helps decrease the gadolinium burden in the

body.

Gadolinium Toxicity
Most of the known toxicity of the free Gd3� ion is related to 2

properties: its insolubility at physiologic pH, resulting in very

slow systemic excretion; and an ionic radius close to that of Ca2�

(Gd3� � 107.8 pm and Ca2� � 114 pm) that allows Gd3� to

compete biologically with Ca2�.3,34

Gadolinium is a well-known blocker of many types of voltage-

gated calcium channels at very low concentrations, and conse-

quently, it can inhibit physiologic processes such as contraction of

smooth, skeletal, and cardiac muscles; transmission of nerve im-

pulses; and blood coagulation. It also inhibits the activity of cer-

tain enzymes such as Ca2�-activated-Mg2�-adenosine triphos-

phatase, some dehydrogenases and kinases, and glutathione

S-transferases. It also acts as an agonist on the calcium-sensing

receptors.42 Gadolinium may also increase the expression of some

cytokines,43 inhibit mitochondrial function, and induce oxidative

stress.44,45

Major lesions related to single-dose administration of gadolin-

ium chloride (0.07– 0.35 mmol/kg) in rats consist of mineral de-

position in capillary beds, phagocytosis of minerals by macro-

phage-like cells, hepatocellular and splenic necrosis followed by

dystrophic mineralization, decreased platelet numbers, and in-

creased coagulation times.46 Gadolinium is also a potent inhibitor

of the reticuloendothelial system.34,47 All GBCAs and gadolinium

chloride have been found to stimulate fibroblast proliferation in

tissues taken from healthy subjects.48-51 This last process may be a

major factor responsible for NSF because proliferation of CD34�

fibroblasts is the hallmark histologic feature of this disease.52,53

Gadolinium Retention and Tissue Deposition
Several studies describe a complex pharmacokinetic behavior af-

ter intravenous administration of GBCA. Even in patients with

normal renal function, in vivo clinical exposure to gadolinium

chelates results in gadolinium incorporation into body tissues

such as bone matrix54-56 or brain tissues.26,27 As early as 1991,

Rocklage et al57 stated, “Minute amounts of chelated or unche-

lated metals are likely to remain in the body for an extended pe-

riod and could possibly result in a toxic effect.”

Gibby et al54 used inductivity coupled plasma atomic emission

spectroscopy to quantify gadolinium deposition in the bones of

patients who underwent total hip arthroplasty after an injection of

0.1 mmol/kg of gadodiamide (Omniscan) or gadoteridol (Pro-

Hance) no less than 3 days and not more than 8 days before the

operation. The authors found that Omniscan resulted in 2.5 times

the amount of gadolinium deposition as ProHance. In a fol-

low-up study, White et al55 confirmed these findings by using a

more sensitive analytic method and reported that Omniscan de-

posited 4 times more than did ProHance.

Later, Darrah et al56 also analyzed bone tissue. The authors

confirmed that gadolinium incorporates into bone and is retained

for �8 years. However, no differences were observed in bone

gadolinium concentration between patients dosed with Omnis-

can (n � 6) and ProHance (n � 5). It is difficult to explain the

different findings between these 2 groups, and perhaps the small

number of patients may have affected the results of Darrah et al.

Other researchers have previously estimated that approximately

1% of the injected gadolinium from each dose of the evaluated

GBCAs could be released from the contrast agent and deposited in

the bones, including in patients with normal kidney function.58

The methods of gadolinium sequestration and deposition re-

main poorly understood. Little is known about the levels of gad-

olinium required to induce tissue structural changes and to

achieve clinical significance in humans. Recently, Christensen et

al52 analyzed the skin of 13 patients with NSF and found signifi-

cant differences in the amounts of gadolinium in affected-versus-

nonaffected regions. Gadolinium was also present in unaffected

skin. The authors also found elevated gadolinium concentration

in the skin of 2 healthy individuals months after the GBCA expo-

sure. These findings suggest that there may be a threshold level for

gadolinium required for the development of disease.52

Regarding brain tissue deposition, Xia et al59 used scanning

electron microscopy with energy dispersive x-ray spectroscopy to

evaluate gadolinium deposition within brain tumor tissues that

had blood-brain barrier disruption and found that gadolinium

deposition occurred in patients without severe renal disease. De-

position of gadolinium in the cerebellum was also reported in a

patient who developed NSF after several administrations of Om-

niscan.60 Gadolinium deposition in neural tissues in patients with

intact blood-brain barrier and normal renal function was only

recently established by McDonald et al,26 followed by Kanda

et al.27 Postmortem brain specimens from the 2 studies showed

no obvious gadolinium-mediated histologic changes26 or macro-

scopic changes27 in areas of gadolinium deposition.

Another intriguing finding is the nonuniform gadolinium de-

position in neural structures. Among all sampled neuroanatomic

locations (globi pallidi, thalami, DN, and pons), McDonald et al26

found that the DN contained the highest median concentrations

of elemental gadolinium, followed by the globi pallidi. Confirm-

ing this finding, Kanda et al27 found that the DN and globi pallidi

showed significantly higher gadolinium concentrations than the

other evaluated brain regions (ie, cerebellar white matter, frontal

lobe cortex, and frontal lobe white matter).

Similar MR imaging signal-intensity changes in the dentate

and/or deep gray nuclei are seen in patients with multiple sclero-

sis, neurofibromatosis, hypoparathyroidism, manganism, inher-

ited metabolic disorders, and Fahr disease, suggesting that these

areas are particularly susceptible to metal deposition18,19,26,61; but

these anatomic preferences remain poorly understood.

In bone and other tissues, gadolinium deposition can be ex-

plained, in part, by the presence of fenestrated capillary systems,

in combination with the analogous nature of Gd and Ca. How-

ever, neural tissue deposition with an otherwise intact blood-

brain barrier as reported by McDonald et al26 and Kanda et al27 is

not clearly understood. Kanda et al27 found that gadolinium

was prominently clustered in large foci within the endothelial

wall but 18%– 42% of gadolinium appeared to have crossed the

blood-brain barrier and was deposited into the neural tissue

interstitium.

It also remains unclear whether the gadolinium present in tis-

sues, including neuronal tissues, is present in a chelated or unche-

lated state. Dissociated gadolinium often binds to phosphates or
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carbonates in vivo, but it may also bind to proteins or other mac-

romolecules and may also be taken up by macrophages or similar

immune cells. Phosphate- and carbonate-bound gadolinium is

considered insoluble and thought to not generate increased T1

signal.62 Tissue gadolinium deposits have often been associated

with the presence of calcium, phosphorus, and sometimes iron or

zinc.58,63,64 It is likely that chelated, protein-bound, insoluble,

and intramacrophage gadolinium may all be present in different

proportions depending on the type of GBCA. Future studies are

needed to investigate in detail the behavior of GBCA molecules

taken up in brain areas associated with T1 high signal intensity.28

Clinical Significance of Gadolinium Deposition
The retention of gadolinium is important clinically. Gadolinium

is not a naturally occurring biologic constituent, and once within

the tissues of animals, it persists for long periods.54 Additionally,

heavy metals are known to be toxic.

The risks associated with the administration of weaker chelate

GBCAs to patients with severely impaired kidney function are

well-documented, and NSF is the result. As described in this re-

view, the published literature, most of which is recent, indicates

that some gadolinium from each dose given may remain in the

body of all patients regardless of their renal function. The long-

term and cumulative effects of retained gadolinium are, at pres-

ent, unknown in patients with normal renal function.

Preclinical safety studies performed on animals failed to reveal

any neurologic effects of chelated gadolinium when given intra-

venously.60 There is, however, proof of gadolinium toxicity in the

brain when administered by the intraventricular route in rats65

and also by the intravenous route after blood-brain barrier

disruption.66

It is conceivable that patients may be adversely affected by

retained gadolinium, especially in the brain. Despite being a dif-

ficult-to-prove cause-effect relationship, an MR imaging gadolin-

ium-toxicity support group has been created. This group reported

symptoms that they considered consistent with what is known

about the toxic effects of gadolinium. In a recent survey per-

formed in 17 patients, an association between chronic effects and

GBCA exposure was suggested.67 Although no specific conclu-

sions can be drawn from the survey, the results indicated that the

symptoms appeared within 1 month af-

ter the last contrast-enhanced MR imag-

ing and chronic pain was present in all

17 subjects (Table 2).

We recommend future investiga-

tions to evaluate a possible relation be-

tween gadolinium retention and clinical

symptoms in subjects with normal renal

function.

CONCLUSIONS
All GBCAs probably deposit in vivo in

humans to some degree. At present, it is

unclear why only the weaker chelates ap-

pear to result in meaningful clinical dis-

ease such as NSF, despite the fact that

more stable GBCAs also show deposi-

tion. This presumably reflects the con-

centration of gadolinium deposited in tissues, though it is likely

that the molecular state of the administered and deposited

gadolinium strongly influences both deposition and clinical

manifestations.

Recent literature confirms that gadolinium deposition occurs

in the human brain after multiple gadolinium contrast adminis-

trations, despite an intact blood-brain barrier and normal renal

function. On MR imaging, this accumulation is seen as increased

signal intensity within the DN and globi pallidi on T1-weighted

images. Gadolinium-associated findings gleaned from in vitro,

animal, and human studies suggest that the greatest deposition

and most deleterious effects are associated with GBCAs with the

lowest stability. The ultimate significance of this deposition in

subjects with normal renal function, in their brain and elsewhere,

remains to be determined. Careful evaluation, especially in chil-

dren, is recommended when administering GBCAs.
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